UNIVERSITY OF CALIFORNIA, BERKELEY
 DEPARTMENT OF STATISTICS

STAT-155: Game Theory
Fall 2013
Instructor: Antar Bandyopadhyay
GSI: Sujayam Saha
Assignment \# 10

Date Given: November 18, 2013 (Monday)
Total Points: 20
Date Due: November 25, 2013 (Monday)

1. Consider the two examples done in class on two-person zero-sum games with infinite strategy spaces. The games were as follows:

Two players I and II are going to call two numbers simultaneously from the set of positive integers $\mathbb{N}:=\{1,2,3, \cdots\}$. The payoff matrices are given by

$$
A(i, j)=\left\{\begin{aligned}
+1 & \text { if } i>j \\
0 & \text { if } i=j \\
-1 & \text { if } i<j
\end{aligned}\right.
$$

and

$$
B(i, j)=\left\{\begin{array}{cl}
4^{j} & \text { if } i>j \\
0 & \text { if } i=j \\
-4^{i} & \text { if } i<j
\end{array}\right.
$$

where $1 \leq i<\infty$ and $1 \leq j<\infty$.
(a) Show that for the first example, that is the game with payoff matrix A, the expected gain of Player I, when Player I plays a mixed strategy \mathbf{x} and Player II plays a mixed strategy \mathbf{y}, is always defined.
(b) Show that by an example that above may not hold for the second example, which is the game with payoff matrix B.
2. Consider a finite two-person general sum game $\left(\mathbf{X}, \mathbf{Y} ;\left(A_{m \times n}, B_{m \times n}\right)\right)$. Suppose $\left(i^{*}, j^{*}\right)$ be a saddle point for the two matrices A and $-B$ where $1 \leq i^{*} \leq m$ and $1 \leq j^{*} \leq n$.

Find a pair of safety strategies for Players I and II. Do you think your answer is also a Nash equilibrium?

