UNIVERSITY OF CALIFORNIA, BERKELEY
 DEPARTMENT OF STATISTICS

STAT-155: Game Theory
Fall 2013
Instructor: Antar Bandyopadhyay
GSI: Sujayam Saha
Assignment \# 12

Date Given: December 02, 2013 (Monday) Total Points: 20
Date Due: December 09, 2013 (Monday)

1. Recall the definition of a symmetric many player general sum game:

Definition: A n-player game $\left(\left(X_{1}, X_{2}, \cdots, X_{n}\right),\left(U_{1}, U_{2}, \cdots, U_{n}\right)\right)$ is said to be symmetric if
(i) $X_{1}=X_{2}=\cdots=X_{n}=: X$ (say); and
(ii) for any permutation π of the numbers $\{1,2, \cdots, n\}$ we have

$$
U_{\pi(i)}\left(x_{\pi(1)}, x_{\pi(2)}, \cdots, x_{\pi(n)}\right)=U_{i}\left(x_{1}, x_{2}, \cdots, x_{n}\right)
$$

for every $x_{1}, x_{2}, \cdots, x_{n} \in X$.
Show that
(a) For a two-person zero-sum game with payoff matrix A, symmetric means A is skew symmetric.
(b) For a two-person general-sum game with payoff matrices (A, B), symmetric means $A=B^{T}$.
(c) Suppose for every $i, j \in\{1,2, \cdots, n\}$ we have $U_{i}\left(x_{1}, x_{2}, \cdots, x_{n}\right)=U_{j}\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ for all $x_{1}, x_{2}, \cdots, x_{n} \in X$. Is the game necessarily symmetric?
2. Definition: A graph $G:=(V, E)$ is called a complete bipartite graph if $V=V_{1} \cup V_{2}$ with $V_{1} \cap V_{2}=\emptyset$, $V_{1} \neq \emptyset$ and $V_{2} \neq \emptyset$ and $E=\left\{\left(v_{1}, v_{2}\right) \mid v_{1} \in V_{1}, v_{2} \in V_{2}\right\}$.

Suppose G is a finite complete bipartite graph and consider the game of coloring on G, that is, a many player game where the players are the vertices and moves are coloring your own vertex with utilities given by

$$
U_{v}(C):= \begin{cases}\sum_{u \in V} \mathbf{1}(C(u)=C(v)) & \text { if } C \text { is proper coloring; } \\ 0 & \text { otherwise }\end{cases}
$$

Show that G has a unique pure Nash equilibrium and find it. From here or otherwise find the chromatic number of G.

