UNIVERSITY OF CALIFORNIA, BERKELEY
 DEPARTMENT OF STATISTICS

STAT-155: Game Theory

Fall 2013
Instructor: Antar Bandyopadhyay
GSI: Sujayam Saha
Assignment \# 4

Date Given: September 30, 2013 (Monday)

Total Points: 20 Date Due: October 07, 2013 (Monday)

1. Consider the following Combinatorial Game

- The game starts with a 8×8 standard chess board with 16 rooks placed on the 16 diagonal squares each containing exactly one rook.
- There are two players, namely, Players I and II who alternate their moves.
- At each move a player selects one of the 8 rows and moves a rook in it to a square to its right. Note in a move only one rook is moved and it always moves to its right. In other words rooks DO NOT change their respective rows. Also note that a square may have more than one rook in it and no rook is allowed to go out of the board.
- The game ends when all the 16 rooks are at the right-most column of the board with each right-most square contains two rooks. The last player to make a move is the winner.

For the above game analyze who will be the winner. Give reasons for your answer.
2. Let G_{1}, G_{2}, G_{3} and G_{4} be four progressively bounded impartial combinatorial games with positions g_{1}, g_{2}, g_{3} and g_{4} respectively. Suppose $\left(G_{1}, g_{1}\right) \sim\left(G_{2}, g_{2}\right)$ and $\left(G_{3}, g_{3}\right) \sim\left(G_{4}, g_{4}\right)$.
(a) Show that $\left(G_{1}+G_{3},\left(g_{1}, g_{3}\right)\right) \sim\left(G_{2}+G_{3},\left(g_{2}, g_{3}\right)\right)$.
(b) Show that $\left(G_{1}+G_{3},\left(g_{1}, g_{3}\right)\right) \sim\left(G_{2}+G_{4},\left(g_{2}, g_{4}\right)\right)$.

