UNIVERSITY OF CALIFORNIA, BERKELEY
 DEPARTMENT OF STATISTICS

STAT-155: Game Theory
Fall 2013
Instructor: Antar Bandyopadhyay
GSI: Sujayam Saha
Assignment \# 6

Date Given: October 14, 2013 (Monday)
Total Points: 20
Date Due: October 21, 2013 (Monday)

1. Let (X, Y, A) be a finite two-person zero-sum game with pay-off matrix $A=\left(\left(a_{i j}\right)\right)_{\substack{1 \leq i \leq m \\ 1 \leq j \leq n}}$. Let V be the value of the game. Then show that

$$
\max _{1 \leq i \leq m} \min _{1 \leq j \leq n} a_{i j} \leq V \leq \min _{1 \leq j \leq n} \max _{1 \leq i \leq m} a_{i j}
$$

2. Suppose two players I and II call two numbers simultaneously from the set $\{1,2\}$. If the numbers Player I and II call are a and b respectively then Player I receives an amount of $\$ a b$ from Player II if $a+b$ is odd, otherwise Player I pays to Player II an amount of $\$ a b$.
Find the pay-off matrix for this game. What are the optimal strategies for Players I \& II? What is the value of the game?
