UNIVERSITY OF CALIFORNIA, BERKELEY

DEPARTMENT OF STATISTICS

STAT-155: Game Theory

<u>Fall 2013</u>

Instructor: Antar Bandyopadhyay

GSI: Sujayam Saha

Assignment # 9

Date Given: November 11, 2013 (Monday) Date Due: November 18, 2013 (Monday)

Total Points: 20

1. Consider a two-person zero-sum game with the following payoff matrix

$$\left(\begin{array}{rrrr} 0 & 1 & 2 \\ -3 & 0 & 3 \\ 2 & 1 & 0 \end{array}\right)$$

Apply the *pivot method* and find the value of the game and a pair of optimal strategies for the two players. Write all details of each of the steps of the algorithm.

2. Consider the following *linear programing* problem:

maximize	$2z_1 + z_2 + 3z_3$

subject to the constrains

$2z_1$	+	z_2	\leq	2
$2z_1$	+	$3z_3$	\leq	2
z_2	+	$3z_3$	\leq	2

and $z_1 \ge 0, z_2 \ge 0$ and $z_3 \ge 0$.

- (a) Formulate this problem as a two-person zero-sum game and give the payoff matrix.
- (b) Find the value and a pair of optimal strategies for this game.
- (c) Find the solution to the above linear programing problem with optimal values for z_1, z_2 and z_3 .