Solutions to Assignment 10 Stat 155: Game Theory

Question 1

a) When the mixed strategies of PI and PII are x and y respectively and the payoff is A,then the expected payoff to PI is formally written as

$$
\sum_{i} \sum_{j} a_{i j} x_{i} y_{j}=\sum_{i} x_{i}\left(\sum_{j=1}^{i-1} y_{j}-\sum_{j=i+1}^{\infty} y_{j}\right)=: \sum_{i} c_{i}(y) x_{i}(\text { let })
$$

It is enough to show that the series $\sum_{i} c_{i}(y) x_{i}$ converges absolutely for every possible choice of y. Now, for any fixed choice of y,

$$
\begin{aligned}
\left|c_{i}(y)\right| & =\left|\sum_{j=1}^{i-1} y_{j}-\sum_{j=i+1}^{\infty} y_{j}\right| \\
& \leq\left|\sum_{j=1}^{i-1} y_{j}\right|+\left|\sum_{j=i+1}^{\infty} y_{j}\right| \\
& =\sum_{j=1}^{i-1} y_{j}+\sum_{j=i+1}^{\infty} y_{j} \\
& =\sum_{j} y_{j}-y_{i}=1-y_{i} \leq 1
\end{aligned}
$$

Thus the series, $\sum_{i=n}^{\infty}\left|c_{i}(y) x_{i}\right|=\sum_{i=n}^{\infty}\left|c_{i}(y)\right| x_{i} \leq \sum_{i=n}^{\infty} x_{i}$ converges to 0 as $n \rightarrow \infty$ which means that the tail sum of the series $\sum_{i} c_{i}(y) x_{i}$ converges to 0 , which means the series converges for every choice of y. Thus $\sum_{i} c_{i}(y) x_{i}$ converges absolutely and hence the is always defined.
b) For the second example, lets choose the mixed strategies in the following way, $x_{i}=y_{i}=2^{-i}$. Observe that $\sum_{i} x_{i}=\sum_{j} y_{j}=1$ so they are actually mixed strategies. Then the expected payoff to PI is,

$$
\begin{aligned}
P & :=\sum_{i}\left(\sum_{j<i} \frac{4^{j}}{2^{i} 2^{j}}-\sum_{j>i} \frac{4^{i}}{2^{i} 2^{j}}\right) \\
& =\sum_{i}\left(\sum_{j<i} \frac{2^{j}}{2^{i}}-\sum_{j>i} \frac{2^{i}}{2^{j}}\right) \\
& =\sum_{i}\left(\frac{2^{i}-2}{2^{i}}-1\right) \\
& =\sum_{i} \frac{-1}{2^{i-1}}=-2
\end{aligned}
$$

But again,

$$
\begin{aligned}
P & =\sum_{i}\left(\sum_{j<i} \frac{2^{j}}{2^{i}}-\sum_{j>i} \frac{2^{i}}{2^{j}}\right) \\
& =\sum_{j}\left(-\sum_{i<j} \frac{2^{i}}{2^{j}}+\sum_{i>j} \frac{2^{j}}{2^{i}}\right) \\
& =-\sum_{j}\left(\sum_{i<j} \frac{2^{i}}{2^{j}}-\sum_{i>j} \frac{2^{j}}{2^{i}}\right) \\
& =-\sum_{i}\left(\sum_{j<i} \frac{2^{j}}{2^{i}}-\sum_{j>i} \frac{2^{i}}{2^{j}}\right) \quad(\text { by renaming the dummy variables }) \\
& =-P=2
\end{aligned}
$$

which means that the series 'converges' to both 2 and -2 , i.e. it is not convergent.

Question 2

It is given that $\left(i^{*}, j^{*}\right)$ is a saddle point of A, which means that

$$
\min _{j} a_{i^{*} j}=a_{i^{*} j^{*}}=\max _{i} a_{i j^{*}}
$$

That is,

$$
i^{*}=\underset{i}{\operatorname{argmax}} a_{i j^{*}}=\underset{i}{\operatorname{argmax}} \min _{j} a_{i j}
$$

which means that i^{*} is a safety strategy for PI. Similarly, j^{*} is a safety strategy for PII. Be mindful of the negative sign which counters the tranpose \max / min.

Then, $\left(i^{*}, j^{*}\right)$ is also a Nash equilibrium as the following holds,

$$
\begin{aligned}
a_{i^{*} j^{*}} & \geq a_{i j^{*}}(\text { saddle point }, \text { hence column max }, \text { in }) A \\
b_{i^{*} j} & \leq b_{i^{*} j^{*}}(\text { saddle point, hence row minimum, in })-B
\end{aligned}
$$

This proves that the pair of safety strategies we found is also a NE.

