Solutions to Assignment 11
 Stat 155: Game Theory

Question 1

This follow from the definition of safety values and Nash Equilibrium. Indeed,

$$
x^{T} A y^{*} \geq \min _{y} x^{T} A y \text { for all } x
$$

taking max on both sides, $\max _{x} x^{T} A y^{*} \geq \max _{x} \min _{y} x^{T} A y$
by definition of NE, $x^{* T} A y^{*} \geq v_{I}$ by definition of safety value

The calculation for the other expression is exactly the same.

Question 2

a) The safety value for PI is 0 as his payoff is always 0 when PII plays ColumnI.

The safety value for PII is $\max _{y} \min _{i} \sum_{j} B_{i j} y_{j}$. Noticing that the first and third columns of B are same, it is enough, while calculating the safety value, to work with the smaller payoff matrix,

$$
\left(\begin{array}{ll}
0 & 2 \\
1 & 0
\end{array}\right)
$$

Then, safety value $=\max _{y_{1}} \min \left\{2-2 y_{1}, y_{1}\right\}=\frac{2}{3}$.
b) From PII's safety value, $(0,0)$ and $(2,0)$ can not be NE. Of the 3 positions left, it is easy to observe that the $(0,1)$ in the $(2,1)^{t h}$ position of the payoff matrix is the only possible pure NE.
c) To find a mixed NE, we first observe that there are no dominated actions in the payoff matrix. Next we assign mixed strategies $(p, 1-p)$ and $(q, r, 1-q-r)$
to actions of PI and PII respectively. By equalizing payoffs, we get $2-p=$ $2 p, 2 r=1-r$, which means $p=\frac{2}{3}, r=\frac{1}{3}$. So there are many mixed NE, parametrized by q, and given by the pair of mixed strategies $\left(\frac{2}{3}, \frac{1}{3}\right),\left(q, \frac{1}{3}, \frac{2}{3}-q\right)$.

