Solutions to Assignment 12 Stat 155: Game Theory

Question 1

First we try to simplify the definition of symmetric game for two-player games. The only permutations of $\{1,2\}$ are $\{1,2\}$ and $\{2,1\}$. Then, the condition given in the question simplifies to $U_{2}\left(x_{2}, x_{1}\right)=U_{1}\left(x_{1}, x_{2}\right)$ for every $x_{1}, x_{2} \in X$.
a) For 2 -person 0 -sum games, $U_{2}=-U_{1}$. Thus, writing in terms of payoff matrix instead of utility, $a_{i j}=U_{1}(i, j)=U_{2}(j, i)$ by symmetry $=-U_{1}(j, i)=$ $-a_{j i}$, implying skew symmetry of the payoff matrix.
b) Similarly, in 2-person general sum games, $a_{i j}=U_{1}(i, j)=$ $U_{2}(j, i)$ by symmetry $=B_{j i}=B_{i j}^{T}$. Thus, $A=B^{T}$.
c) No its not. Consider a 2 -person game, where the utility is defined on the strategy space $\{-3,-2,-1,-, 1,2,3\}$ with utility $U_{1}\left(x_{1}, x_{2}\right)=U_{2}\left(x_{1}, x_{2}\right)=$ $\operatorname{Sign}\left(x_{1}\right)$. Then $U_{1}(2,-2)=1$. If the game were symmetric, then $U_{2}(-2,2)$ should have been the same as $U_{1}(2,-2)$. But $U_{2}(-2,2)=U_{1}(-2,2)=-1 \neq 1$. Thus, this game is not symmetric.

Question 2

This game is an instance of graph coloring that we have discussed in class and understood as a potential game, hence there is a unique pure NE. The pure NE is given by the following configuration: Red on each vertex of V_{1} and Blue on each vertex of V_{2}. First, notice that this is a proper coloring as no two neighbors have the same color (in every pair of neighbors, there is one member of V_{1} and one member of V_{2}). To show that this is a pure NE, it is enough to show that this configuration maximizes the potential. Consider any vertex in V_{1}, all of its non-neighbors share the same color which is the maximum that its utility can be, and similarly for any vertex in V_{2}. Thus, this is the NE. Hence, the chromatic number of this graph is 2 .

