Solutions to Assignment 3
 Stat 155: Game Theory

Question 1

a)

$$
\begin{aligned}
12 & =(01100)_{2} \\
21 & =(10101)_{2} \\
\text { Nimsum } & =(11001)_{2}=25 \\
15 & =(1111)_{2} \\
10 & =(1010)_{2} \\
5 & =(0101)_{2} \\
\text { Nimsum } & =(0000)_{2}=0
\end{aligned}
$$

Question 2

This game is a game of Staircase Nim under disguise. To see this, consider each north-west to south-east diagonal as a step in the staircase, with a certain non-negative number of chips on each step. Verify that, at each step, a move in the chessboard is exactly the same as a move in Staircase Nim where the step towards the right is the lower step.

So, to paraphrase, we have a Staircase Nim game with 14 steps + Step 0, where the north-east corner is Step 0. Lets denote the state of the game, i.e. the position as $\left(x_{1}, x_{2}, \ldots, x_{14}\right)$ where x_{i} is the number of chips in the i th lowest step.
a) As discussed in supplementary section and also in 2.6.6 in Ferguson's book, the P-positions are exactly those positions where $x_{1} \oplus x_{3} \oplus \cdots \oplus x_{13}=0$, i.e. the Nimsum of the number of chips in the odd steps is 0 . All other positions are N. Notice that this does not depend on the number of chips in even positions.
b) The starting position written in the above notation is $(2,3,4,5,6,7,8,7,6,5,4,3,2,1)$, the string of number of chips in odd positions is $(2,4,6,8,6,4,2)$ and the desired Nimsum is $8 \neq 0$. So it is a N -position and the first player has a winning strategy.

