# Solutions to Assignment 5 Stat 155: Game Theory 

## Question 1

For this problem, we will use induction. 0 is a terminal position and we have $h(0)=0$. From 1, the only possible move is to 0 , implies $h(1)=1=g(0)+1$. So the base step holds.

For any other step, assume that, $h(x)=g(x-1)+1 \quad \forall 1 \leq x \leq n$. We will show that $h(n+1)=g(n)+1$. We will write, $F(x)$ for the followers of $x$ in the original subtraction game. For a set $S, S+1$ means $\{x+1 \mid x \in S\}$. Notice that $F(n+1)=F(n)+1$ for subtraction games.

From the definition, $h(n+1)=\operatorname{mex}\{\{h(y): y \in F(n+1)\} \cup\{g(0)\}\}$, as the possible moves from $n+1$ are all the moves in the subtraction set and a move to 0 . By the induction step,

$$
\begin{aligned}
h(n+1) & =\operatorname{mex}\{\{g(y-1)+1: y \in F(n+1)\} \cup\{0\}\} \\
& =\operatorname{mex}\{\{g(y)+1: y \in F(n)\} \cup\{0\}\} \text { as } F(n+1)=F(n)+1 \\
& =g(n)+1
\end{aligned}
$$

from the definition of $\operatorname{mex}$. In general, notice that, $\operatorname{mex}\{\{S+1\} \cup\{0\}\}=$ $\operatorname{mex}\{S\}+1$.

## Question 2

Notice that in this game, 1 is the terminal position. Lets calculate the SG functions using backward induction

```
\(\mathrm{g}(1) \quad 0\)
\(\mathrm{g}(2) \quad \operatorname{mex}(\mathrm{g}(1))=1\)
\(\mathrm{g}(3) \quad \operatorname{mex}(\mathrm{g}(2))=0\)
\(\mathrm{g}(4) \quad \operatorname{mex}(\mathrm{g}(3), \mathrm{g}(2))=2\)
\(\mathrm{g}(5) \quad \operatorname{mex}(\mathrm{g}(4))=0\)
\(\mathrm{g}(6) \quad \operatorname{mex}(\mathrm{g}(5), \mathrm{g}(4), \mathrm{g}(3))=1\)
\(\mathrm{g}(7) \quad \operatorname{mex}(\mathrm{g}(6))=0\)
\(\mathrm{g}(8) \quad \operatorname{mex}(\mathrm{g}(7), \mathrm{g}(6), \mathrm{g}(4))=3\)
\(\mathrm{g}(9) \quad \operatorname{mex}(\mathrm{g}(8), \mathrm{g}(6))=0\)
\(\mathrm{g}(10) \quad \operatorname{mex}(\mathrm{g}(9), \mathrm{g}(8), \mathrm{g}(5))=1\)
\(\mathrm{g}(11) \quad \operatorname{mex}(\mathrm{g}(10))=0\)
\(\mathrm{g}(12) \quad \operatorname{mex}(\mathrm{g}(11), \mathrm{g}(10), \mathrm{g}(9), \mathrm{g}(8), \mathrm{g}(6))=2\)
\(\vdots \quad \vdots\)
```

As we can see, a pattern emerges in the SG function, namely $g(x)=$ the largest power of 2 that divides $x$. The fact can be proven using induction.

Base step: $g(1)=g\left(2^{0}\right)=0$ and $g(2)=g\left(2^{1}\right)=1$. Suppose that the statement is true for $x \leq n-1$. We will show it for $n$.

Case 1: If $n$ is odd, then all of its divisors are odd, which means that all the steps that can be accessed from $n$ are even (odd minus odd). By the induction hypothesis, any even $x \leq n$ has $g(x) \geq 1$ as it is divided by 2 at least once. Thus, writing $g(n)=\operatorname{mex}(S)$, where $S:=\{g(y): y \in F(n)\}$, then $S$ never contains 0 , hence $g(n)=0$.

Case 2: If $n$ is even, write $n=2^{p} \times q$, where $q$ is odd, and we will show that $g(n)=p$. Notice that for $0 \leq i<p, 2^{i} q$ is a divisor of $n$, so $2^{i}\left(2^{(p-i)}-\right.$ 1) $q \in F(n)$, so, by induction hypothesis and the fact that $q$ is odd, $i \in S$. So, $\{0, \ldots p-1\} \in S$.

Now, we will show that $p \notin S$. Suppose, contradictorily, $p \in S$, this implies $\exists q^{\prime}$ odd such that $2^{p} q^{\prime} \in F(n)$, then $2^{p}\left(q-q^{\prime}\right)$ is a divisor of $n$, but $q-q^{\prime}$ is even. Then the largest power contained in this divisor of $n$ is at least $p+1$ which is a contradiction as we have assumed that the largest power contained in $n$ is $p$.

Thus, we have $\{0, \ldots p-1\} \in S$ and $p \notin S$. This implies $g(n)=\operatorname{mex}(S)=p$.
In particular, $g(18)=g\left(2 \times 3^{2}\right)=1$.

