Solutions to Assignment 6 Stat 155: Game Theory

Question 1

We will write e_{i} for a vector with 1 at the $i^{t h}$ position and 0 everywhere else. p will be a mixed strategy for Player I and q will be a mixed strategy for Player II. Then, if you choose $p=e_{i}$ and $q=e_{j}$, we get $p^{T} A q=a_{i j}$, note that this corresponds to the situation where the strategy of Player I is to play pure strategy i and that of Player II is to play pure strategy j. The outcome should be and is $a_{i j}$. In particular, convince yourself that each pure strategy is in fact a mixed strategy. Also $p=\sum_{i} p_{i} e_{i}$ and $q=\sum_{j} q_{j} e_{j}$.

Then, it is clear that, for each fixed p,

$$
\begin{aligned}
\min _{q \in \Delta_{n}} p^{T} A q & =\min _{q \in \Delta_{n}} p^{T} A\left(\sum_{j} q_{j} e_{j}\right)=\min _{q \in \Delta_{n}} \sum_{j} q_{j}\left(p^{T} A e_{j}\right) \\
& =\min _{q \in \Delta_{n}} \sum_{j} q_{j}\left(\sum_{i} p_{i} a_{i j}\right) \\
& \geq \min _{q \in \Delta_{n}} \sum_{j} q_{j} \min _{1 \leq j \leq n}\left(\sum_{i} p_{i} a_{i j}\right) \\
& =\min _{1 \leq j \leq n}\left(\sum_{i} p_{i} a_{i j}\right) \times \min _{q \in \Delta_{n}} \sum_{j} q_{j} \\
& =\min _{1 \leq j \leq n}\left(\sum_{i} p_{i} a_{i j}\right)
\end{aligned}
$$

Taking max over p on the left hand, for any fixed p,

$$
\max _{p \in \Delta_{m}} \min _{q \in \Delta_{n}} p^{T} A q \geq \min _{q \leq j \leq n}\left(\sum_{i} p_{i} a_{i j}\right)
$$

Notice that the expression on the left of the inequality above is V.
So, in particular, choosing $p=e_{i}$, the following is true for each i,

$$
V \geq \min _{q \leq j \leq n} a_{i j}
$$

Taking max over i on the right hand,

$$
V \geq \max _{1 \leq i \leq m} \min _{q \leq j \leq n} a_{i j}
$$

so we have proved the first inequality. The second inequality can be proven very similarly.

Question 2

The payoff matrix of this Two-Person Zero-Sum Game is as follows,

```
-1 2
2 -4
```

Writing $(p, 1-p)$ for the mixed strategy of Player I and $(q, 1-q)$ for the mixed strategy of Player II, the value of the game is $V=\max _{p} \min _{q}-p q+2(1-$ $p) q+2 p(1-q)-4(1-p)(1-q)$.

$$
\begin{aligned}
V & =\max _{p} \min _{q}(6-9 p) q-(6 p-4) \\
& =\max _{p}(2-3 p) 1_{p>2 / 3}+(6 p-4) 1_{p \leq 2 / 3} \\
& =0
\end{aligned}
$$

Thus, we see that the optimal strategy for Player I is $(2 / 3,1 / 3)$ and any mixed strategy for Player II works as fine. The value is 0 .

