Solutions to Assignment 7 Stat 155: Game Theory

Question 1

This is very similar to the second question in the midterm paper. It is easy to guess that the uniform mixed strategy is going to be a Nash equilibrium and as such an optimal strategy. To prove this, we need to show that if we choose $p^{*}=\left(\frac{1}{n}, \frac{1}{n}, \ldots, \frac{1}{n}\right)$ and $q^{*}=\left(\frac{1}{n}, \frac{1}{n}, \ldots, \frac{1}{n}\right)$ then for any $p, q \in \Delta_{n}$,

$$
p^{T} A q^{*} \leq p^{* T} A q^{*} \leq p^{* T} A q
$$

Notice that, $p^{* T} A q^{*}=\sum_{i} \sum_{j} p_{i}^{*} q_{j}^{*} a_{i j}=\sum_{i} \sum_{j} \frac{a_{i j}}{n^{2}}=\frac{c}{n}$.
It is easy to see that

$$
\begin{aligned}
A q^{*} & =\left(\sum_{j} a_{1 j} q_{j}^{*}, \ldots, \sum_{j} a_{n j} q_{j}^{*}\right)^{T} \\
& =\left(\sum_{j} \frac{a_{1 j}}{n}, \ldots, \sum_{j} \frac{a_{n j}}{n}\right)^{T} \\
& =\left(\frac{c}{n}, \ldots, \frac{c}{n}\right)^{T}
\end{aligned}
$$

Similarly, $p^{* T} A=\left(\frac{c}{n}, \ldots, \frac{c}{n}\right)$.
Hence,

$$
p^{T} A q^{*}=\sum_{i} p_{i}\left(A q^{*}\right)_{i}=\frac{c}{n} \sum_{i} p_{i}=\frac{c}{n}=\frac{c}{n} \sum_{j} q_{j}=\sum_{i}\left(p^{* T} A\right)_{j} q_{j}=p^{* T} A q
$$

So,

$$
p^{T} A q^{*} \leq p^{* T} A q^{*} \leq p^{* T} A q
$$

holds. Thus, $\left(\frac{1}{n}, \frac{1}{n}, \ldots, \frac{1}{n}\right)$ is optimal for both players and the value is $\frac{c}{n}$.

Question 2

In the payoff matrix A,

$$
\left(\begin{array}{ccccccc}
d_{1} & 0 & \cdots & 0 & 0 & \cdots & 0 \\
0 & d_{2} & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & d_{k} & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 & d_{k+1} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & 0 & \cdots & d_{n}
\end{array}\right)
$$

we can use the fact that d_{1}, \ldots, d_{k} are all >0 and d_{k+1}, \ldots, d_{n} are all <0, to conclude that eacch of the rows $k+1, \ldots, n$ are dominated by row 1 .

In the reduced matrix,

$$
\left(\begin{array}{ccccccc}
d_{1} & 0 & \cdots & 0 & 0 & \cdots & 0 \\
0 & d_{2} & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & d_{k} & 0 & \cdots & 0
\end{array}\right)
$$

the columns $1, \ldots, k$ are dominated by column $k+1$. Hence, the reduced payoff matrix now is,

$$
\left(\begin{array}{ccc}
0 & \cdots & 0 \\
0 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 0
\end{array}\right)
$$

that is, all zeros. Hence, any mixed strategy over the strategies $\{1, \ldots, k\}$ for Player I and over $\{k+1, \ldots, n\}$ for Player II is optimal and the value of the game is 0 .

Try to solve this without using domination.

