Solutions to Assignment 8 Stat 155: Game Theory

Question 1

Firstly, observe that Column 3 dominates Column 2 for Player II. The new payoff matrix is

$$
\left(\begin{array}{lll}
8 & 0 & 5 \\
0 & 4 & 1
\end{array}\right)
$$

Then, assigning probabilities p and $1-p$ to rows 1 and 2 for Player I, we have that the expected payoffs for each choice of strategy of Player II are $8 p, 4(1-p), 4 p+1$. It is easy to see that the lower envelope of these expected payoffs is the piecewise linear curve,

$$
\begin{aligned}
8 p & \text { if } p \leq \frac{1}{4} \\
4 p+1 & \text { if } \frac{1}{4} \leq p \leq \frac{1}{3} \\
4-4 p & \text { if } \frac{1}{3} \leq p \leq \frac{3}{8}
\end{aligned}
$$

and the changepoints are $\left(\frac{1}{4}, 2\right)$ and $\left(\frac{3}{8}, \frac{5}{2}\right)$. Thus, the optimal strategy for Player I is to play $\left(\frac{3}{8}, \frac{5}{8}\right)$ and the optimal strategy for Player II is to play ($0,0, \frac{1}{2}, \frac{1}{2}$) and the value of the game is $\frac{5}{2}$.

In the transpose question, the payoff matrix is,

$$
\left(\begin{array}{ll}
8 & 0 \\
3 & 4 \\
0 & 4 \\
5 & 1
\end{array}\right)
$$

Here, Row 3 is dominated by Row 2 and then Row 4 is dominated by $\frac{1}{2} \times$ Row 1 $+\frac{1}{2} \times$ Row 2 .

Then, it is easy to solve a 2×2 matrix to ascertain that the optimal strategies for Players I and II are $\left(\frac{1}{9}, \frac{8}{9}\right),\left(\frac{4}{9}, \frac{5}{9}\right)$ and the value is $\frac{32}{9}$.

Question 2

It can be observed that Column3 is dominated by $\frac{3}{8} \times$ Column $1+\frac{5}{8} \times$ Column2. Which gives the reduced payoff matrix,

$$
\left(\begin{array}{cc}
0 & 8 \\
8 & 4 \\
12 & -4
\end{array}\right)
$$

Assigning probabilities q and $1-q$ to the actions of Player II, we get the set of expected payoffs $8(1-q), 4+4 q, 16 q-4$. The upper envelope is the piecewise linear curve,

$$
\begin{aligned}
8 p & \text { if } p \leq \frac{1}{4} \\
4 p+1 & \text { if } \frac{1}{4} \leq p \leq \frac{1}{3} \\
4-4 p & \text { if } \frac{1}{3} \leq p \leq \frac{3}{8}
\end{aligned}
$$

and the changepoints are $\left(\frac{1}{3}, \frac{16}{3}\right)$ and $\left(\frac{2}{3}, \frac{20}{3}\right)$. Thus, the optimal strategy for Player I is to play $\left(\frac{1}{3}, 0, \frac{2}{3}\right)$ and the optimal strategy for Player II is to play $\left(\frac{1}{3}, \frac{2}{3}, 0\right)$ and the value of the game is $\frac{16}{3}$.

