Solutions to Assignment 9 Stat 155: Game Theory

Question 1

Using translation invariance of optimal strategies, we solve the following modified payoff matrix made by adding 3 to each payoff. Recall that the optimal strategies of these modified game is same as that of the original game and the value is increased by 3 .

$$
\left(\begin{array}{lll}
3 & 4 & 5 \\
0 & 3 & 6 \\
5 & 4 & 3
\end{array}\right)
$$

One possible choice of pivots are as follows: in the first step, 5 at $(3,1)^{t h}$ position, in the second step, $\frac{8}{5}$ at the $(1,2)^{t h}$ position.

Then the optimal strategies become, $\left(\frac{1}{2}, 0, \frac{1}{2}\right)$ for Player I and $(0,1,0)$ for Player II. The value is $4-3=1$.

Question 2

Firstly, we notice that the following change of variable, $y_{1}=2 z_{1}, y_{2}=z_{2}$, $y_{3}=$ $3 z_{3}$, makes the problem easier to parse. The new optimization problem is,

$$
\begin{gathered}
\operatorname{maximize} y_{1}+y_{2}+y_{3} \\
\text { subject to } \\
\frac{1}{2} y_{1}+\frac{1}{2} y_{2} \leq 1 \\
\frac{1}{2} y_{2}+\frac{1}{2} y_{3} \leq 1 \\
\frac{1}{2} y_{1}+\frac{1}{2} y_{3} \leq 1 \\
y_{1}, y_{2}, y_{3} \geq 0
\end{gathered}
$$

We make another change of variable of the form $x_{i}=\frac{y_{i}}{y_{1}+y_{2}+y_{3}}$ and $v=$ $y_{1}+y_{2}+y_{3} \geq 0$. Obviously, $x_{1}+x_{2}+x_{3}=1$. Then the optimization problem becomes,

$$
\begin{aligned}
& \text { maximize } \frac{1}{v} \\
& \text { subject to } \\
& \frac{1}{2} x_{1}+\frac{1}{2} x_{2} \leq v \\
& \frac{1}{2} x_{2}+\frac{1}{2} x_{3} \leq v \\
& \frac{1}{2} x_{1}+\frac{1}{2} x_{3} \leq v \\
& x_{1}, x_{2}, x_{3} \geq 0 \\
& x_{1}+x_{2}+x_{3}=1
\end{aligned}
$$

As $v \geq 0$, maximizing $\frac{1}{v}$ is same as minimizing v, which means the optimization problem is same as,
minimize v
subject to

$$
\begin{aligned}
\frac{1}{2} x_{1}+\frac{1}{2} x_{2} & \leq v \\
\frac{1}{2} x_{2}+\frac{1}{2} x_{3} & \leq v \\
\frac{1}{2} x_{1}+\frac{1}{2} x_{3} & \leq v \\
x_{1}, x_{2}, x_{3} & \geq 0 \\
x_{1}+x_{2}+x_{3}=1 &
\end{aligned}
$$

which is exactly a Two-Person-Zero-Sum Game with the following payoff matrix where the optimization equations are written from Player IIs perpective. a)

$$
\left(\begin{array}{ccc}
\frac{1}{2} & \frac{1}{2} & o \\
0 & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & 0 & \frac{1}{2}
\end{array}\right)
$$

b) It is easy to notice that the optimal strategies are uniform strategies $\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$ and the value is $\frac{1}{3}$.
c) This means the optimal values for $y_{i}=1$, hence the optimal value of the original optimization problem is 3 , and the optimal solutions are $z_{1}=\frac{1}{2}, z_{2}=$ $1, z_{3}=\frac{1}{3}$.

