1. Suppose there are 10 drawers, each containing two coins. Drawers 1 and 2 contain only gold coins, while in drawers 3, 4 and 5 one is a gold coin and the other is a silver coin, and rest of the drawers contain only silver coins. Suppose you pick a drawer \(D \) at random, and then a coin at random from it. Given that you choose a gold coin find the conditional probability that the other coin is also gold. Find the conditional distribution of the random drawer \(D \).

\[6 + 6\]

2. An urn contains 3 tickets labeled 1, 2 and 3. The tickets 1 and 3 are green and the ticket 2 is red. Two tickets are drawn at random without replacement from the urn. Let \(X \) be the number of green tickets in the sample and \(Y \) be the total of the two numbers selected.

(a) Write the joint distribution of \(X \) and \(Y \) as form of a table. Are \(X \) and \(Y \) independent? \[4 + 1\]

(b) Name the distribution of \(X \) and specify the parameter values. \[1\]

(c) Calculate the expected value and variance of \(Y \). \[3 + 3\]

3. Suppose \(X_1, X_2, \cdots, X_n \) are independent and identically distributed random variables. Each \(X_i \) takes only two values namely \(\pm 1 \) with equal probabilities. Let \(S_n := X_1 + X_2 + \cdots + X_n \).

(a) Find the distribution of \(S_n \). \[5\]

(b) Suppose \(n = 2m \) then find \(\lim_{m \to \infty} \sqrt{m} P(S_{2m} = 0) \). \[3\]

(c) If \(n = 100 \) then find approximate numerical value for \(P(|S_n| < 10) \). \[4\]

4. Roll a standard six sided fair die till a 6 appears. Let \(X \) be the total number of rolls and \(Y \) be the number of times 1 has appeared.

(a) What is the distribution of \(X \)? \[1\]

(b) Find the conditional distribution of \(Y \) given \(X = x \). \[5\]
(c) Find $\mathbb{E}[Y]$ and $\text{Var}(Y)$. $[3+3]$

5. There are 10 empty boxes numbered 1, 2, . . . , 10 placed sequentially on a circular table. We perform 100 independent trials. At each trial, a box is selected at random and one ball is added in the two neighboring boxes of the selected box. Let X_k be the number of balls in the k^{th} box at the end of 100 trials.

(a) Is the sequence of random variables $(X_1, X_2, \ldots, X_{10})$ exchangeable? Explain your answer. $[4]$
(b) Are they independent? Explain your answer. $[4]$
(c) Find $\mathbb{E}[X_k]$ for $1 \leq k \leq 10$. $[4]$