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Abstract

Given a uniformly continuous quantum dynamical semigroup on a separable

unital C∗ algebra, we construct a canonical Evans-Hudson (E-H) dilation. Such

a result was already proved by Goswami and Sinha ([GS]) in the von-Neumann

algebra set-up, which has been extended to the C∗ algebraic framework in the

present article. The authors make use of the coordinate-free calculus and results

of [GS], but the proof of the existence of structute maps differs form that of [GS].

0. Introduction

Given a quantum dynamical semigroup (q.d.s.) of bounded linear maps on an

operator algebra an important problem is to obtain a dilation of it, that is, to obtain

a time-indexed family jt of ∗-homomorphisms from A to a bigger algebra B with a

conditional expectation IE : B → A such that Tt = IE ◦ jt. The notion of such a

dilation was introduced by Acardi-Frigerio-Lewis ([AFL]). Various notions of such

a dilation were studied by many authors, and among them the approach of Evans

and Hudson ([Ev]) concerens us in the present article. For a q.d.s. Tt acting on a

C∗ or von Neumann algebra A (⊆ B(h) where h is a Hilbert space) with generator

θ0
0, an Evans-Hudson dilation (E-H dilation for short) is a time-indexed family jt

of ∗-homomorphisms from A into B(h ⊗ Γ(L2(IR+, k0)) for some Hilbert spcae k0,

called the noise or multiplicity space, such that jt satisfies a quantum stochastic

flow equations of the form djt(x) =
∑

α,β≥0 jt(θ
α
β (x))dΛβα(t) with the initial value
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j0 = id, where θαβ are (possibly unbounded) maps from A to itself known as the

structure maps and dΛβα(t) are the quantum stochastic differentials in the Fock space

Γ(L2(IR+, k0)) as constructed by Hudson and Parthasarathy (see [HP],[Par]). It is

an interesting question : given a q.d.s. Tt, when can one construct an E-H dilation

of it ? In a recent paper, Goswami and Sinha ([GS]) have been able to construct an

E-H dilation for an arbitrary uniformly continuous normal q.d.s. on a von Neumann

algebra. Here we want to extend the main result of that paper to the case when Tt

is a unifomly continuous q.d.s. on a separable unital C∗ algebra.

1 Preliminaries and notations

Let us first briefly discuss the coordinate-free language of quantum stochastic calculus

developed in [GS], since it will be useful for us in the present context also.

Let H1,H2 be two Hilbert spaces and A be a ( possibly unbounded ) linear

operator from H1 to H1 ⊗H2 with domain D. For each f ∈ H2, we define a linear

operator 〈f,A〉 with domain D and taking value in H1 such that,

〈〈f,A〉u, v〉 = 〈Au, v ⊗ f〉 (1.1)

for u ∈ D, v ∈ H1. This definition makes sense because we have, |〈Au, v ⊗ f〉| ≤
‖Au‖ ‖f‖ ‖v‖, and thus H1 3 v → 〈Au, v ⊗ f〉 is a bounded linear functional.

Moreover, ‖〈f,A〉u‖ ≤ ‖Au‖ ‖f‖, for all u ∈ D, f ∈ H2. Similarly, for each fixed

u ∈ D, v ∈ H1, f → 〈Au, v ⊗ f〉 is bounded linear functional on H2, and hence there

exists a unique element of H2, to be denoted by Av,u, satisfying

〈Av,u, f〉 = 〈Au, v ⊗ f〉 = 〈〈f,A〉u, v〉. (1.2)

We shall denote by 〈A, f〉 the adjoint of 〈f,A〉, whenever it exists. Clearly, if A is

bounded, then so is 〈f,A〉 and ‖〈f,A〉‖ ≤ ‖A‖ ‖f‖. Similarly, for any T ∈ B(H1⊗H2)

and f ∈ H2, one can define Tf ∈ B(H1,H1⊗H2) by setting Tfu = T (u⊗f). For any

Hilbert space H, we denote by Γ(H) and Γf (H) the symmetric Fock space and the

full Fock space of H. For a systematic discussion of such spaces, the reader may be

referred to [Par], from which we shall borrow all the standard notations and results.

Now, we define a map S : Γf (H2)→ Γ(H2) by setting,

S(g1 ⊗ g2 ⊗ · · · ⊗ gn) =
1

(n− 1)!

∑
σ∈Sn

gσ(1) ⊗ · · · ⊗ gσ(n), (1.3)
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and linearly extending it to H⊗n2 , where Sn is the group of permutations of n objects.

Clearly, ‖S|H⊗n2
‖ ≤ n. We denote by S̃ the operator 1H1 ⊗ S.

Let us now define the creation operator a†(A) abstractly which will act on the

linear span of vectors of the form vg⊗
n

and ve(g) (where g⊗
n

denotes g ⊗ · · · ⊗ g︸ ︷︷ ︸
n times

), n ≥

0, with v ∈ D, g ∈ H2. It is to be noted that we shall often omit the tensor product

symbol ⊗ between two or more vectors when there is no confusion. We define,

a†(A)(vg⊗
n
) =

1√
n+ 1

S̃((Av)⊗ g⊗n). (1.4)

It is easy to observe that
∑
n≥0

1
n!
‖a†(A)(vg⊗

n
)‖2 < ∞, which allows us to define

a†(A)(ve(g)) as the direct sum
⊕
n≥0

1

(n!)
1
2

a†(A)(vg⊗
n
). In the same way, one can

define annihilation and number operators in H1 ⊗ Γ(H2) for A ∈ B(H1,H1 ⊗ H2)

and T ∈ B(H1 ⊗H2) as :

a(A)ue(h) =< A, h > ue(h),

Λ(T )ue(h) = a†(Th)ue(h).

One can also verify that in this case a†(A) is the adjoint of a(A) on H1 ⊗ E(H2),

where E(H2) is the linear span of exponential vectors e(g), g ∈ H2. Next, to define

the basic processes, we need some more notations. Let k0 be a Hilbert space, k =

L2(IR+, k0), kt = L2([0, t]) ⊗ k0, k
t = L2((t,∞)) ⊗ k0, Γt = Γ(kt), Γt = Γ(kt), Γ =

Γ(k). We assume that R ∈ B(h, h ⊗ k0) and define R∆
t : h ⊗ Γt → h ⊗ Γt ⊗ kt for

t ≥ 0 and a bounded interval ∆ in (t,∞) by,

R∆
t (uψ) = P ((1h ⊗ χ∆)(Ru)⊗ ψ)

where χ∆ : k0 → kt is the operator which takes α to χ∆(·)α for α ∈ k0, and P is the

canonical unitary isomorphism from h⊗ k ⊗ Γ to h⊗ Γ⊗ k. We define the creation

field a†R(∆) on either of the domains consisting of the finite linear combinations of

vectors of the form ut ⊗ f t⊗
n

or of ut ⊗ e(f t) for ut ∈ h⊗ Γt, f t ∈ Γt, n ≥ 0, as :

a†R(∆) = a†(R∆
t ), (1.5)

where a†(R∆
t ) carries the meaning discussed before, with H1 = h ⊗ Γt, H2 = kt.

Similarly the other two fields aR(∆) and ΛT (∆) can be defined as :

aR(∆)(ute(f t)) = ((
∫
∆

〈R, f(s)〉ds)ut)e(f t), (1.6)
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and for T ∈ B(h⊗ k0),

ΛT (∆)(ute(f t)) = a†(T∆
f t)(ute(f

t)). (1.7)

In the above, T∆
f t : h⊗ Γt → h⊗ Γt ⊗ kt is defined as,

T∆
f t(uαt) = P (1⊗ χ̂∆)(T̂ (uf t)⊗ αt), (1.8)

and T̂ ∈ B(h ⊗ L2((t,∞), k0)) is given by, T̂ (uϕ)(s) = T (uϕ(s)), s > t, and χ̂∆ is

the multiplication by χ∆(·) on L2((t,∞), k0). Clearly, ‖T̂‖ ≤ ‖T‖, which makes T∆
f t

bounded. We shall often denote an operator B and its trivial extension B
⊗
I to

some bigger space by the same notation, unless there is any confusion in doing so.

At this point we refer the reader to [GS] for a coordinate-free calculus using

the above basic integrators. Now consider a von Neumann algebra B in B(h) for

some Hilbert space h. Let k0 be a Hilbert space. We consider B ⊗alg k0 and denote

its completion in the strong-operator topology, that is, the von Neumann module

generated by B ⊗alg k0 by B ⊗s k0 or B ⊗ k0 for short (see [GS] for details). In [GS]

a stochastic calculus for map-valued processes in the Fock module B ⊗ Γ has been

developed. We briefly recall the definitions of basic processes and the main theorem.

Assume that we are given the structure maps, that is, the triple of normal maps

(L, δ, σ) where L ∈ B(B), δ ∈ B(B,B ⊗ k0) and σ ∈ B(B,B ⊗ B(k0)) satisfying :

(S1) σ(x) = π(x)− x⊗ Ik0 ≡ Σ∗(x⊗ Ik0)Σ− x⊗ Ik0 , where Σ is a partial isometry

in h⊗ k0 such that π is a ∗-representation on B.

(S2) δ(x) = Rx − π(x)R, where R ∈ B(h, h ⊗ k0) so that δ is a π-derivation, i.e.

δ(xy) = δ(x)y + π(x)δ(y).

(S3) L(x) = R∗π(x)R+ lx+ xl∗, where l ∈ B with the condition L(1) = 0 so that L
satisfies the second order cocycle relation with δ as coboundary, i.e.

L(x∗y)− x∗L(y)− L(x)∗y = δ(x)∗δ(y) ∀x, y ∈ B.

We now introduce the basic processes. Fix t ≥ 0, a bounded interval ∆ ⊆ (t,∞),

elements x1, x2, . . . , xn ∈ B and vectors f1, f2, . . . , fn ∈ k;u ∈ h. We define the

followings : (
aδ(∆)(

n∑
i=1

xi ⊗ e(fi))

)
u =

n∑
i=1

aδ(x∗i )(∆)(ue(fi)),(
a†δ(∆)(

n∑
i=1

xi ⊗ e(fi))

)
u =

n∑
i=1

a†δ(xi)(∆)(ue(fi)),
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(
Λσ(∆)(

n∑
i=1

xi ⊗ e(fi))

)
u =

n∑
i=1

Λσ(xi)(∆)(ue(fi)),(
IL(∆)(

n∑
i=1

xi ⊗ e(fi))

)
u =

n∑
i=1

|∆|(L(xi)u)⊗ e(fi)), (1.9)

where |∆| denotes the length of ∆.

We can define
∫ t

0 Y (s)◦(a†δ+aδ+Λσ+IL)(ds) where Y (s) : B⊗algE(k)→ B⊗Γ(k)

is an adapted strongly continuous process satisfying the estimate

sup
o≤t≤t0

||Y (t)(x⊗ e(f))u|| ≤ ||(x⊗ 1H′′)ru||, (1.10)

for x ∈ B, f ∈ C, where C is the set of bounded continuous k0-valued square-integrable

functions on [0,∞), H′′ is a Hilbert space and r ∈ B(h, h⊗H′′).
Now we are ready to state the main result concerning existence-uniqueness and

homomorphism property of E-H flow equation.

Theorem 1.1 (i) There exists a unique solution Jt of equation

dJt = Jt ◦ (a†δ(dt) + aδ(dt) + Λσ(dt) + IL(dt), J0 = id, (1.11)

which is an adapted regular process mapping B⊗E(C) into B⊗Γ. Furthermore, one

has an estimate

sup
0≤t≤t0

||Jt(x⊗ e(g))u|| ≤ C ′(g)||(x⊗ 1Γf (k̂))Et0u||,

where g ∈ C, k̂ = L2([0, t0], k̂0), Et ∈ B(h, h ⊗ Γf (k̂)), C ′(g) is some constant and

Γf (k̂) is the full Fock space over k̂.

(ii) Setting jt(x)(ue(g)) = Jt(x⊗ e(g))u, we have

(a) 〈jt(x)ue(g), jt(y)ve(f)〉 = 〈ue(g), jt(x∗y)ve(f)〉 ∀g, f ∈ C, and

(b) jt extends uniquely to a normal ∗-homomorphism from B into B ⊗ B(Γ),

(iii) If B is commutative, then the algebra generated by {jt(x)|x ∈ B, 0 ≤ t ≤ t0} is

commutative.

(iv) jt(1) = 1 ∀t ∈ [0, t0] if and only if Σ∗Σ = 1h⊗k0 .

2 E-H dilation for uniformly continuous q.d.s. on sepa-

rable unital C∗ algebra.

We first quote a basic theorem due to Christensen and Evans [CE]
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Theorem 2.1 Let (Tt)t≥0 be a uniformly continuous q.d.s. on a unital C∗ algebra

A ⊆ B(h) with L as its generator. Then there is a quintuple (ρ,K, α,H,R) where

ρ is a unital ∗-representation of A in a Hilbert space K and a ρ-derivation α :

A → B(K) such that the set D ≡ {α(x)u|x ∈ A, u ∈ h} is total in K, H is a

self-adjoint element of A′′, and R ∈ B(h,K) such that α(x) = Rx − ρ(x)R, and

L(x) = R∗ρ(x)R− 1
2(R∗R−L(1))x− 1

2x(R∗R−L(1))+i[H,x] ∀x ∈ A. Furthermore,

L satisfies the cocycle relation with ρ as coboundary, namely,

L(x∗y)− L(x∗)y − x∗L(y) + x∗L(1)y = α(x)∗α(y).

Moreover, R can be chosen from the ultraweak closure of {α(x)y : x, y ∈ A} and

hence in particular R∗ρ(x)R ∈ A′′.

Assume for the remainder of this section that A is a separable unital C∗-algebra

acting nondegenerately on the Hilbert space h. The universal enveloping von Neu-

mann algebra of A in such a case can be identified with A′′ in B(h). Let k0 be a

separable Hilbert space with an orthonormal basis {e1, e2, . . .}. Denote by F the

Hilbert A-module A ⊗ k0 and by G the Hilbert A-module A ⊗ Γ(L2(IR+) ⊗ k0) or

A ⊗ Γ for short. In the following, we shall use the notations of [Lan]. We denote

by L(E1, E2) the space of all A-linear, adjointable, everywhere defined maps from

E1 to E2 for two Hilbert A-modules E1 and E2. When E1 = E2 = E, we denote

L(E1, E2) by L(E) for short and K(E) will denote the norm-closure of finite-rank

A-linear maps in E. Then we have the following :

Lemma 2.2 If η ∈ L(F ) then ηf ∈ F for f ∈ k.

Proof : Clearly it is enough to prove the lemma for f 6= 0. First we claim that for

any nonzero f , there exists a ξ ∈ K(F ) such that

‖ηf‖ ≤ ‖ηξ‖‖f‖ (2.12)

for all η ∈ B(h⊗ k0). To see this, choose ξ = (I ⊗ |f〉〈f |)/‖f‖2. Then for any u ∈ h,

we have ηξ(u⊗f) = η(u⊗f) = ηf (u). so that ‖ηf (u)‖ = ‖ηξ(u⊗f)‖ ≤ ‖ηξ‖‖u‖‖f‖,
and the required inequality follows.

Next observe that for any η of the form

η =
n∑

i,j=1

aij ⊗ |ei〉〈ej |,
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n varying over N, the element ηf =
∑

i,j〈ej , f〉aij ⊗ ei belongs to A ⊗alg k0 ⊆ F .

Using now the norm inequality (2.12) and the fact that such η’s are dense in L(F )

in the strict topology, we conclude that ηf ∈ F for all η ∈ L(F ). 2

Notice that for η ∈ L(F ), ηf can actually be identified with the element η(I⊗f) in

F . For a bounded linear map σ : A → L(F ) and f ∈ k0 we define a map σf : A → F

by σf (x) = σ(x)f . We are now ready for the following existence theorem for a

canonical E-H dilation.

Theorem 2.3 Let Tt be a uniformly continuous, conservative quantum dynamical

semigroup on a separable unital C∗-algebra A with generator L. Then there exists

a separable Hilbert space k0 and a ∗-homomorphism π : A → L(F ), a π-derivation

δ : A → F such that L(x∗y)− L(x∗)y − x∗L(y) = δ(x)∗δ(y).

Furthermore, we can extend the maps L, δ and π to L̂, δ̂ and π̂ respectively on

the universal enveloping von Neumann algebra A′′ of A such that the E-H type flow

equation dĴt = Ĵt ◦ (aδ̂(dt) + a†
δ̂
(dt) + Λπ̂−id(dt) + IL̂(dt)) with the initial condition

Ĵ0 ≡ id admits a unique solution as a map from A′′⊗s E(k) to itself. The restricton

Jt of Ĵt on A ⊗ E(k) takes values in A ⊗ Γ and similarly, the restriction jt of the

∗-homomorphism ĵt : A′′ → A′′ ⊗ B(Γ) as defined in the theorem 1.1(ii) on A takes

values in L(A⊗ Γ).

Proof : By the theorem 2.1, we obtain a Hilbert space K, a ∗-homomorphism ρ :

A → B(K), a ρ-derivation α : A → B(h,K) such that

L(a∗b)− L(a∗)b− a∗L(b) = α(a)∗α(b), a, b ∈ A. (2.13)

Let E be the completion of the algebraic linear span of elements of the form α(a)b,

where a, b ∈ A, with respect to the operator norm of B(h,K). E has an inner product

inherited from B(h,K), namely, 〈L,M〉 = L∗M for L,M ∈ E. Using equation 2.13,

we find that 〈α(a)b, α(a′)b′〉 = b∗α(a)∗α(a′)b′ ∈ A. It follows then that 〈x, y〉 ∈ A
for all x and y in E. A has a natural right action on E (as composition of operators

in B(h,K)). Thus E is indeed a Hilbert A-module. We identify ρ with a left action

ρ̂ given by, ρ̂(a)(α(b)c) = α(ab)c − α(a)bc. Furthermore, since A is separable, E

is countably generated as a Hilbert A-module. To see this, one can choose any

countable dense subset {x1, x2, . . .} of A and note that E is the closed A-linear span

of {α(x1), α(x2), . . .}. Now, Kasparov’s stabilisation theorem (see [Lan]) yields a

separable Hilbert space k0 and an isometric A-linear map t ∈ L(E,F ) that imbeds
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E as a complemented closed submodule of F = A⊗ k0. We set δ(x) = t(α(x)) and

π(x) = tρ̂(x))t∗. Then δ ∈ B(A, F ) and π ∈ B(A,L(F )) and this completes the first

part of the proof.

For the second part, note that π being a ∗-homomorphism of A into L(F ), admits

an extension as a normal ∗-homomorphism π̂ from A′′ into (L(F ))′′ = A′′ ⊗s B(k0)

(see [Dix]). Observe also that by [CE], we obtain an element R in the ultraweak

closure of {δ(a)b : a, b ∈ A} in B(h, h⊗ k0) such that

L(a) = R∗π(a)R− 1
2
R∗Ra− 1

2
aR∗R+ i[H, a],

and

δ(a) = Ra− π(a)R,

for all a ∈ A and for some self-adjoint H ∈ A′′. We extend L and δ by the same

expressions as above by replacing π by π̂. Since R is in the ultraweak closure of F ,

which is A′′ ⊗s k0, we see that the extended maps L and δ map A′′ into A′′ and

A′′ ⊗s k0 respectively. Now, by the theorem 1.1, we obtain Ĵt and ĵt. It remains to

show that Jt(x⊗e(f)) ∈ A⊗Γ for x ∈ A, and jt(x) ∈ L(A⊗Γ) for x ∈ A and f ∈ k.

If β ∈ B(A′′,A′′ ⊗s k0) is such that β(x) ∈ F for all x ∈ A, then by (1.9)

a†β(∆)(x ⊗ f⊗
n
) and hence a†β(∆)(x ⊗ e(f)) belongs to A ⊗ Γ for any bounded

subinterval ∆ of IR+ and x ∈ A, f ∈ L2(IR+, k0). Then from the definition of Λ(.),

it follows that Λπ−id(.) maps x ⊗ e(f) into A ⊗ Γ for x ∈ A. That aδ(.) and IL(.)

have the same property is still simpler to see.

In [GS], the solution Ĵt was constructed by an iteration procedure and from the

above, it is clear that each iterate Ĵ (i)
t maps x⊗e(f) into A⊗Γ for x ∈ A and f ∈ k.

By the estimates in [GS], one has

‖(Ĵt(x⊗ e(f))−
∑
i≤n

Ĵ
(i)
t (x⊗ e(f)))u‖ ≤ ‖u‖‖x‖‖e(f)‖‖Et‖

∞∑
i=n+1

C
i
2 (i!)−1/4

for some constant C, and thus, ‖Ĵt(x ⊗ e(f)) −
∑

i≤n Ĵ
(i)
t (x ⊗ e(f))‖ converges to

zero. Thus Jt maps A⊗ E(k) into A⊗ Γ.

By the theorem 1.1, jt ≡ ĵt|A is a ∗-homomorphism of A into A′′ ⊗ B(Γ). Thus

it remains to prove that jt(x) ∈ L(A⊗ Γ) for x ∈ A. Note that ([Lan]) the algebra

L(A ⊗ Γ) can be naturally identified with the multiplier algebra of A ⊗ B0(Γ) and

that the set {y⊗ |e(f)〉〈e(g)| : y ∈ A, f, g ∈ L2(IR+, k0)} is total in A⊗B0(Γ) in the

norm topology. Therefore it is enough to show that for fixed x ∈ A and t ≥ 0, the
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operators jt(x)(y⊗|e(f)〉〈e(g)|) and (y⊗|e(f)〉〈e(g)|)jt(x) both are in A⊗B0(Γ) for

all y ∈ A, f, g ∈ L2(IR+, k0).

Since Jt(x⊗ e(f)) ∈ A⊗Γ, we can choose a sequence Ln of the form
∑kn

i=1 z
(n)
i ⊗

ρ
(n)
i where z(n)

i ∈ A and ρ
(n)
i ∈ Γ, such that Ln converges in the norm of A ⊗ Γ to

Jt(x⊗ e(f)). Now, observe that for u ∈ h and η ∈ Γ, jt(x)(y⊗ |e(f)〉〈e(g)|)(u⊗ η) =

〈e(g), η〉Jt(x⊗ e(f))yu = limn→∞〈e(g), η〉Lnyu. Choose an orthonormal basis {γm}
of Γ and take a vector w ≡

∑
mwm ⊗ γm of h⊗ Γ. It is easy to see that

∥∥∥(jt(x)(y ⊗ |e(f)〉〈e(g)|)−
kn∑
i=1

z
(n)
i y ⊗ |ρ(n)

i 〉〈e(g)|
)
w
∥∥∥

e(f))− Ln)wl‖

)
1
2

=
∥∥∥∑
m

〈e(g), γm〉{Jt(x⊗ e(f))−
∑
i

z
(n)
i ⊗ |ρ(n)

i 〉}ywm
∥∥∥

=
∥∥∥∑
m

{Jt(x⊗ e(f))− Ln}〈e(g), γm〉ywm
∥∥∥

≤ ‖Jt(x⊗ e(f))− Ln‖‖e(g)‖‖y‖(
∑
m

‖wm‖2)
1
2

= ‖Jt(x⊗ e(f))− Ln‖‖e(g)‖‖y‖‖w‖,

and hence jt(x)(y ⊗ |e(f)〉〈e(g)|) is the norm-limit of
∑kn

i=1 z
(n)
i y ⊗ |ρ(n)

i 〉〈e(g)| ∈
A ⊗alg B0(Γ). A similar proof works for y ⊗ |e(f)〉〈e(g)|jt(x). 2
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