Stochastic dilation of a quantum dynamical semigroup on a separable unital C^{*} algebra.

by
Debashish Goswami, ${ }^{1}$
Arup Kumar Pal
and
Kalyan B. Sinha ${ }^{2}$
Indian Statistical Institute, Delhi Centre;
7, S. J. S. S. Marg, New Delhi-110016, India.
e-mail : debashis@isid.isid.ac.in

Abstract

Given a uniformly continuous quantum dynamical semigroup on a separable unital C^{*} algebra, we construct a canonical Evans-Hudson (E-H) dilation. Such a result was already proved by Goswami and Sinha ([GS]) in the von-Neumann algebra set-up, which has been extended to the C^{*} algebraic framework in the present article. The authors make use of the coordinate-free calculus and results of [GS], but the proof of the existence of structute maps differs form that of [GS].

0. Introduction

Given a quantum dynamical semigroup (q.d.s.) of bounded linear maps on an operator algebra an important problem is to obtain a dilation of it, that is, to obtain a time-indexed family j_{t} of $*$-homomorphisms from \mathcal{A} to a bigger algebra \mathcal{B} with a conditional expectation $\mathbb{E}: \mathcal{B} \rightarrow \mathcal{A}$ such that $T_{t}=\mathbb{E} \circ j_{t}$. The notion of such a dilation was introduced by Acardi-Frigerio-Lewis ([AFL]). Various notions of such a dilation were studied by many authors, and among them the approach of Evans and Hudson ([Ev]) concerens us in the present article. For a q.d.s. T_{t} acting on a C^{*} or von Neumann algebra $\mathcal{A}(\subseteq \mathcal{B}(h)$ where h is a Hilbert space) with generator θ_{0}^{0}, an Evans-Hudson dilation (E-H dilation for short) is a time-indexed family j_{t} of $*$-homomorphisms from \mathcal{A} into $\mathcal{B}\left(h \otimes \Gamma\left(L^{2}\left(\mathbb{R}_{+}, k_{0}\right)\right)\right.$ for some Hilbert spcae k_{0}, called the noise or multiplicity space, such that j_{t} satisfies a quantum stochastic flow equations of the form $d j_{t}(x)=\sum_{\alpha, \beta \geq 0} j_{t}\left(\theta_{\beta}^{\alpha}(x)\right) d \Lambda_{\alpha}^{\beta}(t)$ with the initial value

[^0]$j_{0}=i d$, where θ_{β}^{α} are (possibly unbounded) maps from \mathcal{A} to itself known as the structure maps and $d \Lambda_{\alpha}^{\beta}(t)$ are the quantum stochastic differentials in the Fock space $\Gamma\left(L^{2}\left(\mathbb{R}_{+}, k_{0}\right)\right)$ as constructed by Hudson and Parthasarathy (see [HP],[Par]). It is an interesting question : given a q.d.s. T_{t}, when can one construct an E-H dilation of it? In a recent paper, Goswami and Sinha ([GS]) have been able to construct an E-H dilation for an arbitrary uniformly continuous normal q.d.s. on a von Neumann algebra. Here we want to extend the main result of that paper to the case when T_{t} is a unifomly continuous q.d.s. on a separable unital C^{*} algebra.

1 Preliminaries and notations

Let us first briefly discuss the coordinate-free language of quantum stochastic calculus developed in [GS], since it will be useful for us in the present context also.

Let $\mathcal{H}_{1}, \mathcal{H}_{2}$ be two Hilbert spaces and A be a (possibly unbounded) linear operator from \mathcal{H}_{1} to $\mathcal{H}_{1} \otimes \mathcal{H}_{2}$ with domain \mathcal{D}. For each $f \in \mathcal{H}_{2}$, we define a linear operator $\langle f, A\rangle$ with domain \mathcal{D} and taking value in \mathcal{H}_{1} such that,

$$
\begin{equation*}
\langle\langle f, A\rangle u, v\rangle=\langle A u, v \otimes f\rangle \tag{1.1}
\end{equation*}
$$

for $u \in \mathcal{D}, v \in \mathcal{H}_{1}$. This definition makes sense because we have, $|\langle A u, v \otimes f\rangle| \leq$ $\|A u\|\|f\|\|v\|$, and thus $\mathcal{H}_{1} \ni v \rightarrow\langle A u, v \otimes f\rangle$ is a bounded linear functional. Moreover, $\|\langle f, A\rangle u\| \leq\|A u\|\|f\|$, for all $u \in \mathcal{D}, f \in \mathcal{H}_{2}$. Similarly, for each fixed $u \in \mathcal{D}, v \in \mathcal{H}_{1}, f \rightarrow\langle A u, v \otimes f\rangle$ is bounded linear functional on \mathcal{H}_{2}, and hence there exists a unique element of \mathcal{H}_{2}, to be denoted by $A_{v, u}$, satisfying

$$
\begin{equation*}
\left\langle A_{v, u}, f\right\rangle=\langle A u, v \otimes f\rangle=\langle\langle f, A\rangle u, v\rangle . \tag{1.2}
\end{equation*}
$$

We shall denote by $\langle A, f\rangle$ the adjoint of $\langle f, A\rangle$, whenever it exists. Clearly, if A is bounded, then so is $\langle f, A\rangle$ and $\|\langle f, A\rangle\| \leq\|A\|\|f\|$. Similarly, for any $T \in \mathcal{B}\left(\mathcal{H}_{1} \otimes \mathcal{H}_{2}\right)$ and $f \in \mathcal{H}_{2}$, one can define $T_{f} \in \mathcal{B}\left(\mathcal{H}_{1}, \mathcal{H}_{1} \otimes \mathcal{H}_{2}\right)$ by setting $T_{f} u=T(u \otimes f)$. For any Hilbert space \mathcal{H}, we denote by $\Gamma(\mathcal{H})$ and $\Gamma^{f}(\mathcal{H})$ the symmetric Fock space and the full Fock space of \mathcal{H}. For a systematic discussion of such spaces, the reader may be referred to [Par], from which we shall borrow all the standard notations and results. Now, we define a map $S: \Gamma^{f}\left(\mathcal{H}_{2}\right) \rightarrow \Gamma\left(\mathcal{H}_{2}\right)$ by setting,

$$
\begin{equation*}
S\left(g_{1} \otimes g_{2} \otimes \cdots \otimes g_{n}\right)=\frac{1}{(n-1)!} \sum_{\sigma \in S_{n}} g_{\sigma(1)} \otimes \cdots \otimes g_{\sigma(n)} \tag{1.3}
\end{equation*}
$$

and linearly extending it to $\mathcal{H}_{2}^{\otimes^{n}}$, where S_{n} is the group of permutations of n objects. Clearly, $\left\|\left.S\right|_{\mathcal{H}_{2}^{\otimes^{n}}}\right\| \leq n$. We denote by \tilde{S} the operator $1_{\mathcal{H}_{1}} \otimes S$.

Let us now define the creation operator $a^{\dagger}(A)$ abstractly which will act on the linear span of vectors of the form $v g^{\otimes^{n}}$ and $v e(g)$ (where $g^{\otimes^{n}}$ denotes $\underbrace{g \otimes \cdots \otimes g}_{n \text { times }}$), $n \geq$ 0 , with $v \in \mathcal{D}, g \in \mathcal{H}_{2}$. It is to be noted that we shall often omit the tensor product symbol \otimes between two or more vectors when there is no confusion. We define,

$$
\begin{equation*}
a^{\dagger}(A)\left(v g^{\otimes^{n}}\right)=\frac{1}{\sqrt{n+1}} \tilde{S}\left((A v) \otimes g^{\otimes^{n}}\right) \tag{1.4}
\end{equation*}
$$

It is easy to observe that $\sum_{n \geq 0} \frac{1}{n!}\left\|a^{\dagger}(A)\left(v g^{\otimes^{n}}\right)\right\|^{2}<\infty$, which allows us to define $a^{\dagger}(A)(v e(g))$ as the direct sum $\bigoplus_{n \geq 0} \frac{1}{(n!)^{\frac{1}{2}}} a^{\dagger}(A)\left(v g^{\otimes^{n}}\right)$. In the same way, one can define annihilation and number operators in $\mathcal{H}_{1} \otimes \Gamma\left(\mathcal{H}_{2}\right)$ for $A \in \mathcal{B}\left(\mathcal{H}_{1}, \mathcal{H}_{1} \otimes \mathcal{H}_{2}\right)$ and $T \in \mathcal{B}\left(\mathcal{H}_{1} \otimes \mathcal{H}_{2}\right)$ as :

$$
\begin{gathered}
a(A) u e(h)=<A, h>u e(h), \\
\Lambda(T) u e(h)=a^{\dagger}\left(T_{h}\right) u e(h) .
\end{gathered}
$$

One can also verify that in this case $a^{\dagger}(A)$ is the adjoint of $a(A)$ on $\mathcal{H}_{1} \otimes \mathcal{E}\left(\mathcal{H}_{2}\right)$, where $\mathcal{E}\left(\mathcal{H}_{2}\right)$ is the linear span of exponential vectors $e(g), g \in \mathcal{H}_{2}$. Next, to define the basic processes, we need some more notations. Let k_{0} be a Hilbert space, $k=$ $L^{2}\left(\mathbb{R}_{+}, k_{0}\right), k_{t}=L^{2}([0, t]) \otimes k_{0}, k^{t}=L^{2}((t, \infty)) \otimes k_{0}, \Gamma_{t}=\Gamma\left(k_{t}\right), \Gamma^{t}=\Gamma\left(k^{t}\right), \Gamma=$ $\Gamma(k)$. We assume that $R \in \mathcal{B}\left(h, h \otimes k_{0}\right)$ and define $R_{t}^{\Delta}: h \otimes \Gamma_{t} \rightarrow h \otimes \Gamma_{t} \otimes k^{t}$ for $t \geq 0$ and a bounded interval Δ in (t, ∞) by,

$$
R_{t}^{\Delta}(u \psi)=P\left(\left(1_{h} \otimes \chi_{\Delta}\right)(R u) \otimes \psi\right)
$$

where $\chi_{\Delta}: k_{0} \rightarrow k^{t}$ is the operator which takes α to $\chi_{\Delta}(\cdot) \alpha$ for $\alpha \in k_{0}$, and P is the canonical unitary isomorphism from $h \otimes k \otimes \Gamma$ to $h \otimes \Gamma \otimes k$. We define the creation field $a_{R}^{\dagger}(\Delta)$ on either of the domains consisting of the finite linear combinations of vectors of the form $u_{t} \otimes f^{t \otimes^{n}}$ or of $u_{t} \otimes e\left(f^{t}\right)$ for $u_{t} \in h \otimes \Gamma_{t}, f^{t} \in \Gamma^{t}, n \geq 0$, as :

$$
\begin{equation*}
a_{R}^{\dagger}(\Delta)=a^{\dagger}\left(R_{t}^{\Delta}\right) \tag{1.5}
\end{equation*}
$$

where $a^{\dagger}\left(R_{t}^{\Delta}\right)$ carries the meaning discussed before, with $\mathcal{H}_{1}=h \otimes \Gamma_{t}, \mathcal{H}_{2}=k^{t}$. Similarly the other two fields $a_{R}(\Delta)$ and $\Lambda_{T}(\Delta)$ can be defined as :

$$
\begin{equation*}
a_{R}(\Delta)\left(u_{t} e\left(f^{t}\right)\right)=\left(\left(\int_{\Delta}\langle R, f(s)\rangle d s\right) u_{t}\right) e\left(f^{t}\right), \tag{1.6}
\end{equation*}
$$

and for $T \in \mathcal{B}\left(h \otimes k_{0}\right)$,

$$
\begin{equation*}
\Lambda_{T}(\Delta)\left(u_{t} e\left(f^{t}\right)\right)=a^{\dagger}\left(T_{f^{t}}^{\Delta}\right)\left(u_{t} e\left(f^{t}\right)\right) \tag{1.7}
\end{equation*}
$$

In the above, $T_{f^{t}}^{\Delta}: h \otimes \Gamma_{t} \rightarrow h \otimes \Gamma_{t} \otimes k^{t}$ is defined as,

$$
\begin{equation*}
T_{f^{t}}^{\Delta}\left(u \alpha_{t}\right)=P\left(1 \otimes \hat{\chi}_{\Delta}\right)\left(\hat{T}\left(u f^{t}\right) \otimes \alpha_{t}\right), \tag{1.8}
\end{equation*}
$$

and $\hat{T} \in \mathcal{B}\left(h \otimes L^{2}\left((t, \infty), k_{0}\right)\right)$ is given by, $\hat{T}(u \varphi)(s)=T(u \varphi(s)), s>t$, and $\hat{\chi}_{\Delta}$ is the multiplication by $\chi_{\Delta}(\cdot)$ on $L^{2}\left((t, \infty), k_{0}\right)$. Clearly, $\|\hat{T}\| \leq\|T\|$, which makes $T_{f^{t}}^{\Delta}$ bounded. We shall often denote an operator B and its trivial extension $B \otimes I$ to some bigger space by the same notation, unless there is any confusion in doing so.

At this point we refer the reader to [GS] for a coordinate-free calculus using the above basic integrators. Now consider a von Neumann algebra \mathcal{B} in $\mathcal{B}(h)$ for some Hilbert space h. Let k_{0} be a Hilbert space. We consider $\mathcal{B} \otimes_{\text {alg }} k_{0}$ and denote its completion in the strong-operator topology, that is, the von Neumann module generated by $\mathcal{B} \otimes_{\text {alg }} k_{0}$ by $\mathcal{B} \otimes_{s} k_{0}$ or $\mathcal{B} \otimes k_{0}$ for short (see [GS] for details). In [GS] a stochastic calculus for map-valued processes in the Fock module $\mathcal{B} \otimes \Gamma$ has been developed. We briefly recall the definitions of basic processes and the main theorem.

Assume that we are given the structure maps, that is, the triple of normal maps $(\mathcal{L}, \delta, \sigma)$ where $\mathcal{L} \in \mathcal{B}(\mathcal{B}), \delta \in \mathcal{B}\left(\mathcal{B}, \mathcal{B} \otimes k_{0}\right)$ and $\sigma \in \mathcal{B}\left(\mathcal{B}, \mathcal{B} \otimes \mathcal{B}\left(k_{0}\right)\right)$ satisfying :
(S1) $\sigma(x)=\pi(x)-x \otimes I_{k_{0}} \equiv \Sigma^{*}\left(x \otimes I_{k_{0}}\right) \Sigma-x \otimes I_{k_{0}}$, where Σ is a partial isometry in $h \otimes k_{0}$ such that π is a $*$-representation on \mathcal{B}.
(S2) $\delta(x)=R x-\pi(x) R$, where $R \in \mathcal{B}\left(h, h \otimes k_{0}\right)$ so that δ is a π-derivation, i.e. $\delta(x y)=\delta(x) y+\pi(x) \delta(y)$.
(S3) $\mathcal{L}(x)=R^{*} \pi(x) R+l x+x l^{*}$, where $l \in \mathcal{B}$ with the condition $\mathcal{L}(1)=0$ so that \mathcal{L} satisfies the second order cocycle relation with δ as coboundary, i.e.

$$
\mathcal{L}\left(x^{*} y\right)-x^{*} \mathcal{L}(y)-\mathcal{L}(x)^{*} y=\delta(x)^{*} \delta(y) \forall x, y \in \mathcal{B} .
$$

We now introduce the basic processes. Fix $t \geq 0$, a bounded interval $\Delta \subseteq(t, \infty)$, elements $x_{1}, x_{2}, \ldots, x_{n} \in \mathcal{B}$ and vectors $f_{1}, f_{2}, \ldots, f_{n} \in k ; u \in h$. We define the followings :

$$
\begin{aligned}
& \left(a_{\delta}(\Delta)\left(\sum_{i=1}^{n} x_{i} \otimes e\left(f_{i}\right)\right)\right) u=\sum_{i=1}^{n} a_{\delta\left(x_{i}^{*}\right)}(\Delta)\left(u e\left(f_{i}\right)\right), \\
& \left(a_{\delta}^{\dagger}(\Delta)\left(\sum_{i=1}^{n} x_{i} \otimes e\left(f_{i}\right)\right)\right) u=\sum_{i=1}^{n} a_{\delta\left(x_{i}\right)}^{\dagger}(\Delta)\left(u e\left(f_{i}\right)\right),
\end{aligned}
$$

$$
\begin{align*}
& \left(\Lambda_{\sigma}(\Delta)\left(\sum_{i=1}^{n} x_{i} \otimes e\left(f_{i}\right)\right)\right) u=\sum_{i=1}^{n} \Lambda_{\sigma\left(x_{i}\right)}(\Delta)\left(u e\left(f_{i}\right)\right), \\
& \left.\left(\mathcal{I}_{\mathcal{L}}(\Delta)\left(\sum_{i=1}^{n} x_{i} \otimes e\left(f_{i}\right)\right)\right) u=\sum_{i=1}^{n}|\Delta|\left(\mathcal{L}\left(x_{i}\right) u\right) \otimes e\left(f_{i}\right)\right), \tag{1.9}
\end{align*}
$$

where $|\Delta|$ denotes the length of Δ.
We can define $\int_{0}^{t} Y(s) \circ\left(a_{\delta}^{\dagger}+a_{\delta}+\Lambda_{\sigma}+\mathcal{I}_{\mathcal{L}}\right)(d s)$ where $Y(s): \mathcal{B} \otimes_{\text {alg }} \mathcal{E}(k) \rightarrow \mathcal{B} \otimes \Gamma(k)$ is an adapted strongly continuous process satisfying the estimate

$$
\begin{equation*}
\sup _{o \leq t \leq t_{0}}\|Y(t)(x \otimes e(f)) u\| \leq\left\|\left(x \otimes 1_{\mathcal{H}^{\prime \prime}}\right) r u\right\| \tag{1.10}
\end{equation*}
$$

for $x \in \mathcal{B}, f \in \mathcal{C}$, where \mathcal{C} is the set of bounded continuous k_{0}-valued square-integrable functions on $[0, \infty), \mathcal{H}^{\prime \prime}$ is a Hilbert space and $r \in \mathcal{B}\left(h, h \otimes \mathcal{H}^{\prime \prime}\right)$.

Now we are ready to state the main result concerning existence-uniqueness and homomorphism property of E-H flow equation.

Theorem 1.1 (i) There exists a unique solution J_{t} of equation

$$
\begin{equation*}
d J_{t}=J_{t} \circ\left(a_{\delta}^{\dagger}(d t)+a_{\delta}(d t)+\Lambda_{\sigma}(d t)+\mathcal{I}_{\mathcal{L}}(d t), J_{0}=i d\right. \tag{1.11}
\end{equation*}
$$

which is an adapted regular process mapping $\mathcal{B} \otimes \mathcal{E}(\mathcal{C})$ into $\mathcal{B} \otimes \Gamma$. Furthermore, one has an estimate

$$
\sup _{0 \leq t \leq t_{0}}\left\|J_{t}(x \otimes e(g)) u\right\| \leq C^{\prime}(g)\left\|\left(x \otimes 1_{\Gamma^{f}(\hat{k})}\right) E_{t_{0}} u\right\|
$$

where $g \in \mathcal{C}, \hat{k}=L^{2}\left(\left[0, t_{0}\right], \hat{k_{0}}\right), E_{t} \in \mathcal{B}\left(h, h \otimes \Gamma^{f}(\hat{k})\right), C^{\prime}(g)$ is some constant and $\Gamma^{f}(\hat{k})$ is the full Fock space over \hat{k}.
(ii) Setting $j_{t}(x)(u e(g))=J_{t}(x \otimes e(g)) u$, we have
(a) $\left\langle j_{t}(x) u e(g), j_{t}(y) v e(f)\right\rangle=\left\langle u e(g), j_{t}\left(x^{*} y\right) v e(f)\right\rangle \forall g, f \in \mathcal{C}$, and
(b) j_{t} extends uniquely to a normal $*$-homomorphism from \mathcal{B} into $\mathcal{B} \otimes \mathcal{B}(\Gamma)$,
(iii) If \mathcal{B} is commutative, then the algebra generated by $\left\{j_{t}(x) \mid x \in \mathcal{B}, 0 \leq t \leq t_{0}\right\}$ is commutative.
(iv) $j_{t}(1)=1 \forall t \in\left[0, t_{0}\right]$ if and only if $\Sigma^{*} \Sigma=1_{h \otimes k_{0}}$.

2 E-H dilation for uniformly continuous q.d.s. on separable unital C^{*} algebra.

We first quote a basic theorem due to Christensen and Evans [CE]

Theorem 2.1 Let $\left(T_{t}\right)_{t \geq 0}$ be a uniformly continuous q.d.s. on a unital C^{*} algebra $\mathcal{A} \subseteq \mathcal{B}(h)$ with \mathcal{L} as its generator. Then there is a quintuple $(\rho, \mathcal{K}, \alpha, H, R)$ where ρ is a unital $*$-representation of \mathcal{A} in a Hilbert space \mathcal{K} and a ρ-derivation α : $\mathcal{A} \rightarrow \mathcal{B}(\mathcal{K})$ such that the set $\mathcal{D} \equiv\{\alpha(x) u \mid x \in \mathcal{A}, u \in h\}$ is total in \mathcal{K}, H is a self-adjoint element of $\mathcal{A}^{\prime \prime}$, and $R \in \mathcal{B}(h, \mathcal{K})$ such that $\alpha(x)=R x-\rho(x) R$, and $\mathcal{L}(x)=R^{*} \rho(x) R-\frac{1}{2}\left(R^{*} R-\mathcal{L}(1)\right) x-\frac{1}{2} x\left(R^{*} R-\mathcal{L}(1)\right)+i[H, x] \forall x \in \mathcal{A}$. Furthermore, \mathcal{L} satisfies the cocycle relation with ρ as coboundary, namely,

$$
\mathcal{L}\left(x^{*} y\right)-\mathcal{L}\left(x^{*}\right) y-x^{*} \mathcal{L}(y)+x^{*} \mathcal{L}(1) y=\alpha(x)^{*} \alpha(y) .
$$

Moreover, R can be chosen from the ultraweak closure of $\{\alpha(x) y: x, y \in \mathcal{A}\}$ and hence in particular $R^{*} \rho(x) R \in \mathcal{A}^{\prime \prime}$.

Assume for the remainder of this section that \mathcal{A} is a separable unital C^{*}-algebra acting nondegenerately on the Hilbert space h. The universal enveloping von Neumann algebra of \mathcal{A} in such a case can be identified with $\mathcal{A}^{\prime \prime}$ in $\mathcal{B}(h)$. Let k_{0} be a separable Hilbert space with an orthonormal basis $\left\{e_{1}, e_{2}, \ldots\right\}$. Denote by F the Hilbert \mathcal{A}-module $\mathcal{A} \otimes k_{0}$ and by G the Hilbert \mathcal{A}-module $\mathcal{A} \otimes \Gamma\left(L_{2}\left(\mathbb{R}_{+}\right) \otimes k_{0}\right)$ or $\mathcal{A} \otimes \Gamma$ for short. In the following, we shall use the notations of [Lan]. We denote by $\mathfrak{L}\left(E_{1}, E_{2}\right)$ the space of all \mathcal{A}-linear, adjointable, everywhere defined maps from E_{1} to E_{2} for two Hilbert \mathcal{A}-modules E_{1} and E_{2}. When $E_{1}=E_{2}=E$, we denote $\mathfrak{L}\left(E_{1}, E_{2}\right)$ by $\mathfrak{L}(E)$ for short and $\mathfrak{K}(E)$ will denote the norm-closure of finite-rank \mathcal{A}-linear maps in E. Then we have the following :

Lemma 2.2 If $\eta \in \mathfrak{L}(F)$ then $\eta_{f} \in F$ for $f \in k$.
Proof: Clearly it is enough to prove the lemma for $f \neq 0$. First we claim that for any nonzero f, there exists a $\xi \in \mathfrak{K}(F)$ such that

$$
\begin{equation*}
\left\|\eta_{f}\right\| \leq\|\eta \xi\|\|f\| \tag{2.12}
\end{equation*}
$$

for all $\eta \in \mathcal{B}\left(h \otimes k_{0}\right)$. To see this, choose $\xi=(I \otimes|f\rangle\langle f|) /\|f\|^{2}$. Then for any $u \in h$, we have $\eta \xi(u \otimes f)=\eta(u \otimes f)=\eta_{f}(u)$. so that $\left\|\eta_{f}(u)\right\|=\|\eta \xi(u \otimes f)\| \leq\|\eta \xi\|\|u\|\|f\|$, and the required inequality follows.

Next observe that for any η of the form

$$
\eta=\sum_{i, j=1}^{n} a_{i j} \otimes\left|e_{i}\right\rangle\left\langle e_{j}\right|,
$$

n varying over \mathbb{N}, the element $\eta_{f}=\sum_{i, j}\left\langle e_{j}, f\right\rangle a_{i j} \otimes e_{i}$ belongs to $\mathcal{A} \otimes_{a l g} k_{0} \subseteq F$. Using now the norm inequality (2.12) and the fact that such η 's are dense in $\mathfrak{L}(F)$ in the strict topology, we conclude that $\eta_{f} \in F$ for all $\eta \in \mathfrak{L}(F)$.

Notice that for $\eta \in \mathfrak{L}(F), \eta_{f}$ can actually be identified with the element $\eta(I \otimes f)$ in F. For a bounded linear map $\sigma: \mathcal{A} \rightarrow \mathfrak{L}(F)$ and $f \in k_{0}$ we define a map $\sigma_{f}: \mathcal{A} \rightarrow F$ by $\sigma_{f}(x)=\sigma(x)_{f}$. We are now ready for the following existence theorem for a canonical E-H dilation.

Theorem 2.3 Let T_{t} be a uniformly continuous, conservative quantum dynamical semigroup on a separable unital C^{*}-algebra \mathcal{A} with generator \mathcal{L}. Then there exists a separable Hilbert space k_{0} and $a *$-homomorphism $\pi: \mathcal{A} \rightarrow \mathfrak{L}(F)$, a π-derivation $\delta: \mathcal{A} \rightarrow F$ such that $\mathcal{L}\left(x^{*} y\right)-\mathcal{L}\left(x^{*}\right) y-x^{*} \mathcal{L}(y)=\delta(x)^{*} \delta(y)$.

Furthermore, we can extend the maps \mathcal{L}, δ and π to $\hat{\mathcal{L}}, \hat{\delta}$ and $\hat{\pi}$ respectively on the universal enveloping von Neumann algebra $\mathcal{A}^{\prime \prime}$ of \mathcal{A} such that the E - H type flow equation $d \hat{J}_{t}=\hat{J}_{t} \circ\left(a_{\hat{\delta}}(d t)+a_{\hat{\delta}}^{\dagger}(d t)+\Lambda_{\hat{\pi}-i d}(d t)+\mathcal{I}_{\hat{\mathcal{L}}}(d t)\right)$ with the initial condition $\hat{J}_{0} \equiv i d$ admits a unique solution as a map from $\mathcal{A}^{\prime \prime} \otimes_{s} \mathcal{E}(k)$ to itself. The restricton J_{t} of \hat{J}_{t} on $\mathcal{A} \otimes \mathcal{E}(k)$ takes values in $\mathcal{A} \otimes \Gamma$ and similarly, the restriction j_{t} of the *-homomorphism $\hat{j}_{t}: \mathcal{A}^{\prime \prime} \rightarrow \mathcal{A}^{\prime \prime} \otimes \mathcal{B}(\Gamma)$ as defined in the theorem 1.1(ii) on \mathcal{A} takes values in $\mathfrak{L}(\mathcal{A} \otimes \Gamma)$.

Proof: By the theorem 2.1, we obtain a Hilbert space \mathcal{K}, a $*$-homomorphism ρ : $\mathcal{A} \rightarrow \mathcal{B}(\mathcal{K})$, a ρ-derivation $\alpha: \mathcal{A} \rightarrow \mathcal{B}(h, \mathcal{K})$ such that

$$
\begin{equation*}
\mathcal{L}\left(a^{*} b\right)-\mathcal{L}\left(a^{*}\right) b-a^{*} \mathcal{L}(b)=\alpha(a)^{*} \alpha(b), \quad a, b \in \mathcal{A} \tag{2.13}
\end{equation*}
$$

Let E be the completion of the algebraic linear span of elements of the form $\alpha(a) b$, where $a, b \in \mathcal{A}$, with respect to the operator norm of $\mathcal{B}(h, \mathcal{K})$. E has an inner product inherited from $\mathcal{B}(h, \mathcal{K})$, namely, $\langle L, M\rangle=L^{*} M$ for $L, M \in E$. Using equation 2.13, we find that $\left\langle\alpha(a) b, \alpha\left(a^{\prime}\right) b^{\prime}\right\rangle=b^{*} \alpha(a)^{*} \alpha\left(a^{\prime}\right) b^{\prime} \in \mathcal{A}$. It follows then that $\langle x, y\rangle \in \mathcal{A}$ for all x and y in $E . \mathcal{A}$ has a natural right action on E (as composition of operators in $\mathcal{B}(h, \mathcal{K})$). Thus E is indeed a Hilbert \mathcal{A}-module. We identify ρ with a left action $\hat{\rho}$ given by, $\hat{\rho}(a)(\alpha(b) c)=\alpha(a b) c-\alpha(a) b c$. Furthermore, since \mathcal{A} is separable, E is countably generated as a Hilbert \mathcal{A}-module. To see this, one can choose any countable dense subset $\left\{x_{1}, x_{2}, \ldots\right\}$ of \mathcal{A} and note that E is the closed \mathcal{A}-linear span of $\left\{\alpha\left(x_{1}\right), \alpha\left(x_{2}\right), \ldots\right\}$. Now, Kasparov's stabilisation theorem (see [Lan]) yields a separable Hilbert space k_{0} and an isometric \mathcal{A}-linear map $t \in \mathfrak{L}(E, F)$ that imbeds
E as a complemented closed submodule of $F=\mathcal{A} \otimes k_{0}$. We set $\delta(x)=t(\alpha(x))$ and $\pi(x)=t \hat{\rho}(x)) t^{*}$. Then $\delta \in \mathcal{B}(\mathcal{A}, F)$ and $\pi \in \mathcal{B}(\mathcal{A}, \mathfrak{L}(F))$ and this completes the first part of the proof.

For the second part, note that π being a $*$-homomorphism of \mathcal{A} into $\mathfrak{L}(F)$, admits an extension as a normal $*$-homomorphism $\hat{\pi}$ from $\mathcal{A}^{\prime \prime}$ into $(\mathfrak{L}(F))^{\prime \prime}=\mathcal{A}^{\prime \prime} \otimes_{s} \mathcal{B}\left(k_{0}\right)$ (see [Dix]). Observe also that by [CE], we obtain an element R in the ultraweak closure of $\{\delta(a) b: a, b \in \mathcal{A}\}$ in $\mathcal{B}\left(h, h \otimes k_{0}\right)$ such that

$$
\mathcal{L}(a)=R^{*} \pi(a) R-\frac{1}{2} R^{*} R a-\frac{1}{2} a R^{*} R+i[H, a],
$$

and

$$
\delta(a)=R a-\pi(a) R,
$$

for all $a \in \mathcal{A}$ and for some self-adjoint $H \in \mathcal{A}^{\prime \prime}$. We extend \mathcal{L} and δ by the same expressions as above by replacing π by $\hat{\pi}$. Since R is in the ultraweak closure of F, which is $\mathcal{A}^{\prime \prime} \otimes_{s} k_{0}$, we see that the extended maps \mathcal{L} and δ map $\mathcal{A}^{\prime \prime}$ into $\mathcal{A}^{\prime \prime}$ and $\mathcal{A}^{\prime \prime} \otimes_{s} k_{0}$ respectively. Now, by the theorem 1.1, we obtain \hat{J}_{t} and \hat{j}_{t}. It remains to show that $J_{t}(x \otimes e(f)) \in \mathcal{A} \otimes \Gamma$ for $x \in \mathcal{A}$, and $j_{t}(x) \in \mathfrak{L}(\mathcal{A} \otimes \Gamma)$ for $x \in \mathcal{A}$ and $f \in k$.

If $\beta \in \mathcal{B}\left(\mathcal{A}^{\prime \prime}, \mathcal{A}^{\prime \prime} \otimes_{s} k_{0}\right)$ is such that $\beta(x) \in F$ for all $x \in \mathcal{A}$, then by (1.9) $a_{\beta}^{\dagger}(\Delta)\left(x \otimes f^{\otimes^{n}}\right)$ and hence $a_{\beta}^{\dagger}(\Delta)(x \otimes e(f))$ belongs to $\mathcal{A} \otimes \Gamma$ for any bounded subinterval Δ of \mathbb{R}_{+}and $x \in \mathcal{A}, f \in L^{2}\left(\mathbb{R}_{+}, k_{0}\right)$. Then from the definition of $\Lambda($.$) ,$ it follows that $\Lambda_{\pi-i d}($.$) maps x \otimes e(f)$ into $\mathcal{A} \otimes \Gamma$ for $x \in \mathcal{A}$. That $a_{\delta}($.$) and \mathcal{I}_{\mathcal{L}}($. have the same property is still simpler to see.

In [GS], the solution \hat{J}_{t} was constructed by an iteration procedure and from the above, it is clear that each iterate $\hat{J}_{t}^{(i)}$ maps $x \otimes e(f)$ into $\mathcal{A} \otimes \Gamma$ for $x \in \mathcal{A}$ and $f \in k$. By the estimates in [GS], one has

$$
\left\|\left(\hat{J}_{t}(x \otimes e(f))-\sum_{i \leq n} \hat{J}_{t}^{(i)}(x \otimes e(f))\right) u\right\| \leq\|u\|\|x\|\|e(f)\|\left\|E_{t}\right\| \sum_{i=n+1}^{\infty} C^{\frac{i}{2}}(i!)^{-1 / 4}
$$

for some constant C, and thus, $\left\|\hat{J}_{t}(x \otimes e(f))-\sum_{i \leq n} \hat{J}_{t}^{(i)}(x \otimes e(f))\right\|$ converges to zero. Thus J_{t} maps $\mathcal{A} \otimes \mathcal{E}(k)$ into $\mathcal{A} \otimes \Gamma$.

By the theorem 1.1, $\left.j_{t} \equiv \hat{j}_{t}\right|_{\mathcal{A}}$ is a $*$-homomorphism of \mathcal{A} into $\mathcal{A}^{\prime \prime} \otimes \mathcal{B}(\Gamma)$. Thus it remains to prove that $j_{t}(x) \in \mathfrak{L}(\mathcal{A} \otimes \Gamma)$ for $x \in \mathcal{A}$. Note that ([Lan]) the algebra $\mathfrak{L}(\mathcal{A} \otimes \Gamma)$ can be naturally identified with the multiplier algebra of $\mathcal{A} \otimes \mathcal{B}_{0}(\Gamma)$ and that the set $\left\{y \otimes|e(f)\rangle\langle e(g)|: y \in \mathcal{A}, f, g \in L^{2}\left(\mathbb{R}_{+}, k_{0}\right)\right\}$ is total in $\mathcal{A} \otimes \mathcal{B}_{0}(\Gamma)$ in the norm topology. Therefore it is enough to show that for fixed $x \in \mathcal{A}$ and $t \geq 0$, the
operators $j_{t}(x)(y \otimes|e(f)\rangle\langle e(g)|)$ and $(y \otimes|e(f)\rangle\langle e(g)|) j_{t}(x)$ both are in $\mathcal{A} \otimes \mathcal{B}_{0}(\Gamma)$ for all $y \in \mathcal{A}, f, g \in L^{2}\left(\mathbb{R}_{+}, k_{0}\right)$.

Since $J_{t}(x \otimes e(f)) \in \mathcal{A} \otimes \Gamma$, we can choose a sequence L_{n} of the form $\sum_{i=1}^{k_{n}} z_{i}^{(n)} \otimes$ $\rho_{i}^{(n)}$ where $z_{i}^{(n)} \in \mathcal{A}$ and $\rho_{i}^{(n)} \in \Gamma$, such that L_{n} converges in the norm of $\mathcal{A} \otimes \Gamma$ to $J_{t}(x \otimes e(f))$. Now, observe that for $u \in h$ and $\eta \in \Gamma, j_{t}(x)(y \otimes|e(f)\rangle\langle e(g)|)(u \otimes \eta)=$ $\langle e(g), \eta\rangle J_{t}(x \otimes e(f)) y u=\lim _{n \rightarrow \infty}\langle e(g), \eta\rangle L_{n} y u$. Choose an orthonormal basis $\left\{\gamma_{m}\right\}$ of Γ and take a vector $w \equiv \sum_{m} w_{m} \otimes \gamma_{m}$ of $h \otimes \Gamma$. It is easy to see that

$$
\begin{aligned}
& \left\|\left(j_{t}(x)(y \otimes|e(f)\rangle\langle e(g)|)-\sum_{i=1}^{k_{n}} z_{i}^{(n)} y \otimes\left|\rho_{i}^{(n)}\right\rangle\langle e(g)|\right) w\right\| \\
& \begin{aligned}
\left.e(f))-L_{n}\right) w_{l} \|
\end{aligned} \\
&)^{\frac{1}{2}} \\
& \\
& =\| \sum_{m}\left\langle e(g), \gamma_{m}\right\rangle\left\{J_{t}(x \otimes e(f))-\sum_{i} z_{i}^{(n)} \otimes\left|\rho_{i}^{(n)}\right\rangle\right\} y w_{m} \| \\
& \\
& =\left\|\sum_{m}\left\{J_{t}(x \otimes e(f))-L_{n}\right\}\left\langle e(g), \gamma_{m}\right\rangle y w_{m}\right\| \\
& \\
& \leq\left\|J_{t}(x \otimes e(f))-L_{n}\right\|\|e(g)\|\|y\|\left(\sum_{m}\left\|w_{m}\right\|^{2}\right)^{\frac{1}{2}} \\
& \\
& =\left\|J_{t}(x \otimes e(f))-L_{n}\right\|\|e(g)\|\|y\|\|w\|
\end{aligned}
$$

and hence $j_{t}(x)(y \otimes|e(f)\rangle\langle e(g)|)$ is the norm-limit of $\sum_{i=1}^{k_{n}} z_{i}^{(n)} y \otimes\left|\rho_{i}^{(n)}\right\rangle\langle e(g)| \in$ $\mathcal{A} \otimes_{\text {alg }} \mathcal{B}_{0}(\Gamma)$. A similar proof works for $y \otimes|e(f)\rangle\langle e(g)| j_{t}(x)$.

References:

[AFL] L. Accardy, A. Frigerio and J. T. Lewis : Quantum stochastic processes, Publ. R. I. M. S., Kyoto University (18), 97-133 (1982).
[CE] E. Christensen and D. E. Evans : Cohomology of operator algebras and quantum dynamical semigroups, J. London Math. Soc. (20), 358-368 (1979).
[Dix] J. Dixmier : "C ${ }^{*}$ Algebras", North Holland Publishing Company (1977).
[Ev] M. P. Evans : Existence of quantum diffusions, Probab. Th. Rel. Fields, (81), 473-483 (1989).
[GS] D. Goswami and K. B. Sinha : Hilbert modules and stochastic dilation of a quantum dynamical semigroup on a von Neumann algebra, preprint (1998), to appear in Comm. in Math. Phys. (1999).
[HP] R. L. Hudson and K. R. Parthasarathy : Quantum Ito's Formula and Stochastic Evolutions, Comm. in Math. Phys (93), 301-323 (1884).
[Lan] E. C. Lance : "Hilbert C^{*}-modules : A toolkit for operator algebraists", London Math. Soc. Lect. Note Ser. 210, Cambridge University Press (1995). [Par] K. R. Parthasarathy : "An Introduction to Quantum Stochastic Calculus", Monographs in Mathematics, Birkhäuser Verlag, Bessel (1992).

[^0]: ${ }^{1}$ Research partially supported by the National Board of Higher Mathematics, India.
 ${ }^{2}$ Indian Statistical Institute, Delhi Centre and Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India.

