
Induced Representation and Frobenius
Reciprocity for Compact

Quantum Groups

By

ARUPKUMAR PAL

Indian Statistical Institute, Delhi Centre
7, SJSS Marg, New Delhi 110 016

e-mail: arup @ isid.ernet.in

Abstract: Unitary representations of compact quantum groups have been de-

scribed as isometric comodules. The notion of an induced representation for com-

pact quantum groups has been introduced and an analogue of the Frobenius reci-

procity theorem is established.

Quantum groups, like their classical counterparts, have a very rich representation theory. In the

representation theory of classical groups, induced representation plays a very important role.

Among other things, for example, one can obtain families of irreducible unitary representations

of many locally compact groups as representations induced by one dimensional representations

of appropriate subgroups. Therefore it is natural to try and see how far can this notion be

developed and exploited in the case of quantum groups. As a first step, we do it here for

compact quantum groups. First we give an alternative description of a unitary representation

as an isometric comodule map. This is trivial in the finite dimensional case, but requires a

little bit of work if the comodule is infinite dimensional. Using the comodule description, the

notion of an induced representation is defined. We then go on to prove that an exact analogue

of the Frobenius reciprocity theorem holds for compact quantum groups. As an application of

this theorem, an alternative way of decomposing the action of SUq(2) on the Podles̀ sphere S2
q0

is given.

Notations. H, K etc, with or without subscripts, will denote complex separable Hilbert spaces.

B(H) and B0(H) denote respectively the space of bounded operators and the space of compact

operators on H. A, B, C etc denote C∗-algebras. All the C∗-algebras used in this article have

been assumed to act nondegenerately on Hilbert spaces. More specifically, given any C∗-algebra

A, it is assumed that there is a Hilbert space K such that A ⊆ B(K) and for u ∈ K, a(u) = 0

for all a ∈ A implies u = 0. Tensor product of C∗-algebras will always mean their spatial

tensor product. The identity operator on Hilbert spaces is denoted by I, and on C∗-algebras

by id. For two vector spaces X and Y , X ⊗alg Y denote their algebraic tensor product.
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Let A be a C∗-algebra acting on K. The subalgebras { a ∈ B(K) : ab ∈ A ∀b ∈ A } and

{ a ∈ B(K) : ab, ba ∈ A ∀ b ∈ A } of B(K) are called respectively the left multiplier algebra

and the multiplier algebra of A. We denote them by LM(A) and M(A) respectively. A good

reference for multiplier algebras and other topics in C∗-algebra theory is [4]. See [9] for another

equivalent description of multiplier algebras that is often very useful.

1 Preliminaries

1.1 Let A be a unital C∗-algebra. A vector space X having a right A-module structure is

called a Hilbert A-module if it is equipped with an A-valued inner product that satisfies

i. 〈x, y〉∗ = 〈y, x〉,
ii. 〈x, x〉 ≥ 0,

iii. 〈x, x〉 = 0⇒ x = 0,

iv. 〈x, yb〉 = 〈x, y〉b for x, y ∈ X, b ∈ A,

and if ‖x‖ := ‖〈x, x〉‖1/2 makes X a Banach Space.

Details on Hilbert C∗-modules can be found in [1], [2] and [3]. We shall need a few specific

examples that are listed below.

Examples(a) Any Hilbert space H with its usual inner product is a Hilbert C/ -module.

(b) Any unital C∗-algebra A with 〈a, b〉 = a∗b is a Hilbert A-module.

(c) H⊗A, the ‘external tensor product’ of H and A , is a Hilbert A-module.

(d) B(H,K), with 〈S, T 〉 = S∗T is a Hilbert B(H)-module.

1.2 We have seen above that H⊗B(K) and B(K,H⊗K) both are Hilbert B(K)-modules. It is

easy to see that the map ϑ :
∑
ui⊗ai 7→

∑
ui⊗ai(.) from H⊗alg B(K) to B(K,H⊗K) extends

to an isometric module map from H⊗ B(K) to B(K,H⊗K), i.e. ϑ obeys

〈ϑ(x), ϑ(y)〉 = 〈x, y〉, ∀x, y ∈ H ⊗ B(K),

ϑ(xb) = ϑ(x)b, ∀x ∈ H ⊗ B(K), b ∈ B(K).

Thus ϑ embeds H⊗ B(K) in B(K,H⊗K). Observe two things here: first, if H = C/ , ϑ is just

the identity map. And, ϑ is onto if and only if H is finite dimensional. The following lemma,

the proof of which is fairly straightforward, gives a very useful property of ϑ.

Lemma Let ϑi be the map ϑ constructed above with Hi replacing H, i = 1, 2. Let S ∈ B(H1,H2)

and x ∈ H1 ⊗ B(K). Then ϑ2((S ⊗ id)x) = (S ⊗ I)ϑ1(x).
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1.3 For an operator T ∈ B(H⊗K), and a vector u ∈ H, let Tu denote the operator v 7→ T (u⊗v)

from K toH⊗K. It is not too difficult to show that Tu ∈ ϑ(H⊗B(K)) if T ∈ LM(B0(H)⊗B(K)).

Define a map Ψ(T ) from H to H⊗B(K) by: Ψ(T )(u) = ϑ−1(Tu). Then Ψ is the unique linear

injective contraction from LM(B0(H)⊗ B(K)) to B(H,H⊗ B(K)) for which ϑ(Ψ(T )(u))(v) =

T (u⊗ v) ∀u ∈ H, v ∈ K, T ∈ LM(B0(H)⊗B(K)). Here are a few interesting properties of this

map Ψ.

Proposition Let Ψ : LM(B0(H) ⊗ B(K)) → B(H,H ⊗ B(K)) be the map described above.

Then we have the following:

i. Ψ maps isometries in LM(B0(H)⊗ B(K)) onto the isometries in B(H,H⊗ B(K)).

ii. For any T ∈ LM(B0(H)⊗ B(K)) and S ∈ B0(H),

Ψ(T (S ⊗ I)) = Ψ(T ) ◦ S, Ψ((S ⊗ I)T ) = (S ⊗ id) ◦Ψ(T ).

iii. If A is any C∗-subalgebra of B(K) containing its identity, then T ∈ LM(B0(H)⊗A) if and

only if range Ψ(T ) ⊆ H⊗A.

Proof : i. Suppose T ∈ LM(B0(H) ⊗ B(K)) is an isometry. By 1.2, 〈Ψ(T )u,Ψ(T )v〉 =

〈ϑ−1(Tu), ϑ−1(Tv)〉 = 〈Tu, Tv〉 = 〈u, v〉I for u, v ∈ H. Thus Ψ(T ) is an isometry.

Conversely, take an isometry π : H → H⊗ B(K) and define an operator T on the product

vectors in H⊗K by T (u⊗v) = ϑ(π(u))(v), ϑ being the map constructed in 1.2. It is clear that

T is an isometry. It is enough, therefore, to show that T (|u〉〈v| ⊗S) ∈ B0(H)⊗B(K) whenever

S ∈ B(K) and u, v are unit vectors in H such that 〈u, v〉 = 0 or 1.

Choose an orthonormal basis {ei} for H such that e1 = u, er = v where

r =

 0 if 〈u, v〉 = 0,

1 if 〈u, v〉 = 1.

Let πij = (〈ei| ⊗ id)π(ej). Then T (|u〉〈v| ⊗ S) =
∑
|ei〉〈er| ⊗ πi1S where the right hand side

converges strongly. Since π(e1) ∈ H ⊗ B(K), it follows that
∑
i πi1

∗πi1 converges in norm.

Consequently the right hand side above converges in norm, which means T (|u〉〈v| ⊗ S) ∈
B0(H)⊗ B(K).

ii. Straightforward.

iii. Take T = |u〉〈v| ⊗ a, u, v ∈ H, a ∈ A. For any w ∈ H, Ψ(T )(w) = 〈v, w〉u⊗ a ∈ H⊗A.

Since Ψ is a contraction, and the norm closure of all linear combinations of such T ’s is B0(H)⊗A,

we have range Ψ(T ) ⊆ H⊗A for all T ∈ B0(H)⊗A.

Assume next that T ∈ LM(B0(H) ⊗ A). Then T (|u〉〈u| ⊗ I) ∈ B0(H) ⊗ A for all u ∈ H.

Hence Ψ(T (|u〉〈u| ⊗ I))(u) ∈ H ⊗A, which means, by part (ii), that Ψ(T )(u) ∈ H ⊗A for all

u ∈ H. Thus range Ψ(T ) ⊆ H⊗A.
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To prove the converse, it is enough to show that T (|u〉〈v|⊗a) ∈ B0(H)⊗A whenever a ∈ A
and u, v ∈ H are such that 〈u, v〉 = 0 or 1. Rest of the proof goes along the same lines as the

proof of the last part of (i).

1.4 Let K1, K2 be two Hilbert spaces, Ai being a C∗-subalgebra of B(Ki) containing its identity.

Suppose φ is a unital *-homomorphism from A1 to A2. Then id⊗φ : S⊗a 7→ S⊗φ(a) extends

to a *-homomorphism from B0(H) ⊗ A1 to B0(H) ⊗ A2. Moreover { ((id ⊗ φ)(a))b : a ∈
B0(H)⊗A1, b ∈ B0(H)⊗A2 } is total in B0(H)⊗A2. Therefore id⊗ φ extends to an algebra

homomorphism by the following prescription: for all a ∈ LM(B0(H) ⊗ A1), b ∈ B0(H) ⊗ A1,

c ∈ B0(H)⊗A2,

((id⊗ φ)a)(((id⊗ φ)b)c) := ((id⊗ φ)(ab))c.

Proposition Let φ be as above, and Ψi be the map Ψ constructed earlier with Ki replacing K.

Then for T ∈ LM(B0(H)⊗A1),

(I ⊗ φ)Ψ1(T ) = Ψ2((id⊗ φ)T ).

Proof : It is enough to prove that (〈u| ⊗ id)((I ⊗ φ)Ψ1(T )(v)) = (〈u| ⊗ id)Ψ2((id ⊗ φ)T )(v),

∀ u, v ∈ H. Rest now is a careful application of 1.2.

1.5 Consider the homomorphic embeddings φ12 : B0(H) ⊗ A1 → B0(H) ⊗ A1 ⊗ A2 and φ13 :

B0(H)⊗A2 → B0(H)⊗A1 ⊗A2 given on the product elements by

φ12(a⊗ b) = a⊗ b⊗ I, φ13(a⊗ c) = a⊗ I ⊗ c

respectively. Each of their ranges contains an approximate identity for B0(H)⊗A1⊗A2, so that

their extensions respectively to LM(B0(H)⊗A1) and LM(B0(H)⊗A2) are also homomorphic

embeddings.

Proposition Let Ψ1, Ψ2 be as in the previous proposition, and let Ψ0 be the map Ψ with

A1 ⊗A2 replacing A. Let S ∈ LM(B0(H)⊗A1), T ∈ LM(B0(H)⊗A2). Then

Ψ0(φ12(S)φ13(T )) = (Ψ1(S)⊗ id)Ψ2(T ).

Proof : Observe that for u1, . . . , un ∈ H, ((〈Ψ1(S)(ui),Ψ1(S)(uj)〉)) ≤ ‖S‖2 ((〈ui, uj〉I)). There-

fore Ψ1(S) ⊗ id is a well-defined bounded operator from H ⊗ A2 to H ⊗ A1 ⊗ A2. Take an

orthonormal basis {ei} for H. Define Sij ’s and Tij ’s as follows:

Sij : v 7→ (〈ei| ⊗ I)S(ej ⊗ v), Tij : v 7→ (〈ei| ⊗ I)T (ej ⊗ v).
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Let Pn :=
∑n
i=1 |ei〉〈ei|. Then (Ψ1(S)⊗ id)(Pn⊗ id)Ψ2(T )(ei) = (Ψ1(S)⊗ id)(

∑
j≤n ej ⊗Tij) =∑

j≤n(
∑
k ek ⊗ Skj)⊗ Tij . Hence for v ∈ K1, w ∈ K2,

ϑ((Ψ1(S)⊗ id)(Pn ⊗ id)Ψ2(T )(ei))(v ⊗ w)

=
∑
j≤n

∑
k

ek ⊗ Skj(v)⊗ Tji(w)

= (
∑
j≤n

∑
k,r

|ek〉〈er| ⊗ Skj ⊗ Tji)(ei ⊗ v ⊗ w)

= φ12(S)(Pn ⊗ I ⊗ I)φ13(T )(ei ⊗ v ⊗ w).

This converges to φ12(S)φ13(T )(ei ⊗ v ⊗ w) as n→∞. On the other hand,

lim
n→∞

(Ψ1(S)⊗ id)(Pn ⊗ id)Ψ2(T )(ei) = (Ψ1(S)⊗ id)Ψ2(T )(ei),

which implies limn→∞ ϑ((Ψ1(S)⊗id)(Pn⊗id)Ψ2(T )(ei)) = ϑ((Ψ1(S)⊗id)Ψ2(T )(ei)). Therefore

ϑ((Ψ1(S)⊗ id)Ψ2(T )(ei))(v ⊗ w) = φ12(S)φ13(T )(ei ⊗ v ⊗ w) =

ϑ(Ψ0(φ12(S)φ13(T ))(ei))(v ⊗ w). Thus (Ψ1(S)⊗ id)Ψ2(T ) = Ψ0(φ12(S)φ13(T )).

2 Representations of Compact Quantum Groups

2.1 We start by recalling a few facts from [8] on compact quantum groups.

Definition Let A be a separable unital C∗-algebra, and µ : A → A ⊗ A be a unital *-

homomorphism. We call G = (A, µ) a compact quantum group if the following two conditions

are satisfied:

i. (id⊗ µ)µ = (µ⊗ id)µ, and

ii. {(a⊗ I)µ(b) : a, b ∈ A} and {(I ⊗ a)µ(b) : a, b ∈ A} both are total in A⊗A.

µ is called the comultiplication map associated with G. We shall very often denote the

underlying C∗-algebra A by C(G) and the map µ by µG.

A representation of a compact quantum group G acting on a Hilbert space H is an element

π of the multiplier algebra M(B0(H) ⊗ C(G)) that obeys π12π13 = (id ⊗ µ)π, where π12 and

π13 are the images of π in the space M(B0(H)⊗C(G)⊗C(G)) under the homomorphisms φ12

and φ13 which are given on the product elements by:

φ12(a⊗ b) = a⊗ b⊗ I, φ13(a⊗ b) = a⊗ I ⊗ b.

A representation π is called a unitary representation if ππ∗ = I = π∗π. One also has the

notions of irreducibility, direct sum and tensor product of representations. As in the case of
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classical groups, any unitary representation decomposes into a direct sum of finite dimensional

irreducible unitary representations. Let A(G) be the unital ∗-subalgebra of C(G) generated

by the matrix entries of finite dimensional unitary representations of G. Then one has the

following result (see [8]).

Theorem ([8]) Suppose G is a compact quantum group. Let A(G) be as above. Then we have

the following:

(a) A(G) is a dense unital *-subalgebra of C(G) and µ(A(G)) ⊆ A(G)⊗alg A(G).

(b) There is a complex homomorphism ε : A(G)→ C/ such that

(ε⊗ id)µ = id = (id⊗ ε)µ.

(c) There exists a linear antimultiplicative map κ : A(G)→ A(G) obeying

m(id⊗ κ)µ(a) = ε(a)I = m(κ⊗ id)µ(a), and κ(κ(a∗)∗) = a

for all a ∈ A(G), where m is the operator that sends a⊗ b to ab.

The maps ε and κ in the above theorem are called the counit and coinverse respectively of

the quantum group G.

2.2 Let G = (C(G), µG) and H = (C(H), µH) be two compact quantum groups. A C∗-

homomorphism φ from C(G) to C(H) is called a quantum group homomorphism from G to H

if it obeys (φ⊗ φ)µG = µHφ.

One can show that if G, H are compact quantum groups, then H is a subgroup of G if and

only if there is a homomorphism from G to H that maps C(G) onto C(H).

2.3 Let G = (A, µ) be a compact quantum group. From now onward we shall assume that

A acts nondegenerately on a Hilbert space K, i.e. A is a C∗-subalgebra of B(K) containing

its identity. We call a map π from H to H ⊗ A an isometry if 〈π(u), π(v)〉 = 〈u, v〉I for all

u, v ∈ H. If π : H → H⊗A is an isometry, then π⊗ id : u⊗a 7→ π(u)⊗a extends to a bounded

map from H⊗A to H⊗A⊗A. π is called an isometric comodule map if it is an isometry, and

satisfies (π ⊗ id)π = (I ⊗ µ)π. The pair (H, π) is called an isometric comodule. We shall often

just say π is a comodule, omitting the H.

The following theorem says that for a compact quantum group isometric comodules are

nothing but the unitary representations.

Theorem Let π be an isometric comodule map acting on H. Then Ψ−1(π) is a unitary repre-

sentation acting on H. Conversely, if π̂ is a unitary representation of G on H, then (H,Ψ(π̂))

is an isometric comodule.
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We need the following lemma for proving the theorem.

Lemma Let (H, π) be an isometric comodule. Then H decomposes into a direct sum of finite

dimensional subspaces H = ⊕Hα such that each Hα is π-invariant and π|Hα is an irreducible

isometric comodule.

Proof : By 1.3, there is an isometry π̂ in LM(B0(H)⊗A) such that Ψ(π̂) = π. Using 1.4 and

1.5, we get π̂12π̂13 = (id ⊗ µ)π̂ where π̂12 = φ12(π̂), π̂13 = φ13(π̂), φ12 and φ13 being as in 1.5

with A1 = A2 = A.

Let I = {a ∈ A : h(a∗a) = 0}. From the properties of the haar state, I is an ideal in A.

For any unit vector u in H, let Q(u) = (id⊗h)(π̂(|u〉〈u|⊗ I)π̂∗). Then Q(u)∗ = Q(u) ∈ B0(H).

If Q(u) = 0, then |π̂(|u〉〈u| ⊗ I)π̂∗|1/2 ∈ B0(H) ⊗ I. Therefore π̂(|u〉〈u| ⊗ I)π̂∗ ∈ B0(H) ⊗ I.

It follows then that |u〉〈u| ⊗ I ∈ B0(H) ⊗ I. This forces u to be zero. Thus for a nonzero u,

Q(u) 6= 0. Choose and fix any nonzero u. Then

π̂(Q(u)⊗ I)π̂∗

= (id⊗ id⊗ h)(π̂12π̂13(|u〉〈u| ⊗ I ⊗ I)π̂∗13π̂
∗
12)

= (id⊗ id⊗ h)(π̂12π̂13(|u〉〈u| ⊗ I ⊗ I) (π̂12π̂13(|u〉〈u| ⊗ I ⊗ I))∗)

= (id⊗ id⊗ h)((id⊗ µ)(π̂)(id⊗ µ)(|u〉〈u| ⊗ I) ((id⊗ µ)(π̂)(id⊗ µ)(|u〉〈u| ⊗ I))∗)

= (id⊗ id⊗ h)((id⊗ µ)(π̂(|u〉〈u| ⊗ I)) ((id⊗ µ)(π̂(|u〉〈u| ⊗ I)))∗)

= (id⊗ id⊗ h)((id⊗ µ)(π̂(|u〉〈u| ⊗ I)) (id⊗ µ)((|u〉〈u| ⊗ I)π̂∗))

= (id⊗ id⊗ h)(id⊗ µ)(π̂(|u〉〈u| ⊗ I)π̂∗)

= (id⊗ (id⊗ h)µ)(π̂(|u〉〈u| ⊗ I)π̂∗)

= Q(u)⊗ I.

Thus π̂(Q(u)⊗I) = (Q(u)⊗I)π̂. If P is any finite dimensional spectral projection of Q(u), then

π̂(P ⊗ I) = (P ⊗ I)π̂, which means, by an application of part (ii) of 1.3, that πP = (P ⊗ id)π.

Standard arguments now tell us that π can be decomposed into a direct sum of finite dimensional

isometric comodules. Finite dimensional comodules, in turn, can easily be shown to decompose

into a direct sum of irreducible isometric comodules. The proof is thus complete.

Proof of the theorem: Let π̂ be a unitary representation. By 1.3, Ψ(π̂) is an isometry from

H to H⊗ C(G). Using 1.4 and 1.5, we conclude that Ψ(π̂) is an isometric comodule.

For the converse, take an isometric comodule π. If π is finite dimensional, it is easy to

see that Ψ−1(π) is a unitary representation. So assume that π is infinite dimensional. By the

lemma above, there is a family {Pα} of finite dimensional projections in B(H) satisfying

PαPβ = δαβPα,
∑

Pα = I, πPα = (Pα ⊗ id)π ∀α (2.1)
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such that π|PαH = πPα is an irreducible isometric comodule. π|PαH is finite dimensional,

therefore Ψ−1(π|PαH) is a unitary element of LM(B0(PαH)⊗A) = B(PαH)⊗A. Let us denote

Ψ−1(π) by π̂. Then the above implies that in the bigger space B(H⊗K),

(π̂(Pα ⊗ I))∗(π̂(Pα ⊗ I)) = Pα ⊗ I = (π̂(Pα ⊗ I))(π̂(Pα ⊗ I))∗.

The second equality implies that π̂(Pα ⊗ I)π̂∗ = Pα ⊗ I for all α, so that π̂π̂∗ = I. We already

know, by 1.3 that π̂∗π̂ = I and by 1.4 and 1.5 that π̂12π̂13 = (id ⊗ µ)π̂. Thus it remains only

to show that π̂ ∈ M(B0(H) ⊗ A). It is enough to show that for any S ∈ B0(H) and a ∈ A,

(S ⊗ a)π̂ ∈ B0(H) ⊗ A. Now from (2.1) and 1.3, π̂(Pα ⊗ I) = (Pα ⊗ I)π̂ for all α. Therefore

(S ⊗ a)(Pα ⊗ I)π̂ = (S ⊗ a)π̂(Pα ⊗ I) ∈ B0(H)⊗A. Since (S ⊗ a)π̂ is the norm limit of finite

sums of such terms, (S ⊗ a)π̂ ∈ B0(H)⊗A. Thus π̂ is a unitary representation acting on H.

2.4 Next we introduce the right regular comodule. Denote by L2(G) the GNS space associated

with the haar state h on G. Then A is a dense subspace of L2(G). One can also see that A⊗A
can be regarded as a subspace of L2(G)⊗A. Consider the map µ : A → A⊗A.

〈µ(a), µ(b)〉 = (h⊗ id)(µ(a)∗µ(b)) = (h⊗ id)µ(a∗b) = h(a∗b)I = 〈a, b〉I

for all a, b ∈ A. Therefore µ extends to an isometry from L2(G) into L2(G) ⊗ A. Denote it

by <. The maps (I ⊗ µ)< and (< ⊗ id)< both are isometries from L2(G) to L2(G) ⊗ A ⊗ A
and they coincide on A. Hence (I ⊗ µ)< = (<⊗ id)<. Thus < is an isometric comodule map.

We call it the right regular comodule of G. By theorem 2.3, Ψ−1(<) is a unitary representation

acting on L2(G). This is the right regular representation introduced by Woronowicz ([8]).

Finally let us state here a small lemma which is a direct consequence of the Peter-Weyl

theorem for compact quantum groups.

2.5 Lemma { u ∈ L2(G) : <(u) ∈ L2(G)⊗alg C(G) } = A(G).

3 Induced Representations

In this section we shall introduce the concept of an induced representation and show that

Frobenius reciprocity theorem holds for compact quantum groups. Throughout this section

G = (C(G), µG) will denote a compact quantum group and H = (C(H), µH), a subgroup of G.

We start with a lemma concerning the boundedness of the left convolution operator.

3.1 Lemma Let G = (A, µ) be a compact quantum group. Then the map Lρ : A → A given

by Lρ(a) = (ρ⊗ id)µ(a) extends to a bounded operator from L2(G) into itself.
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Proof : The proof follows from the following inequality: for any two states ρ1 and ρ2 on A, we

have

ρ1((ρ2 ∗ a)∗(ρ2 ∗ a)) ≤ ρ2 ∗ ρ1(a∗a) ∀a ∈ A,

where ρi ∗ a := (ρi ⊗ id)µ(a).

3.2 Let π̂ be a unitary representation of H acting on the space H0. π := Ψ(π̂) is then an

isometric comodule map from H0 to H0⊗C(H). Consider the following map from H0⊗L2(G)

to H0 ⊗ L2(G)⊗ C(G):

I ⊗<G : u⊗ v 7→ u⊗<G(v)

where <G is the right regular comodule of G. It is easy to see that this is an isometric comodule

map acting on H0 ⊗ L2(G).

Let p be the homomorphism from G to H (cf. 2.2). Let H = { u ∈ H0 ⊗ L2(G) :

(I ⊗ Lρ·p)u = (πρ ⊗ I)u for all continuous linear functionals ρ on C(H) }. Then I ⊗ <G

keeps H invariant; the restriction of I ⊗ <G to H is therefore an isometric comodule, so that

Ψ−1((I ⊗<G)|H) is a unitary representation of G acting on H. We call this the representation

induced by π̂, and denote it by indGH π̂ or simply by ind π̂ when there is no ambiguity about G

and H.

Let π̂1 and π̂2 be two unitary representations of H. Then clearly we have

i. ind π̂1 and ind π̂2 are equivalent whenever π̂1 and π̂2 are equivalent, and

ii. ind (π̂1 ⊕ π̂2) and ind π̂1 ⊕ ind π̂2 are equivalent.

Before going to the Frobenius reciprocity theorem, let us briefly describe what we mean by

restriction of a representation to a subgroup. Let π̂G be a unitary representation of G acting

on a Hilbert space H0. We call (id ⊗ p)π̂G the restriction of π̂G to H and denote it by π̂G|H .
To see that it is indeed a unitary representation, observe that Ψ((id ⊗ p)π̂G) = (I ⊗ p)Ψ(π̂G)

which is clearly an isometric comodule. Therefore by 2.3, π̂G|H is a unitary representation of

H acting on H0. Denote Ψ(π̂G) by πG and Ψ(π̂G|H) by πG|H .

3.3 Theorem Let π̂G and π̂H be irreducible unitary representations of G and H respectively.

Then the multiplicity of π̂G in indGH π̂
H is the same as that of π̂H in π̂G|H .

Proof : Let I(π̂G|H , π̂H) (respectively I(π̂G, ind π̂H)) denote the space of intertwiners between

π̂G|H and π̂H (respectively π̂G and ind π̂H). Assume that π̂G and π̂H act on K0 and H0

respectively. K0⊗C(G) can be regarded as a subspace of K0⊗L2(G) and hence πG, as a map

from K0 into K0 ⊗ L2(G). Since πG = Ψ(π̂G) is unitary, we have for u, v ∈ K0,

〈πG(u), πG(v)〉K0⊗L2(G) = h(〈πG(u), πG(v)〉K0⊗C(G)) = h(〈u, v〉I) = 〈u, v〉.
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Thus πG : K0 → K0 ⊗ L2(G) is an isometry. Let S : K0 → H0 be an element of I(π̂G|H , π̂H).

(S ⊗ I)πG is then a bounded map from K0 into H0 ⊗ L2(G). Denote it by f(S). It is not too

dificult to see that f(S) actually maps K0 into H, and intertwines π̂G and ind π̂H . f : S 7→ f(S)

is thus a linear map from I(π̂G|H , π̂H) to I(π̂G, ind π̂H).

We shall now show that f is invertible by exhibiting the inverse of f . Take a T : K0 → H
that intertwines π̂G and ind π̂H . For any u ∈ H0, T u := (〈u| ⊗ I)T is a map from K0 to L2(G)

intertwining π̂G and the right regular representation <G of G, i.e. <GT u = (T u⊗ id)πG. Now,

πG is finite dimensional, so that πG(K0) ⊆ K0⊗algA(G). Hence <GT u(K0) ⊆ L2(G)⊗algA(G).

By 2.5, T u(K0) ⊆ A(G). Since this is true for all u ∈ H0, T (K0) ⊆ H0 ⊗alg A(G). Therefore

(I ⊗ εG)T is a bounded operator from K0 to H0. Denote it by g(T ).

For a comodule π and a linear functional ρ, denote (id ⊗ ρ)π by πρ. Let ρ be a linear

functional on C(H). Then πHρ g(T ) = πHρ (I⊗εG)T = (I⊗εG)(πHρ ⊗id)T = (I⊗εG)(I⊗Lρ·p)T =

(I ⊗ ρ ◦ p)T . On the other hand, since T intertwines π̂G and ind π̂H , we have g(T )(πG|H)ρ =

g(T )(I ⊗ ρ)πG|H = g(T )(I ⊗ ρ)(I ⊗ p)πG = (I ⊗ εG)TπGρ·p = (I ⊗ εG)(I ⊗<Gρ·p)T = (I ⊗ ρ ◦ p)T .

Thus πHρ g(T ) = g(T )(πG|H)ρ for all continuous linear functionals ρ on C(H), which implies

g(T ) ∈ I(π̂G|H , π̂H). The map T 7→ g(T ) is the inverse of f . Therefore I(π̂G|H , π̂H) ∼=
I(π̂G, ind π̂H), which proves the theorem.

Corollary 1. For any unitary representation π̂G of G and π̂H of H, the spaces I(π̂G|H , π̂H)

and I(π̂G, ind π̂H) are isomorphic.

Corollary 2. Let H be a subgroup of G and K be a subgroup of H. Suppose π̂ is a unitary

representation of K. Then indGK π̂ and indGH(indHK π̂) are equivalent.

3.4 Action of SUq(2) on the sphere S2
q0 has been decomposed by Podles̀(see [5]). Here we give

an alternative way of doing it using the Frobenius reciprocity theorem.

Let us start with a few observations. Let u be the function z 7→ z, z ∈ S1, where S1 is

the unit circle in the complex plane. Then u is unitary, and generates the C∗-algebra C(S1)

of continuous functions on S1. Let α and β be the two elements that generate the algebra

C(SUq(2)) and obey the following relations:

α∗α+ β∗β = I = αα∗ + q2ββ∗,

αβ − qβα = 0 = αβ∗ − qβ∗α, β∗β = ββ∗

The map p : α 7→ u, β 7→ 0 extends to a C∗-homomorphism from C(SUq(2)) onto C(S1). It

is in fact a quantum group homomorphism. By 2.2, S1 is a subgroup of SUq(2).

10



For any n ∈ { 0, 1/2, 1, 3/2, . . . }, if we restrict the right regular comodule < of SUq(2) to

the subspace Hn of L2(SUq(2)) spanned by

{α∗iβ2n−i : i = 0, 1, . . . , 2n}, (3.1)

then we get an irreducible isometric comodule. Denote it by u(n). It is a well-known fact ([7])

that these constitute all the irreducible comodules of SUq(2). If we take the basis of Hn to be

(3.1) with proper normalization, the matrix entries of u(n) turn out to be

u
(n)
ij = (d(n)

i /d
(n)
j )1/2

(2n−j)∧i∑
r=(i−j)∨0

 i

r


q−2

 2n− i
r + j − i


q−2

(−1)rqr(2i−r+1)+(j−i)(2n−j)

× α∗i−rα2n−j−rβr+j−iβ∗r,

where

d
(n)
k =

k∑
r=0

 k

r


q−2

(−1)rqr(2k−r+1) 1− q2

1− q4n+2r−2k+2
;

 r

s


q−2

:=
(r)q−2(r − 1)q−2 . . . (1)q−2

(s)q−2(s− 1)q−2 . . . (1)q−2 (r − s)q−2(r − s− 1)q−2 . . . (1)q−2

;

(k)q−2 := 1 + q−2 + q−4 + . . .+ q−2k+2.

Since u(n)|S1
= (I ⊗ p)u(n), matrix entries of u(n)|S1

are given by

(u(n)|S1
)ij =

 u2(n−i) if i = j,

0 if i 6= j.
(3.2)

Therefore if n is an integer then the trivial representation occurs in u(n)|S1
with multiplicity 1,

and does not occur otherwise.

Consider now the action of SUq(2) on S2
q0. Recall ([5]) that C(S2

q0) = { a ∈ C(SUq(2)) :

(p ⊗ id)µ(a) = I ⊗ a } and the action is the restriction of µ to C(S2
q0). From the above

description, C(S2
q0) can easily be shown to be equal to {a ∈ C(S2

q0) : Lρ·p(a) = ρ(I)a for all

continuous linear functionals ρ on C(S1) }. Therefore when we take the closure of C(S2
q0)

with respect to the invariant inner product that it carries and extend the action there as an

isometry, what we get is the restriction of the right regular comodule < of SUq(2) to the subspace

H = {u ∈ L2(SUq(2)) : Lρ·p(u) = ρ(I)u for all continuous linear functionals ρ on C(S1)},
which is nothing but the representation π̂ of SUq(2) induced by the trivial representation of S1

on C/ . Hence the multiplicity of u(n) in π̂ is same as that of the trivial representation of S1 in
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u(n)|S1
which is, from (3.2), 1 if n is an integer and 0 if n is not. Thus the action splits into a

direct sum of all the integer-spin representations.
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