A Counterexample on Idempotent States
on a Compact Quantum Group

By
ARUPKUMAR PAL

Indian Statistical Institute, Delhi Centre
7, SJSS Marg, New Delhi 110 016
e-mail: arup Qisid.ernet.in

Abstract. A simple example is given to illustrate that an idempotent state may not be the haar

state of any subgroup in the case of compact quantum groups.

Suppose G is a locally compact group and v is a probability measure on G. If v is idem-
potent, i.e. if it satisfies the equation v *x v = v, then it is a well-known fact that the support
of v is a compact subgroup H of G and v is the haar measure of H. We present here a simple
counterexample to show that the same thing cannot be said for measures on compact quantum

groups.
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where 0 denotes the Kronecker delta. Then {ej, ..., eg} form a basis for A. Define a map

pw:A— A® A as follows:
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It is a matter of straightforward verification that p is a unital *-homomorphism and G = (A, )

is a compact quantum group.



2. Let p be the functional }_ a;e; — ag. Then p1, po, ..., pg, along with ¢ = %(p5 + pg + p7+
ps) and Y9 = %(,05 + pe +ip7 —ipg) are all states, and they span the space of all functionals on
A. Therefore any state p will be of the form
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where ¢; > 0 for all 4, and 3%, ¢; = 1. Evaluating the two functionals p * p and p at the

basis elements and equating them, we get a system of equations which lead to the following

possibilities:

a) p = p1,

b) p 2(,01 + p2),

¢) p=3(p1+ p3),

d) p = 5(p1+ pa),

e) p=1(p1+ p2+ p3+ pa),

£) p=§(p1+p2+ p3+ pa) + 5(p5 + ps),
g) p=%(p1+pa) + %PE),

h) p = 1(p1+ pa) + 5ps.

These, then, are all the idempotent states on A.

3. We shall now show that the state p = %(pl +p4)+ % pe is not the haar state of any subgroup
of G.

Suppose, if possible, H = (C(H), ug) is a subgroup of G and p is the haar state of H. This
means that there is a unital *-homomorphism ¢ from A onto C(H) obeying (¢ ® ¢)u = pge,
and p = h¢, where h is the haar state of C(H). Let T = {a € A : p(a*a) = 0}. Using the
modular properties of the haar state (see theorem 5.6 of [1]), we find that Z is a closed two-sided

ideal. Now, observe that e; € Z, but e} ¢ Z, which contradicts the fact that 7 is an ideal.
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