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One of the nicest features of quantum groups is its connections with various other

apparently diverse areas of mathematics. The theory of special functions is one such.

They are related to quantum groups exactly as their classical counterparts are to the

classical Lie groups. q-special functions appear as matrix entries of representations of

quantum groups and seem to play an important role in controlling the symmetry of

noncommutative spaces. This fact has been exploited by several people to give new

interpretations to q-functions, to prove new identities involving them, and to give new

and, in a sense more natural, proofs of identities already proven (see, for example, [2], [3],

[5], [6], [8]). In this article, we will prove a few identities that can be called q-analogues

of Graf’s identities involving classical Bessel functions. Some of these identities come in

handy while doing computations involving other quantum groups, like the double group

built over the quantum E(2) group.

We start with a very brief description of the quantum E(2) group in the first section.

In the next section, we introduce the q-Bessel function, which is, up to a slight change

in scale, essentially the q-analogue of Bessel function introduced by Exton ([1]). In

section 3, some calculations involving the comultiplication are presented that we need

subsequently. The (right) regular representation is introduced and its relation with the

right convolution operator is given in section 4. Using this and the computations in the

third section, we prove a whole class of identities in the last section.

We retain the notations used in [7].
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1 Preliminaries

Let us first describe the Hopf-algebra of coordinate functions on Eq(2). Let A be the

unital ∗-algebra generated by two elements v and n satisfying the following relations:

v∗v = vv∗ = I, n∗n = nn∗, vnv∗ = qn. (1.1)

The comultiplication map µ, the counit ε and the antipode κ are given on the generating

elements as follows:

µ(v) = v ⊗ v, µ(n) = v ⊗ n + n⊗ v∗.

ε(v) = 1, ε(n) = 0,

κ(v) = v∗, κ(v∗) = v, κ(n) = −q−1n, κ(n∗) = −qn∗.

To describe the group at the C∗-algebra level, one also assumes that

σ(n) ⊆ Cq := {qkz : z ∈ S1, k ∈ Z} ∪ {0}. (1.2)

It is easy to see that the following list gives all the irreducible representations of the pair

(v,n) once we assume (1.2):

πz :

{
v 7→ `

n 7→ zqN
on L2(Z),

εz :

{
v 7→ z

n 7→ 0
on C,


z ∈ S1. (1.3)

Take v = ` ⊗ I, n = qN ⊗ `∗ on L2(Z) ⊗ L2(Z), where ` : ek 7→ ek−1 and N : ek 7→ kek

are operators on L2(Z). The C∗-algebra C0(Eq(2)) of ‘continuous functions vanishing at

infinity’ on Eq(2) is the norm closure of all finite sums of the form
∑

k vkfk(n), where

fk ∈ C0(Cq). It is easy to check that v and n are affiliated to C0(Eq(2)), and moreover,

it has the following ‘universality property’.

Theorem 1.1 ([10]) If π is a representation of C0(Eq(2)) on some Hilbert space K,

then π(v) and π(n) satisfy the conditions (1.1) and (1.2), with π(v) replacing v and

π(n) replacing n. Conversely, if v and n are two closed operators on a Hilbert space K
and satisfy (1.1) and (1.2), then there is a unique representation π of C0(Eq(2)) such

that π(v) = v and π(n) = n.

Moreover, in the above situation, if A is a C∗-subalgebra of B(K), then v and n are

affiliated to A if and only if π ∈ mor (C0(Eq(2)),A).
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2 q-Bessel Functions

Let Fq be the following function on Cq introduced by Woronowicz in [10]:

Fq(z) =

{ ∏∞
r=0

1+q2rz
1+q2rz

if z ∈ Cq − {−1,−q−2,−q−4, . . .},
−1 if z ∈ {−1,−q−2,−q−4, . . .}.

(2.1)

This defines a bounded continuous function on Cq. For a positive real t and for q 6= 0,

let us denote by (t)q the number (1− qt)/(1− q). Let n be a nonnegative integer. Define

the q-factorial (n)q! by:

(n)q! =

{ ∏n
k=1(k)q if n ≥ 1,

1 if n = 0.

One can now define the q-exponential function as follows:

expq(x) =
∞∑
k=0

xk

(k)q!
.

This function can be shown to have the following infinite product expansion for q > 1:

expq(x) =
∞∏
k=1

(
1− q−k(1− q)x

)
,

from which it follows that

Fq(z) =
expq−2( z

1−q2 )

expq−2( z
1−q2 )

. (2.2)

Let us next define a family of functions Jq(·, ·) on Cq × Z as follows:

Jq(z, k) =
∫
S1

Fq(zu)u−k du, z ∈ Cq, k ∈ Z. (2.3)

We call these q-analogs of Bessel functions. From equation (2.2), we find that for real

values of z, and for u ∈ S1,

Fq(zu) =
expq−2

(
z

1−q (1
2)q2u−1

)
expq−2

(
z

1−q (1
2)q2u

) ,

which is an analog of the function exp(1
2z(u

−1 − u)). Recall that the classical Bessel

function J(z, k) is the coefficient of tk in the expansion exp(1
2z(t− t

−1)).

Let us describe here another similarity with the classical Bessel functions. Let ∆q

denote the q-differential operator given by

∆qf(x) =
f(x)− f(qx)

(1− q)x
.
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Define a function Bq(x, n) as follows:

Bq(x, n) = Jq(qn/2(1− q)x, n), |x| < q−n/2(1− q)−1.

One can see that this function Bq(x, n) obeys the following ‘q-differential equation’

qx2∆2
qf(x) + x∆qf(x) +

(
x2 − (n)2

qq
−n) f(qx) = 0,

which is a q-analog of the classical Bessel differential equation.

Remark. There are several q-analogs of Bessel functions in the literature, the earliest

one dating back to Jackson. The q-Bessel functions defined here are very closely related to

the ones studied by Exton (Bq(x, n) is, upto a constant factor, equal to Exton’s q-Bessel

function J(q;n,x); see p. 181, [1]), and seem to be the most natural. We have already

cited two ‘reasons’ above. See chapter 5, [8] for another quantum group-theoretic reason.

Let us list some properties of these functions.

Proposition 2.1 The functions Jq(·, ·) obey the following identities:

1. Jq(z, k) = Jq(z, k). In particular, Jq(z, k) is real whenever z is real.

2. Jq(z, k) = (z/|z|)kJq(|z|, k). More generally, Jq(z, k) = wkJq(zw, k) for any w ∈ S1.

3. Jq(−z, k) = (−1)kJq(z, k).

4.
∑

k∈Z Jq(z, k)Jq(z, k + j) = δj0.

5. Jq(q−n, k) = Jq(qn+2, n+ k + 1).

Proof : Proofs of 1, 2 and 3 are immediate. To prove 4, observe that for u ∈ S1, z ∈ Cq,
Fq(zu) =

∑
k Jq(z, k)uk, and u−jFq(zu) =

∑
k Jq(z, k + j)uk. Also observe that both,

as functions of u, are in L2(S1); and |Fq(zu)| = 1. Now compute their inner product

in L2(S1). To prove 5, use (2.3) and the equality: Fq(q−nz) = z−n−1Fq(qn+2z) for all

z ∈ S1. 2

3 The Comultiplication Map

Let {ei} be the canonical orthonormal basis for L2(Z). Denote ei⊗ ej by eij , ei⊗ ej ⊗ ek
by eijk and so on.

Lemma 3.1 Let V be the unitary operator on L2(Z)⊗4 given on the basis elements by

ei,j,k,l 7→ ei,j,i+j+k,l. Let W = Fq(n−1v ⊗ vn)V . Then µ(a) = W (a ⊗ I)W ∗ for all

a ∈ C0(Eq(2)).
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Proof : For a ∈ C0(Eq(2)), write ν(a) = W (a⊗ I)W ∗. Then both µ and ν are represen-

tations of C0(Eq(2)) acting on the same space L2(Z)⊗4. Using theorem 2.1 of [11], it is

easy to see that µ(v) = ν(v) and µ(n) = ν(n). Hence by theorem 1.1, µ = ν. 2

Define an operator U on L2(Z)⊗4 by Uei,j,k,l = ek−i,j,k,l. It is easy to see that U is

unitary, and n−1v ⊗ vn = U∗(qN+1 ⊗ ` ⊗ ` ⊗ `∗)U . Combining this observation with

lemma 3.1, we find that for any a ∈ C0(Eq(2)),

µ(a) = U∗Fq(qN+1 ⊗ `⊗ `⊗ `∗)UV (a⊗ I)V ∗U∗Fq(qN+1 ⊗ `∗ ⊗ `∗ ⊗ `)U.

Hence

〈eijkl, µ(a)erstu〉 =

〈V ∗U∗Fq(qN+1 ⊗ `∗ ⊗ `∗ ⊗ `)Uei,j,k,l, (a⊗ I)V ∗U∗Fq(qN+1 ⊗ `∗ ⊗ `∗ ⊗ `)Uer,s,t,u〉.

Now Fq(qN+1 ⊗ `∗ ⊗ `∗ ⊗ `)Uei,j,k,l can very easily be shown to have the following ex-

pression:

Fq(qN+1 ⊗ `∗ ⊗ `∗ ⊗ `)Uei,j,k,l

=
∑
n

Jq(qk−i+1, n− j)ek−i,n,k−j+n,l+j−n.

Therefore

V ∗U∗Fq(qN+1 ⊗ `∗ ⊗ `∗ ⊗ `)Uei,j,k,l

=
∑
n

Jq(qk−i+1, n− j)V ∗ei−j+n,n,k−j−n,l+j−n

=
∑
n

Jq(qk−i+1, n− j)ei−j+n,n,k−i−n,l+j−n.

From the above equation, we now get

〈eijkl, µ(a)erstu〉

=


∑

m Jq(q
k−i+1,m)Jq(qt−r+1,m+ u− l)〈ei+m,j+m, aer+u−l+m,s+u−l+m〉

if t− r − s− u = k − i− j − l,
0 otherwise.

(3.1)
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4 The Regular Representation

For a closed operator T , let VT denote the partial isometry appearing in the polar de-

composition of T . Let (b, T ) be a pair of closed operators acting on some Hilbert space

H such that the following conditions hold:

i. T is self-adjoint,

ii. b is normal,

iii. T and |b| commute strongly,

iv. Vb
∗TVb = T + 2I on (kerb)⊥,

v. σ(T, |b|) ⊆ Σq, where Σq = {(r, qs+r/2) : r, s ∈ Z},
σ(T, |b|) being the joint spectrum of T and |b|.


(4.1)

It has been proved in [10] that if (b, T ) is such a pair, then Fq(qT/2b ⊗ vn)(I ⊗ v)T⊗I

is a unitary representation of Eq(2) acting on H, and conversely, given any unitary

representation w of Eq(2) acting on a Hilbert space H, there is a pair (b, T ) of operators

on H satisfying the requirements above such that w = Fq(qT/2b⊗ vn)(I ⊗ v)T⊗I .

We call a pair (b, T ) satisfying (4.1) irreducible if the Hilbert space H on which they

act does not have any nonzero proper closed subspace that is kept invariant by b, b∗,and

T . Now, thanks to the following proposition, finding irreducible representations boils

down to finding irreducible copies of the pair (b, T ).

Proposition 4.1 ([7]) Let w be a unitary representation of Eq(2). Then w is irreducible

if and only if the associated pair (b, T ) is irreducible.

Using this, it has been shown in [7] that the infinite dimensional irreducible unitaries are

indexed by 1
2Z, and the matrix entries are given by

w(m)
rs =

{
vr+sJq(qm−s+1n, r − s) if m ∈ Z,
vr+s+1Jq(qm−s+

1
2 n, r − s) if m ∈ Z+ 1

2 .
(4.2)

The following proposition gives the orthogonality relations between the matrix entries.

Proposition 4.2 ([7]) The matrix entries w(m)
rs satisfy the following :

i. w
(m)
rs ∈ L2(h) ∀ r, s ∈ Z,∀m ∈ 1

2Z.

ii. (orthogonality relations) 〈w(m)
rs , w

(m′)
r′s′ 〉 = δmm′δrr′δss′q

2(r−[m]).

iii. {q[m]−rw
(m)
rs : r, s ∈ Z,m ∈ 1

2Z} form an orthonormal basis for L2(h).
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Denote q[m]−rw
(m)
rs by ξ(m)

rs . Define two operators b̃ and T̃ on L2(h) as follows:

b̃ξ
(m)
rs = qmξ

(m)
r,s+1,

T̃ ξ
(m)
rs =

{
2sξ(m)

rs if m ∈ Z,

(2s+ 1)ξ(m)
rs if m ∈ Z+ 1

2 .

 (4.3)

b̃ and T̃ are then closed operators on L2(h) and they satisfy (4.1). Therefore w(b̃, T̃ ) :=

Fq(qT̃ /2b̃⊗vn)(I ⊗v)T̃⊗I is a unitary representation of Eq(2) acting on L2(h). We shall

denote this representation by <. Notice that the restriction of < to the closed span of

{ξ(m)
rs : s ∈ Z} is equivalent to w(m).

Lemma 4.3 Let ρ be a bounded linear functional on C0(Eq(2)). Then the map a 7→
(id ⊗ ρ)µ(a) defined on C0(Eq(2)) ∩ L2(h) extends uniquely to a bounded operator from

L2(h) into itself.

Proof : Let us first prove the following inequality:

ρ1(((id⊗ ρ)c)∗(id⊗ ρ)c) ≤ (ρ1 ⊗ ρ2)(c∗c), c ∈ C0(Eq(2))⊗ C0(Eq(2)). (4.4)

Take c =
∑
ai ⊗ bi ∈ C0(Eq(2))⊗alg C0(Eq(2)). The matrix ((ρ1(ai∗aj) )) is positive.

Hence for any real t,
∑

(bi − tρ2(bi)I)∗ρ1(ai∗aj)(bj − tρ2(bj)I) ≥ 0. Applying ρ2, we get∑
ρ1(ai∗aj)ρ2(bi∗bj) + t2

∑
ρ2(bi)ρ2(bj)ρ1(ai∗aj)− 2t

∑
ρ2(bi)ρ2(bj)ρ1(ai∗aj) ≥ 0

for all real t. Therefore
∑
ρ2(bi)ρ2(bj)ρ1(ai∗aj) ≤

∑
ρ1(ai∗aj)ρ2(bi∗bj) which means

(4.4) holds for c ∈ C0(Eq(2))⊗alg C0(Eq(2)). By continuity, the same thing holds for all

c ∈ C0(Eq(2))⊗ C0(Eq(2)).

Putting c = µ(a) in (4.4), we get the following:

ρ1((a ∗ ρ2)∗(a ∗ ρ2)) ≤ ρ1 ∗ ρ2(a∗a) ∀a ∈ C0(Eq(2)).

Now take ρ1 = hpr, ρ2 = ρ, where pr is as in [7]. This gives

hpr((a ∗ ρ)∗(a ∗ ρ)) ≤ hpr ∗ ρ(a∗a) = hpr(a ∗ ρ).

Taking limit as r goes to infinity and using the invariance of the haar weight, we get

‖a ∗ ρ‖22 ≤ ‖a‖22, which proves the lemma. 2

Let us denote the operator in the forgoing lemma by Rρ. Observe that < is a unitary

element of M(B0(L2(h))⊗C0(Eq(2))). Any continuous functional on C0(Eq(2)) extends
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uniquely to a strictly continuous functional on M(C0(Eq(2))). Denoting by ρ such a

linear functional, proposition 8.3 of [4] tells us that the expression <ρ := (id⊗ρ)< makes

sense, and is a bounded operator on L2(h). We will now prove that this <ρ is in fact the

right convolution operator Rρ described in the previous lemma.

It follows from 1.3 that any continuous functional ρ on C0(Eq(2)) is of the form

ρ(a) = 〈u1, πU0(a)u2〉+ 〈v1, εV0(a)v2〉, (4.5)

where U0 and V0 are two unitary operators acting on the spaces H and K respectively,

and u1, u2 ∈ L2(Z) ⊗ H, v1, v2 ∈ K. Let us first show that if ρ = 〈v1, εV0(·)v2〉, then

(id⊗ ρ)< is same as the operator Rρ. In this case, (id⊗ εV0)< = (I ⊗ V0)T̃⊗I . Therefore

(id⊗ ρ)<ξ(m)
rs = (I ⊗ 〈v1|)((id⊗ εV0)<)(ξ(m)

rs ⊗ v2)

=

{
〈v1, V

2s
0 v2〉ξ(m)

rs if m ∈ Z,

〈v1, V
2s+1

0 v2〉ξ(m)
rs if m ∈ Z+ 1

2 .

On the other hand, since (id⊗ εV0)µ(v) = v⊗V0, and (id⊗ εV0)µ(n) = n⊗V ∗0 , we have,

for m ∈ Z,

Rρ(ξ(m)
rs ) = qm−r(id⊗ ρ)µ(w(m)

rs )

= qm−r(I ⊗ 〈v1|)
(

(id⊗ εV0)µ
(
vr+sJq(qm−s+1n, r − s)

))
(· ⊗ |v2〉)

= qm−r(I ⊗ 〈v1|)(v ⊗ V0)r+sJq
(
qm−s+1(n⊗ V ∗0 ), r − s

)
(· ⊗ |v2〉)

= qm−rvr+sJq(qm−s+1n, r − s)〈v1, V
2s

0 v2〉

= 〈v1, V
2s

0 v2〉ξ(m)
rs .

Similarly, for m ∈ Z+ 1
2 , Rρ(ξ

(m)
rs ) = 〈v1, V

2s+1
0 v2〉ξ(m)

rs . Thus <ρ = Rρ in this case.

Let {fi} be an orthonormal basis for the space H on which U0 acts. Denote, as usual,

ei ⊗ fj by eij on L2(Z)⊗H. Take ρ to be the functional

ρ(a) = 〈ei′j′ , πU0(a)eij〉.

Now, (id⊗πU0)< = Fq(qT̃ /2b̃⊗ `qN ⊗U0)(I⊗ `⊗U0)T̃⊗I⊗I . Therefore, denoting π(m)(T)

and π(m)(b) by T(m) and b(m) respectively, we have

〈ξ(m′)
r′s′ ⊗ ei′j′ , ((id⊗ πU0)<)ξ(m)

rs ⊗ eij〉

= δmm′δrr′
〈
es′i′j′ , Fq(q

1
2
T(m)

b(m) ⊗ `qN ⊗ U0)(I ⊗ `⊗ U0)T(m)⊗I⊗Iesij

〉
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=


δmm′δrr′δs,i−i′−s′Jq(qm+1+i−s, i− i′ − 2s)〈ej′ , U i−i

′−2s
0 ej〉

if m ∈ Z,

δmm′δrr′δs,i−i′−s′−1Jq(qm+ 1
2

+i−s, i− i′ − 2s− 1)〈ej′ , U i−i
′−2s−1

0 ej〉
if m ∈ Z+ 1

2 .

That is,

<ρ(ξ(m)
rs ) =


Jq(qm+1+i−s, i− i′ − 2s)〈ej′ , U i−i

′−2s
0 ej〉ξ(m)

r,i−i′−s

if m ∈ Z,

Jq(qm+ 1
2

+i−s, i− i′ − 2s− 1)〈ej′ , U i−i
′−2s−1

0 ej〉ξ(m)
r,i−i′−s−1

if m ∈ Z+ 1
2 .

On the other hand, observe that (id ⊗ µ)(w(m)) = φ12(w(m))φ13(w(m)), where φ12 and

φ13 are the morphisms ∑
ai ⊗ bi 7→

∑
ai ⊗ bi ⊗ I,∑

ai ⊗ bi 7→
∑

ai ⊗ I ⊗ bi,

from M(B0(L2(Z)) ⊗ C0(Eq(2))) to M(B0(L2(Z)) ⊗ C0(Eq(2)) ⊗ C0(Eq(2))). Hence, if

m ∈ Z, then

〈ek′l′ , ξ(m)
rs ∗ ρ ekl〉

= qm−r
〈
ek′l′i′j′ , (id⊗ πU0)µ(w(m)

rs )eklij
〉

= qm−r
〈
erk′l′i′j′ , (id⊗ πU0)(id⊗ µ)(w(m))esklij

〉
= qm−r

〈
erk′l′i′j′ , (id⊗ id⊗ πU0)φ12(w(m))φ13(w(m))esklij

〉
= qm−r

∑
p

〈erk′l′ , w(m)epkl〉
〈
epi′j′ , (id⊗ πU0)(w(m))esij

〉
= qm−r

∑
p

〈ek′l′ , w(m)
rp ekl〉

〈
ei′j′ , (id⊗ πU0)(w(m)

ps )eij
〉

=
∑
p

〈ek′l′ , ξ(m)
rp ekl〉

〈
ei′j′ , (`p+s ⊗ I)Jq

(
qm−s+1(qN ⊗ U0), p− s

)
eij

〉
=

∑
p

〈ek′l′ , ξ(m)
rp ekl〉δp,i−i′−s〈ej′ , Up−s0 ej〉Jq(qm+1+i−s, p− s)

= 〈ek′l′ , ξ
(m)
r,i−i′−sekl〉〈ej′ , U

i−i′−2s
0 ej〉Jq(qm+1+i−s, i− i′ − 2s).

Similarly, for m ∈ Z+ 1
2 , one has

〈ek′l′ , ξ(m)
rs ∗ ρ ekl〉 = 〈ek′l′ , ξ

(m)
r,i−i′−s−1ekl〉〈ej′ , U

i−i′−2s−1
0 ej〉Jq(qm+ 1

2
+i−s, i− i′ − 2s− 1).
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Therefore <ρ = Rρ. Extending by linearity, the same conclusion holds for any ρ of the

form 〈u1, πU0(·)u2〉, where u1 and u2 are in the linear span of the eij ’s. Combining this

with our earlier observation, we find that <ρ = Rρ for any ρ of the form (4.5), with u1

and u2 coming from a dense subspace of L2(Z)⊗H. The set D of all such functionals is

dense in norm topology in the space of all continuous functionals on C0(Eq(2)). Hence

for any continuous linear functional ρ, we have <ρ = Rρ, and, in particular,

<ρ(a) = a ∗ ρ ∀ a ∈ C0(Eq(2)) ∩ L2(h).

We call < the right regular representation. From (4.3) it is immediate that in the

direct sum decomposition of <, all the infinite dimensional irreducibles appear, and each

one appears countably infinite number of times.

5 Identities Involving q-Bessel Functions

We shall now use the computations done in section 3 and the observations made in the

previous section to generate a class of identities involving the q-Bessel functions.

Let us take ρ to be the functional a 7→ 〈ei+i′,j+j′ , a eij〉 on C0(Eq(2)). Then

<ρ(vrJq(qsn, t)) = <ρ
(
w

(s−1+ r−t
2

)

[ r+t
2

],[ r−t
2

]

)
= q[ r+t

2
]−s+1− r−t

2 <ρ
(
ξ

(s−1+ r−t
2

)

[ r+t
2

],[ r−t
2

]

)
= q[ r+t

2
]−s+1− r−t

2

∑
p

〈
ep, w

(s−1+ r−t
2

)
ρ e[ r−t

2
]

〉
ξ

(s−1+ r−t
2

)

[ r+t
2

],p

=
∑
p

〈
ep,i+i′,j+j′ , w

(s−1+ r−t
2

)e[ r−t
2

],i,j

〉
w

(s−1+ r−t
2

)

[ r+t
2

],p
.

After simplification, this yields

<ρ(vrJq(qsn, t)) = δt−r,i′+j′Jq(qi+s, j′)vt−i
′
Jq(qs−j

′
n, t− j′). (5.1)

Hence for any u ∈ L2(h),

<ρu = <ρ
(∑
r,s,t

q2(s−t−1) 〈vrJq(qsn, t), u〉vrJq(qsn, t)
)

=
∑
r,s,t

t−r=i′+j′

q2(s−t−1) 〈vrJq(qsn, t), u〉 Jq(qi+s, j′)vt−i
′
Jq(qs−j

′
n, t− j′)

=
∑
s,t

q2(s−t−1)
〈
vt−i

′−j′Jq(qsn, t), u
〉
Jq(qi+s, j′)vt−i

′
Jq(qs−j

′
n, t− j′),
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so that

〈ek′l′ ,<ρu ekl〉

=
∑
s,t

q2(s−t−1)Jq(qi+s, j′)Jq(qs−j
′+k, t− j′)

〈
vt−i

′−j′Jq(qsn, t), u
〉
δk′,k−t+i′δl′,l+t−j′ .

(5.2)

Let us now compute the quantity 〈ek′l′ ,<ρu ekl〉 in another way, using equation (3.1).

Take a u in L2(h) ∩ C0(Eq(2)). Then

〈ek′l′ ,<ρu ekl〉 = 〈ek′l′ , u ∗ ρ ekl〉

= 〈ek′,l′,i+i′,j+j′ , µ(u)ek,l,i,j〉

=
∑
m

Jq(qi+i
′−k′+1,m)Jq(qi−k+1,m− j′)

〈ek′+m,l′+m, u ek−j′+m,l−j′+m〉δi+i′−j−j′−k′−l′,i−j−k−l.

(5.3)

Take k′ = k + c and l′ = l − c+ i′ − j′. Then from (5.2) and (5.3), we get∑
m

Jq(qi−k+1+i′−c,m)Jq(qi−k+1,m− j′)〈ek+c+m,l−c+i′−j′+m, u ek−j′+m,l−j′+m〉

=
∑
s

q2(s−i′+c−1)Jq(qs+i, j′)Jq(qs−j
′+k, i′ − j′ − c)

〈
v−j

′−cJq(qsn, i′ − c), u
〉
.

(5.4)

Taking various choices for the element u and the integers i, j, i′, j′, k, l and c, one can

generate a whole lot of identities involving the q-Bessel functions. As an illustration, we

prove a few identities below.

Proposition 5.1 For any integers i, j, r and s, we have∑
m

Jq(qi,m− r)Jq(qj ,m− s)Jq(qi−m, j −m− 1)

= Jq(qr−1, r − s− 2)Jq(qi−s, j − r + 1). (5.5)

Proof : Take u = v−j
′−cJq(qsn, i′− c) in equation (5.4), use part 5 of proposition 2.1 and

make some change of variables to get the required identity. 2

If we take i = j = r = 1 and s = −1 in (5.5) and use part 5 of proposition 2.1, we

get the following. ∑
m

Jq(q,m− 1)Jq(q,m+ 1)Jq(qm+1, 0) = Jq(1, 0)2. (5.6)
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Proposition 5.2 For any integers a, b, i, j and k, we have∑
s

q2(s−a−1+j+k)Jq(qs+i, b)Jq(qs+j , a− b)Jq(qs+j+k, a)

= Jq(qi−j+a−b+1, k)Jq(qi−j−b+1, k − b). (5.7)

Proof : Take u = v−j
′−cg(n), where g(qdz) = I{k−j′+j}(d)zi

′−c, d ∈ Z, z ∈ S1. Now use

(5.4) and make some change of variables. 2

The following identities can all be derived from (5.7) by taking appropriate choices

of the integers a, b, i, j and k.∑
s

q2(s−a−1)Jq(qs, a)Jq(qs+i, b)Jq(qs+j , a− b) = Jq(qi−j+a−b+1,−j)Jq(qi−j−b+1,−j − b),∑
s

q2sJq(qs, 0)Jq(qs+i, 0)Jq(qs+j , 0) = q2Jq(qi−j+1,−j)2,∑
s

q2(s+j+k−1)Jq(qs+i, 0)Jq(qs+j , 0)Jq(qs+j+k, 0) = Jq(qi−j+1, k)2,∑
s

q2sJq(qs+i, 0)Jq(qs+1, 0)2 = Jq(qi, 0)2,∑
s

q2sJq(qs+1, 0)3 = Jq(q, 0)2.

Remark: q-analogues of Graf’s identities were first proved by Koelink in [2] using quan-

tum group theoretic, but more algebraic arguments. Later, he and Swarttouw gave an

analytical proof ([3]), but this time avoiding the use of quantum groups. The proof

presented here uses the quantum E(2) group, which is the natural setting for q-Bessel

functions, and is also analytic in nature.
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article.
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