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Abstract

We study the consequences of positive correlation of beliefs in the design of voting
rules in a two-player model. We propose two kinds of positive correlation, one based
on the Kemeny distance between linear orders called K-correlation and another on
the likelihood of agreement of the k best alternatives (for any k) of two orders called
TS correlation. We show that K-correlation implies TS-correlation. We characterize
the set of Ordinally Bayesian Incentive-Compatible (OBIC) (d’Aspremont and Peleg
(1988)) voting rules with TS-correlated beliefs and additionally satisfying robustness
with respect to local perturbations. We provide an example of a voting rule that satis-
fies OBIC with respect to all TS and K-correlated beliefs. However global robustness
of OBIC with respect to either K or TS-correlation together with efficiency leads to
dictatorship (provided that there are at least three alternatives). The generally pos-
itive results contrast sharply with the negative results obtained for the independent
case by Majumdar and Sen (2004) and parallel similar results in the auction design
model (Crémer and Mclean (1988)).
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1 Introduction

A widely-held belief is that difficulties associated with satisfactory group decision-making

are significantly ameliorated if differences in the objectives of the members of the group
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are not “large”. In the limit, if all agents have the same objectives, all conflicts of interest

disappear and we may expect a trivial resolution of the problem. In mechanism design

theory, agents have private information about their objectives or preferences (referred to

as ”types”); the theory seeks to analyze collective (or social) goals (referred to as social

choice functions or SCFs) which are attainable subject to the constraint that all agents

have the incentive to reveal their private information truthfully (referred to as incentive-

compatibility). Here too, if the private information of all agents is perfectly correlated,

the issue of incentives can be typically resolved 1. More interestingly, an extensive literature

initiated by Crémer and Mclean (1988) has pointed out that in environments where monetary

compensation is feasible and preferences are quasi-linear (i.e. preferences over money are not

dependent on type), even a little correlation in the beliefs over types leads to a dramatic

enlargement of the class of incentive-compatible SCFs.

In this paper we explore the issue of correlated beliefs in the design of voting rules. In

this environment, voters have opinions or preferences on the ranking of various candidates

assumed to be finite in number. These preferences (types, in this model) expressed as linear

orders over the set of candidates, are private information. A SCF or voting rule is a mapping

which associates a candidate with a collection of types, one for each voter. The goal of

the theory is to identify SCFs which induce voters to reveal their types truthfully for every

conceivable realization of these types.

We consider the plausible case where beliefs over types are positively correlated. An

example of the sort of situation we have in mind is the process of awarding the highly

prestigious Chess Oscar every year by the Russian chess magazine 64. A group of chess

journalists and experts are asked to provide their ranking of the best chess players active

during that year and these opinions are aggregated to select a recipient of the Oscar. Since

the opinions of the voters are based on the performances of chess players in tournaments and

match play, they are highly likely to be positively correlated.

Our goal in this paper is to explore the consequences of the assumption of positive

correlation on mechanism design in this context. In doing so, we have to confront the issue

of how to interpret positive correlation in distributions over linear orders. In order to avoid

further complications, we consider a model with only two voters. We propose two definitions

of positive correlation. The first is based on the well-known notion of the Kemeny distance

Kemeny and Snell (1962), Kendall (1970). A voter’s beliefs are positively correlated in this

sense if she assigns higher probability to the other voter’s preference ordering being closer

to her own in the Kemeny metric. The other notion of positive correlation is based on the

likelihood of the other voter’s top k alternatives (for any k) agreeing with one’s own opinion

of the top k alternatives. In the chess Oscar example, assume that the three players in serious

1The mechanism design problem is still non-trivial because the mechanism designer may be ignorant of
the common type realized. However if there are at least three agents, the problem of inducing all agents to
reveal their private information truthfully can be easily achieved. See Maskin (1999).
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contention are Anand (A), Carlsen (C) and Ivanchuk (I). Assume that a voter’s opinion is

A followed by C followed by I. Then she believes that it is more likely that the other voter’s

best alternative is A rather than either C or I. In addition she believes that it is more likely

that the set of the other voter’s top two players is {A,C} rather than either {A, I} or {C, I}.
We call these two notions of positive correlation, K (or Kemeny) correlation and “top-set”

or TS correlation and show that a belief that is K correlated is also TS-correlated.

The equilibrium notion that we use is that of Ordinal Bayesian Incentive-Compatibility

(OBIC) introduced in d’Aspremont and Peleg (1988). This requires the probability distri-

bution over outcomes obtained by truth-telling to first-order stochastically dominate the

distribution from mis-reporting for every voter type. These distributions are obtained from

a voter’s beliefs about the type of the other voter and the assumption that the other voter

is telling the truth. The condition is equivalent to requiring that truth-telling be optimal in

terms of expected utility for all possible utility functions which represent the voter’s type.

In addition to OBIC we consider two kinds of robustness conditions of the mechanism

with respect to beliefs. The first is local robustness which requires the mechanism to re-

main incentive-compatible if voter beliefs are perturbed slightly. Importantly, when beliefs

are locally perturbed they must remain within the appropriate class of positively correlated

beliefs. This leads to two notions of local robustness depending on the definition of positive

correlation used: we call these K-local robustness or K-LOBIC and TS-local robustness or

TS-LOBIC. The second notion of robustness considered is global robustness where the mech-

anism remains incentive-compatible with respect to all beliefs that are positively correlated.

Once again, we have two kinds of global robustness depending on the definition of positive

correlation used and we call these K global robustness or K-ROBIC and TS global robust-

ness or TS-ROBIC. The relationship between K correlation and TS-correlation leads to

obvious relationships between K-LOBIC and TS-LOBIC mechanisms or SCFs and between

K-ROBIC and TS-ROBIC SCFs. The motivation of imposing robustness requirements on

beliefs is the well-known Wilson doctrine (Wilson, 1987). Robust mechanisms have the at-

tractive feature that they continue to implement the objectives of the mechanism designer

even if the designer or the voters make errors in their beliefs.

Our results are as follows. We characterize the class of TS-LOBIC SCFs subject to

the weak requirement of unanimity. More precisely, we provide a necessary and sufficient

condition that a SCF needs to satisfy in order that there exist some neighborhood of TS-

correlated beliefs such that the SCF is OBIC with respect to all beliefs in the neighborhood.

It is clear that if truth-telling for a particular type is weakly dominated by a mis-report for a

SCF, then the SCF cannot be locally robust incentive compatible with respect to any class of

beliefs. We show that a minor modification of this condition to take into account the ordinal

nature of OBIC, is also sufficient if TS-correlation is considered. We give an example to

show that this condition is not sufficient for K-LOBIC. We also provide an example of a non-

dictatorial SCF satisfying unanimity which is TS-ROBIC (and hence K-ROBIC). In other
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words, robustness with respect to all positively correlated beliefs on the complete domain

of preferences, does not lead to truth-telling being a weakly dominant strategy. However if

we additional impose the requirement of efficiency, the K-ROBIC (and hence TS-ROBIC)

requirement precipitates dictatorship provided that there are at least three alternatives.

Our results contrast sharply with the negative results obtained in Majumdar and Sen

(2004) for the case of independent beliefs. In this case, there is a generic set of beliefs for each

voter such that OBIC with respect to any belief in this set is equivalent to dictatorship where

truth-telling is of course, a weakly dominant strategy. There are beliefs, such as the uniform

prior with respect to which a wide class of SCFs are OBIC. However, even local robustness

cannot be satisfied for any non-dictatorial SCF because of the generic impossibility result. In

the positively correlated case on the other hand, we demonstrate significant possibility results

with local robustness. There even exist non-dictatorial SCFs satisfying unanimity which are

OBIC with respect to all positively correlated beliefs although they must be inefficient.

Our results are in the same spirit as the possibility results in auction design theory with

correlated valuations (Crémer and Mclean, 1988). However, our results and arguments bear

no resemblance to their auction theory counterparts. There are at least two significant

differences between the models and consequently, the results. The first is that monetary

transfers which are at heart of the possibility results in the auction model, are not permitted

in the voting model. The second is that the nature of types in the voting model (linear orders)

is very different from its counterpart in the auction model (a non-negative real number or

vector). The notion of correlation in the voting model is therefore more delicate. Several

alternative approaches and definitions are possible and the results depend on the choices

made. The permissive possibility results of (Crémer and Mclean, 1988) require only a“small”

amount of correlation, either negative or positive. The same universally permissive result

with small correlation does not hold in our model. We focus on characterizing SCFs which

are incentive-compatible and satisfy additional robustness properties with respect to beliefs.

The paper is organized as follows. The next section introduces basic notation and defi-

nitions. Section 4 discusses alternative notions of positive correlation while Sections 5 and 6

deal with incentive-compatibility with local and global robustness respectively.

2 Notation and Definitions

There are two individuals or voters in the society, i.e., N = {1, 2}. The set of outcomes is

the set A with |A| = m. Elements of A will be denoted by a, b, c, d etc. Let P denote the set

of strict orderings2 of the elements of A. A typical preference ordering or type for a voter

will be denoted by Pi and for all a, b ∈ A and a 6= b, aPib will be interpreted as “a is strictly

better than b according to Pi”. A preference profile is an element of the set P2. Preference

2A strict ordering is a complete, transitive and antisymmetric binary relation.

4



profiles will be denoted by P, P̄ , P ′ etc and their i-th components as Pi, P̄i, P
′
i respectively

with i = 1, 2.

For all Pi ∈ P and k = 1, . . . ,M , let rk(Pi) denote the kth ranked alternative in Pi, i.e.,

rk(Pi) = a implies that |{b 6= a|bPia}| = k− 1. For all i ∈ {1, 2}, for any Pi ∈ P and for any

a ∈ A, let B(a, Pi) = {b ∈ A|bPia} ∪ {a}. Thus B(a, Pi) is the set of alternatives that are

weakly preferred to a under Pi

Definition 1 A Social Choice Function or (SCF) f is a mapping f : P2 → A.

We now state some familiar axioms on SCFs which we will use at various places in the

paper.

Definition 2 A SCF f is unanimous or satisfies unanimity if f(P ) = aj whenever aj =

r1(Pi) for all voters i ∈ {1, 2}.

The axiom states that in any situation where both individuals agree on some alternative

as the best, the SCF must respect this consensus. A stronger requirement than unanimity

is the notion of Pareto-efficiency or simply, efficiency. This requires that it should not be

possible to make both voters better-off relative to the outcome of the SCF at any preference

profile.

Definition 3 A SCF f is efficient or satisfies efficiency if for all profiles P ∈ P2, there

does not exist an alternative x ∈ A such that xPif(P ) for all i = 1, 2.

A SCF is anonymous if it is symmetric across voters, i.e. it does not discriminate amongst

voters.

Definition 4 A SCF is anonymous or satisfies anonymity if for all P1, P2 ∈ P, f(P1, P2) =

f(P2, P1). Here (P2, P1) is the profile where voter 1 has preference P2 and voter 2 has

preference P1.

A dictatorial SCF picks a particular voter’s best alternative at every preference profile.

Definition 5 A SCF f is dictatorial if there exists a voter i such that for all profiles

P ∈ P2, f(P ) = r1(Pi).

The fundamental assumption in strategic voting theory is that a voter’s preference or-

dering is her private information. The objective of a mechanism designer is to design SCFs

which provide appropriate incentives for voters to reveal their private information. A stan-

dard requirement (for example Gibbard (1973) and Satterthwaite (1975)) is for SCFs to be

dominant strategy incentive-compatible or strategy-proof. In such a SCF no voter can prof-

itably misrepresent her preferences irrespective of what (the) other voter(s) reveal as their

preferences.
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Definition 6 A SCF f is dominant strategy incentive-compatible or strategy-proof if, for

all Pi, Pj, P
′
i ∈ P, either f(Pi, Pj) = f(P ′i , Pj) or f(Pi, Pj)Pif(P ′i , Pj) holds.

Gibbard (1973) and Satterthwaite (1975) show that if |A| ≥ 3, every strategy-proof SCF

satisfying unanimity is dictatorial. We employ a weaker notion of incentive-compatibility.

Definition 7 A belief for voter i is a probability distribution on the set P2, i.e. it is a map

µi : P2 → [0, 1] such that
∑
P∈P2

µi(P ) = 1.

Clearly µi belongs to the unit simplex of dimension m!2 − 1. For all µi, for all Pj and

Pi, we shall let µi(Pj|Pi) denote the conditional probability of Pj given Pi. A belief pair is a

pair of beliefs (µ1, µ2), one for each voter.

Definition 8 The utility function u : A → < represents Pi ∈ P, if and only if for all

a, b ∈ A, we have aPib⇔ u(a) > u(b).

The notion of Ordinal Bayesian Incentive Compatibility or OBIC was introduced by

d’Aspremont and Peleg (1988).

Definition 9 A SCF f is Ordinally Bayesian Incentive Compatible (OBIC) with respect to

the belief pair (µ1, µ2) if for all i ∈ {1, 2}, for all Pi , P
′
i ∈ P, for all u representing Pi, we

have ∑
Pj∈P

u (f(Pi, Pj))µi(Pj|Pi) ≥
∑
Pj∈P

u (f(P ′i , Pj))µi(Pj|Pi) (1)

Suppose f is a SCF which is OBIC with respect to the belief pair (µ1, µ2). Consider

voter i with preference Pi. Then reporting truthfully is optimal in the sense that it yields

a higher expected utility than that obtained by any misrepresentation. In computing this

expected utility, it is assumed that the other voter j will reveal truthfully so that a probability

distribution over outcomes is induced by f and voter’s beliefs, conditional on Pi, i.e. µi(.|Pi).
Furthermore, higher expected utility from truth-telling occurs for all representations of the

true preference Pi. An equivalent way of stating the same requirement is that truth-telling

is a Bayes-Nash equilibrium of the revelation game induced by f for all possible utility

representation of true preferences.

The OBIC notion is a natural and minimal way to incorporate the weaker notion of

truth-telling as optimal in expectation, relative to truth-telling as a dominant strategy, in an

ordinal model (which is the standard model in voting theory). A fairly obvious relationship

between OBIC and dominant strategies is the following:
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Observation 1 Suppose f is OBIC with respect to all belief pairs (µ1, µ2). Then f is

strategy-proof.

In other words, if we require f to satisfy a robustness condition that it be OBIC with

respect to all belief pairs, then we are requiring nothing less than f to be strategy-proof.

An aspect of OBIC which may be regarded as somewhat unsatisfactory in some quarters,

is that it requires truth-telling to be optimal for every type of a voter for all cardinalizations

of the type. A partial response to this criticism is that OBIC can be defined in terms of

stochastic dominance without explicit reference to utility functions.

Definition 10 The SCF f is OBIC with respect to the belief pair (µ1, µ2) if for all i ∈
{1, 2}, for all integers k = 1, . . . ,m and for all Pi and P ′i ,

µi({Pj|f(Pi, Pj) ∈ B(rk(Pi), Pi)}|Pi)
≥ µi({Pj|f(P ′i , Pj) ∈ B(rk(Pi), Pi)}|Pi) (2)

Suppose f satisfies OBIC with respect to (µ1, µ2). Consider voter i with preferences Pi.

Then the aggregate probability induced by f on the first k alternatives of her true preference

Pi for any k = 1, . . . ,m, is maximized by truth-telling.

An important special case of the incomplete information voting model that we have

described above, is the common priors model (see, for instance...). In this case, the beliefs

of the two voters µ1 and µ2 are constrained to be the same. The incentive-compatibility

restrictions in OBIC for the two voters are then defined with respect to the same conditional

beliefs µ(.|Pi). We shall consider both the general model with possibly non-identical beliefs

as well as the common prior model in our analysis.

We now turn our attention to the issue of positively correlated beliefs.

3 Positive Correlation

In this section we introduce two different notions of positive correlation. The first one (K-

correlation) is in terms of a distance function on the set of preference orderings. Perhaps the

best-known distance metric in finite, ordinal models is the Kemeny metric (Kemeny and Snell

(1962),Kendall (1970)). It has been used widely in the literature on social welfare functions,

for instance Bossert and Storcken (1992), Baigent (1987).

The Kemeny Metric: Let Pi ∈ P . Two alternatives a, b ∈ A are said to be adjacent

in Pi if there does not exist any other alternative between them in Pi; formally, if there

exists k ∈ {1, . . . ,m − 1} such that either rk(Pi) = a and rk+1(Pi) = b or rk(Pi) = b and

rk+1(Pi) = a. A transposition of a and b in Pi is the ordering obtained by switching the ranks

of a and b in Pi leaving all other alternatives unchanged. The Kemeny distance between two
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orderings Pi and P ′i , denoted by d(Pi, P
′
i ) is the number of transpositions required to change

Pi to P ′i . For instance, if A = {a, b, c}, and Pi, P
′
i are given by aPibPic and cP ′iaP

′
i b, then

d(Pi, P
′
i ) = 2. Generally, d(Pi, P

′
i ) ∈ {0, 1, . . . , (

m
2

)} for any Pi, P
′
i ∈ P .

Definition 11 (K-correlation) A belief µi for voter i is said to be positively K-correlated

if, for all preferences Pi, Pj and P ′j,

d(Pi, Pj) < d(Pi, P
′
j)⇒ µi(Pj|Pi) > µi(P

′
j|Pi)

Thus, µi is positively correlated in this sense if voter i’s of type Pi considers it more likely

that the other voters’ type is Pj relative to P ′j if the Kemeny distance between Pi and Pj is

less than the Kemeny distance between Pi and P ′j . Note that there may be several orderings

whose Kemeny distance from Pi is identical. K-correlation imposes no restriction on the

relative conditional probabilities of realizing these orderings, given Pi.

We denote by K∗, the set of all positively K-correlated beliefs.

We propose the following alternative notion of positive correlation. Consider voter i with

preferences Pi. Then conditional on her type being Pi, she considers it most likely (amongst

all sets of size k) that voter j’s set of top k-alternatives for any k = 1 . . . ,m − 1 is the set

of the first k alternatives according to Pi. We call this notion of correlation, “Top-set” or

TS-correlation.

Definition 12 (TS-Correlation) A belief for voter i, µi is positively TS-correlated if for

all Pi, Pj and for all k = 1, ...,m− 1∑
{Pj :B(rk(Pj),Pj)=B(rk(Pi),Pi)}

µ(Pj|Pi) >
∑

{Pj :B(rk(Pj),Pj) 6=B(rk(Pi),Pi)}

µ(Pj|Pi) (3)

We denote by TS∗ the set of all µ satisfying TS -correlation.

The following example illustrates both notions of correlation.

Example 1 Let A = {a, b, c}. Consider the following belief µi which generates the condi-

tional beliefs µi(.|abc) specified below: 3

abc acb bac bca cab cba

abc µ1
i µ2

i µ3
i µ4

i µ5
i µ6

i

(4)

where µ1
i = µi(abc|abc), . . . , µ6

i = µi(cba|abc).
3Here abc denotes the ordering “a is preferred to b preferred to c” etc.
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Observe that

µi ∈ K∗ ⇒



µ1
i > µ2

i , µ
3
i , µ

4
i , µ

5
i , µ

6
i

µ2
i > µ4

i , µ
5
i , µ

6
i

µ3
i > µ4

i , µ
5
i , µ

6
i

µ4
i > µ6

i

µ5
i > µ6

i

(5)

On the other hand,

µi ∈ TS∗ ⇒


µ1
i + µ2

i > µ3
i + µ4

i

µ1
i + µ2

i > µ5
i + µ6

i

µ1
i + µ3

i > µ2
i + µ5

i

µ1
i + µ3

i > µ4
i + µ6

i

(6)

It is easy to verify if µi satisfies the system of inequalities 5, then µi satisfies the system

of inequalities 6. The converse is not true; for instance, pick µ1
i = 0.5, µ2

i = 0.05, µ3
i = 0.05,

µ4
i = 0.05, µ5

i = 0.05 and µ6
i = 0.3.

The relationship illustrated in the example above holds generally as demonstrated by the

Proposition below.

Proposition 1 If µ ∈ K∗ then µ ∈ TS∗.

Proof : Pick µi ∈ K∗. Define A∆B = (A \B) ∪ (B \A), i.e. A∆B = is the set of elements

that belong to either A or B but not to both. Pick an arbitrary Pi, an integer k ≤ m and a

set B such that |B(rk(Pi), Pi)| = |B|. Let Bl = {B : |B(rk(Pi), Pi)∆B| = l}. We denote a

generic element of Bl by Bl. Let {Bl}, l = 1, . . . L be the collection of all possible B’s such

that |B(rk(Pi), Pi)| = |B|. Observe that, if l = 0, B(rk(Pi), Pi) = B.

We will prove our claim by induction on l. Observe that l can never be equal to 1 so that

the minimum value of l, if l 6= 0 is l = 2. Suppose that l = 2. Let B(rk(Pi), Pi)∆B = {x, y}.
Assume without loss of generality that x ∈ B(rk(Pi), Pi) and y ∈ B. Consider now a bijection

σ : A→ A defined as follows:

• σ(a) = a for all a ∈ A \ {x, y}

• σ(x) = y and

• σ(y) = x.

Given a preference ordering P and a bijection σ, we define P σ to be the following preference

ordering:

xPy ⇔ σ(x)P σσ(y)
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Since y /∈ B(rk(Pi), Pi) and x ∈ B(rk(Pi), Pi), for any Pj such thatB(rk(Pj), Pj) = B(rk(Pi), Pi),

we have xPjy and for the corresponding P σ
j we have yP σ

j x. Thus for every Pj such that

B(rk(Pj), Pj) = B(rk(Pi), Pi), there exists a P σ
j such that B(rk(P

σ
j ), P σ

j ) = B and d(Pi, Pj) <

d(Pi, P
σ
j ).

The last inequality follows from the fact that, xPiy and xPjy but yP σ
j x and the remaining

alternatives are ranked in the same way in Pj and P σ
j . Since µi ∈ K∗, we have µi(Pj|Pi) >

µi(P
σ
j |Pi). Since the above inequality holds for every pair (Pj, P

σ
j ), we have,∑

{Pj |B(rk(Pj),Pj)=B(rk(Pi),Pi)}

µi(Pj|Pi) >
∑

{Pj |B(rk(Pj),Pj)=B}

µi(Pj|Pi) (7)

Inequality 7 proves the claim for the case l = 2. Suppose now that the claim is true for

all l ≤ t. We will show that the claim is true for l = t + 1 Consider now a Bt ∈ Bt and a

Bt+1 ∈ Bt+1. Observe that |Bt+1∆Bt| = 2. repeating the same arguments as above but now

replacing B(rk(Pi), Pi) with Bt and B with Bt+1 it follows that∑
{Pj |B(rk(Pj),Pj)=Bt}

µi(Pj|Pi) >
∑

{Pj |B(rk(Pj),Pj)=Bt+1}

µi(Pj|Pi) (8)

By the induction hypothesis,∑
{Pj |B(rk(Pj),Pj)=B(rk(Pi),Pi)}

µi(Pj|Pi) >
∑

{Pj |B(rk(Pj),Pj)=Bt}

µi(Pj|Pi) (9)

Combining inequalities 8 and 9, we have∑
{Pj |B(rk(Pj),Pj)=B(rk(Pi),Pi)}

µi(Pj|Pi) >
∑

{Pj |B(rk(Pj),Pj)=Bt+1}

µi(Pj|Pi) (10)

Inequality 10 establishes that µi ∈ TS∗. �

We note that several other notions of positive correlation in this model can be proposed.

For instance, we can define a dual of TS-correlation where a voter believes that her k worst-

ranked alternatives are most likely to be the k worst ranked alternatives of the other voter.

Notions can also be built using classical concepts in statistics such as Spearman’s coefficient

of rank correlation. We do not pursue these lines of research any further since both K and

TS offer rich and interesting possibilities.

We also note that the extension of these notions of correlation to the more than 2 voters

case presents additional difficulties. Consider the case of 3 voters and A = {a, b, c}. Suppose

we wish to find a generalization of K-correlation to this setting. Suppose voter 1 has ordering

abc while voters 2 and 3 have (abc, cba) respectively in one case and (cab, bac) respectively in

another case. Observe that the profile of Kemeny distances in the case of (abc, cba) is (0, 3)

while it is (2, 1) in the case of (cab, bac). If µi is K-correlated, what relationship if any, is to
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be assumed between µi((abc, cba)|abc) and µi((cab, bac)|abc)? It is clear that one amongst

several plausible assumptions can be made.

4 Incentive-Compatibility with Local Robustness

In this section we explore incentive-compatible SCFs which satisfy an additional local ro-

bustness property. The latter requires the SCF to remain incentive-compatible if the belief

of each voter is slightly perturbed. Successful information revelation occurs in such SCFs

even if the mechanism designer makes “small mistakes” in his assessment of voter beliefs.

Definition 13 A SCF f is K-locally robust OBIC or K-LOBIC if, for each voter i, there

exists µi ∈ K∗ and an ε > 0 such that f is OBIC with respect to all µ′i ∈ Bε(µi) ∩K∗. 4

Local robustness with respect to TS-correlation can be analogously defined.

Definition 14 A SCF f is TS-locally robust OBIC or TS-LOBIC if, for each voter i, there

exists µi ∈ TS∗ and an ε > 0 such that f is OBIC with respect to all µ′i ∈ Bε(µi) ∩ TS∗.

An important observation at this point is that in both definitions 13 and 14 we are

allowing for voters to have non-identical beliefs.

Observation 2 Since K∗ ⊂ TS∗, the set of SCFs that are K-LOBIC with respect to K-

correlation is a subset of the set of SCFs that are TS-LOBIC. Moreover the set inclusion is

strict as the following example shows.

Example 2 Let A = {a, b, c}; Let f 1 be the scoring rule with score vector (2, 1.5, 0) and tie

breaking in favor of agent 1. This SCF is described in the table below with voter 1 and 2’s

preference orderings represented by rows and columns respectively.

abc acb bac bca cab cba

abc a a a b a b

acb a a a c a c

bac b a b b a b

bca b c b b c b

cab a c a c c c

cba b c b c c c

(11)

We claim that f 1 is TS-LOBIC but not K-LOBIC.

We first demonstrate the latter. In fact we can show that f 1 does not satisfy OBIC with

respect to any belief that is K-correlated. To see this, consider voter 2 with preferences

4Bε(µi) denotes the open ball of radius ε centered at µi.
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abc. Let µ2 be an arbitrary belief satisfying K-correlation. Consider voter 2 with preference

ordering abc. Then OBIC with respect to the belief pair (., µ2) requires

µ2(abc|abc) + µ2(acb|abc) + µ2(cab|abc) ≥ µ2(abc|abc) + µ2(acb|abc) + µ2(bac|abc)

This is required so that voter 2 who puts a very high utility weight on a relative to b

and c does not gain by misreporting acb. But the above inequality implies µ2(cab|abc) ≥
µ2(bac|abc). However, since d(cab, abc) = 2 > d(bac, abc) = 1, K-correlation requires

µ2(bac|abc) > µ2(cab|abc). Hence f 1 is not OBIC for any belief of voter 2 which is K-

correlated.

We now show that f 1 is TS-LOBIC. It is easy to verify that truth-telling is weakly

dominant for voter 1 of all types. In the case of voter 2, the following inequalities for µ2 are

necessary and sufficient in order that f 1 be OBIC with respect to the belief pair (., µ2):

µ2(cab|abc) > µ2(bac|abc), µ2(bac|acb) > µ2(cab|acb), µ2(cba|bac) > µ2(abc|bac), µ2(abc|bca) >

µ2(cba|bca), µ2(bca|cab) > µ2(acb|cab) and µ2(acb|cba) > µ2(bca|cba).

These inequalities is easily satisfied by a belief µ2 satisfying TS-correlation as the fol-

lowing matrix of conditional probabilities shows. In the number associated with row i and

column j is the probability µ2(i|j).

abc acb bac bca cab cba

abc 0.50 0.10 0.08 0.12 0.10 0.10

acb 0.10 0.50 0.10 0.10 0.08 0.12

bac 0.08 0.12 0.50 0.10 0.10 0.10

bca 0.10 0.10 0.10 0.50 0.10 0.08

cab 0.12 0.08 0.10 0.10 0.50 0.10

cba 0.10 0.10 0.12 0.08 0.10 0.50

(12)

Moreover since all the necessary inequalities (for both OBIC and TS-correlation) are sat-

isfies strictly, they will continued to be satisfied if the conditional probabilities are perturbed

slightly. Hence f 1 is TS-LOBIC.

There are SCFs which are not TS-LOBIC as the next example demonstrates.

Example 3 Let A = {a, b, c}. Consider the SCF f 2 as shown in the table below.

abc acb bac bca cab cba

abc a a a b a b

acb a a a c a c

bac c a b b a b

bca b b b b c b

cab a b a c c c

cba c c b c c c

(13)
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Consider voter 2 with preference abc who considers misreporting via acb. Then she

will lose by misreporting if voter 1 has preference cba by getting c instead of b; she will

gain if voter 1’s preference is bac by getting a instead of c. Suppose f 2 is OBIC with

respect to some belief pair (µ1, µ2). By virtue of the robustness criterion, we can assume

µ2(bac|abc), µ2(cab|abc) > 0. Now pick a utility representation u of abc such that u(a) =

1, u(b) = α, u(c) = 0 where 0 < α < 1. The difference in expected utility between truth-

telling and lying is ∆ = (1−α)µ2(cab|abc)− µ2(bac|abc). Since µ2(cab|abc), µ2(bac|abc) > 0,

∆ can be made strictly less than 0 by choosing α sufficiently close to 1. This contradicts the

assumption that f 2 is OBIC with respect to (µ1, µ2).

The example above suggests a necessary condition that a TS-LOBIC SCF must satisfy.

Since all conditional probabilities can be assumed to be non-zero by local robustness, ex-

pected utility for a type cannot be maximized by truth-telling if misrepresentation weakly

dominates truth-telling. However in addition, the gain from truth-telling cannot be “washed

out” relative to the gain from misrepresentation by picking a different utility representation.

We formalize this notion below.

Definition 15 A SCF f satisfies Ordinal Non-Domination (OND) if for all Pi, P
′
i and Pj

such that f(P ′i , Pj)Pif(Pi, Pj), there exists P ′j such that,

1. Either f(Pi, P
′
j) = f(P ′i , Pj) or f(Pi, P

′
j)Pif(P ′i , Pj) and

2. Either f(Pi, Pj) = f(P ′i , P
′
j) or f(Pi, Pj)Pif(P ′i , P

′
j).

Consider the SCF f 2 in Example 3. Observe that f 2(bac, abc) = a is strictly preferred to

c = f 2(bac, abc) under abc. According to OND, there must exist another preference ordering

for voter 1 where 2 does strictly better by reporting abc than acb. The only candidate

for such an ordering for 1 is cab. However f 2(cab, acb) is strictly preferred to f 2(bac, abc)

violating part 1 of the OND condition. The example clearly shows how OBIC will now fail:

by choosing a suitable utility representation, the gain from telling the truth when 1’s report

is cab can be made arbitrarily small relative to the gain from lying when 1’s report is bac.

The necessity of part 2 of OND can be demonstrated similarly.

Our main result in this section is that OND is necessary and almost sufficient for the

TS-LOBIC property to hold.

Theorem 1 If a SCF is TS-LOBIC, it satisfies OND. If a SCF satisfies unanimity and

OND it is TS-LOBIC.

Proof : We first prove that if a SCF is TS-LOBIC it satisfies OND.
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Let f be a TS-LOBIC SCF. Then, for all i there exists µi ∈ TS∗ such that for all Pi, P
′
i

and u representing Pi, we have∑
Pj∈P

µi(Pj|Pi) [u(f(Pi, Pj), Pi)− u(f(P ′i , Pj), Pi)] ≥ 0 (14)

Moreover inequality 14 holds for all µ′i in a neighborhood of µi. Hence we can assume

without loss of generality that µi(Pj|Pi) > 0 in inequality 14. Suppose that there exists Pi, Pj
and P ′i such that f(P ′i , Pj)Pif(Pi, Pj), i.e u(f(P ′i , Pj)) > u(f(Pi, Pj)) for all u representing

Pi. Since µi(Pj|Pi) > 0, there must exist P ′j such that u(f(Pi, P
′
j)) > u(f(P ′i , P

′
j)), i.e.

f(Pi, P
′
j)Pif(P ′i , P

′
j), in order for inequality 14 to hold. Let L denote the set of all such P ′j ’s.

Now suppose f(P ′i , Pj)Pif(Pi, P
′
j) holds for all P ′j ∈ L. Then we can choose a utility repre-

sentation û of Pi such that û(f(P ′i , Pj)) is arbitrarily close to 1 and û(f(Pi, P
′
j)), û(f(Pi, Pj))

and û(f(P ′i , P
′
j)) are all arbitrarily close to 0. Then, the L.H.S of 14 for the utility function

û can be made arbitrarily close to −µi(Pj|Pi) < 0 violating inequality 14.

Now suppose f(P ′i , P
′
j)Pif(Pi, Pj) holds. Then we can choose a utility representation

ũ of Pi such that ũ(f(P ′i , Pj)), ũ(f(Pi, P
′
j)) and ũ(f(P ′i , P

′
j)) are arbitrarily close to 1 and

ũ(f(Pi, Pj)) is arbitrarily close to 0. Once again the L.H.S of 14 for the utility function ũ

can be made arbitrarily close to −µi(Pj|Pi) < 0 violating inequality 14.

Thus f satisfies OND.

We now consider the proof of the second part of the Theorem.

Suppose that f satisfies unanimity and OND. We will construct a set of beliefs for each

voter satisfying TS-correlation and such that f is OBIC with respect to all beliefs in this

set.

Pick a voter i and an ordering Pi. For any k ∈ {1, . . . ,m} define Afk(Pi) = {Pj|f(Pi, Pj) =

rk(Pi)}. Thus Afk(Pi) is the set of preferences for voter j that gives under f the kth ranked

alternative of voter i as outcome. Since f satisfies unanimity, Pi ∈ Af1(Pi).

Let C∗i denote the set of probability distributions over P such that for each µ∗i ∈ C∗i and

Pi the conditional distribution, µ∗i (.|Pi) satisfies the following properties:

1. µ∗i (Pj|Pi) > 0 for all Pj

2. µ∗i (Pi|Pi) >
∑

Pj 6=Pi

µ∗i (Pj|Pi)

3. for all Pj 6= Pi, µ
∗
i (Pj|Pi) >

∑
P ′

i∈∪r=m
r=k+1A

f
r (Pi)

µ∗i (P
′
i |Pi) where Pj ∈ Afk(Pi).

Suppose f(Pi, Pj) is the kth-ranked alternative in Pi. Then the conditional probability

µ∗i (Pj|Pi) exceeds the sum of the conditional probabilities of realizing an ordering P ′j where

the outcome f(Pi, P
′
j) is strictly worse than the kth-ranked alternative in Pi. In addition,
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the conditional probability of realizing Pi exceeds the sum of the conditional probabilities of

realizing any other ordering. There are clearly no difficulties in defining C∗i . Moreover, since

the restrictions on the conditional probabilities are described by strict inequalities, it follows

that C∗i is an open set in the unit simplex of dimension m!2 − 1.

We claim that C∗i ⊂ TS∗. This is easily verified by noting that the term µ∗i (Pi|Pi) appears

in the L.H.S of every inequality in the system of inequalities 6 which define TS correlation

while it does not appear on the R.H.S of none of them. In order to complete the proof, we

will show that f is OBIC with respect to all beliefs (µ∗1, µ
∗
2) where µ∗i ∈ C∗i , i = 1, 2.

Pick an arbitrary voter i, orderings Pi, P
′
i and a utility function u representing Pi. Let

G = {Pj|f(P ′i , Pj)Pif(Pi, Pj)} and L = {Pj|f(Pi, Pj)Pif(P ′i , Pj)}. Pick an arbitrary µ∗i ∈ C∗i .
In order for OBIC to be satisfied with respect to µ∗i , we must have∑

Pj∈L

µ∗i (Pj|Pi)β(Pj)−
∑
Pj∈G

µ∗i (Pj|Pi)γ(Pj) ≥ 0 (15)

where β(Pj) = [u(f(Pi, Pj))− u(f(P ′i , Pj))] and γ(Pj) = [u(f(P ′i , Pj))− u(f(Pi, Pj))].

If G = ∅, inequality 15 is clearly satisfied. Suppose therefore that G 6= ∅. We claim that

for all Pj ∈ G, there exists P ′j ∈ L satisfying

1. β(P ′j) > γ(Pj)

2. µ∗i (P
′
j|Pi) >

∑
{P̃j |f(Pi,P ′

j)Pif(Pi,P̃j)}
µ∗i (P̃j|Pi)

Here 1 above follows from the assumption that f satisfies OND and 2 follows from 2 and 3

in the specification of µ∗i .

Let σ : G→ L be a map such that for all Pj ∈ G, σ(Pj) is the P ′j ∈ L satisfying 1 and 2

above. Let P ′j be an arbitrary element in the range of σ and let Q(P ′j) = {Pj|σ(Pj) = P ′j}.
A critical observation is that for all Pj ∈ Q, OND implies f(Pi, P

′
j)Pif(Pi, Pj), i.e. Q(P ′j) ⊂

{P̃j|f(Pi, P
′
j)Pif(Pi, P̃j)}. Hence 2 above implies µ∗i (P

′
j|Pi) >

∑
Pj∈Q(P ′

j)

µ∗i (Pj|Pi). Moreover

using 1 above, we have µ∗i (P
′
j|Pi)β(P ′j) >

∑
Pj∈Q(P ′

i )

µ∗i (Pj|Pi)γ(Pj). Now summing up over all

P ′j in L and noting that OND implies that G ⊂ ∪P ′
j∈LQ(P ′j), we obtain inequality 15.

�

We now make a series of observations regarding Theorem 1 and its implications.

Observation 3 The proof of the first part of Theorem 1 clearly shows that OND is a

necessary condition for locally robust OBIC with respect to any subset of prior beliefs. It

applies equally to beliefs which are restricted to lie in the set of TS or K correlated beliefs

or in the set of independent beliefs of for that matter, to some subset of negative corre-

lated beliefs, howsoever defined. It is an inescapable consequence of local robustness. The
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sufficiency part of Theorem 1 that TS-correlation leads to the most permissive result for

incentive-compatibility subject to the very mild requirement that the SCFs under consid-

eration satisfy unanimity. In fact, it can be checked that the following condition which is

weaker than unanimity, suffices: for all profiles P such that Pi = Pj, f(Pi, Pj) = r1(Pi).

Observation 4 The proof of the second part of Theorem 1 explicitly constructs a class of

conditional beliefs for each voter with respect to which a SCF satisfying OND and unanimity,

is TS-LOBIC. These beliefs depend on the SCF. This should not be surprising; in the next

section we show that imposing stronger notions of robustness lead to a drastic reduction

in the class of incentive-compatible SCFs. The beliefs constructed are as follows: a voter

i with type i puts “high” weight on voter j’s type being Pi (i.e. coinciding with her own);

in addition she puts “significantly higher” weight on voter j’s type being Pj instead of P ′j if

f(Pi, Pj) is strictly better than f(Pi, P
′
j) according to Pi. In general, one may say that voters

are “optimistic” in their beliefs in the sense that they assign “much higher” probabilities to

more favorable events. In this case, these events are realizations of the other voter’s types

which lead to better outcomes through the SCF. Loosely speaking, this is in accordance

with the general intuition regarding why positive correlation may ameliorate the problems

of designing incentive compatible SCFs.

Observation 5 Example 2 demonstrates that OND is not sufficient for the K-LOBIC prop-

erty to hold. The OND condition guarantees that if misrepresentation is more profitable than

truth-telling for some type of voter j, say Pj, then there is another type of j, P ′j where the

misrepresentation is “ordinally costlier” than truth-telling, relative to the situation at Pj. In

order to strengthen the condition to make it K-LOBIC necessary, additional restrictions on

d(Pi, P
′
j) relative d(Pi, Pj) must also hold. These restrictions may be quite subtle and we do

not pursue this question further.

Observation 6 Theorem 1 stands sharply in contrast to results in Majumdar and Sen

(2004) for the independent beliefs case. In the latter case, OBIC and local robustness imply

that the SCF is dictatorial (if m ≥ 3), i.e. truth-telling must be dominant.

Observation 7 Does the argument for the sufficiency part of Theorem 1 hold if beliefs are

restricted to be common? Observe that our argument pinned downed conditional beliefs for

each voter. We can represent them by two non-negative matrices m!×m!, X and Y denoting

conditional beliefs for 1 and 2 respectively. If ith row and jth column refer to preferences Pi
and Pj respectively in both matrices, then the (i, j)th element in X and Y are µ1(Pj|Pi) and

µ2(Pi|Pj) respectively. All the row sums of X and column sums of Y add up to 1. In order

for X and Y to be derived from a common joint distribution, we need to find appropriate

marginal probabilities. Specifically, we need to find m!×m! non-negative diagonal matrices

P and Q with trace P = trace Q = 1 such that PX = QY . Here the (i, i)th elements of
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P and Q are the marginal probabilities of voter i’ and j’s types being Pi respectively. A

solution P,Q for general X and Y will not exist because the equation system PX = QY

involves m!×m! equations in 2m unknowns (neglecting the constraints of non-negativity and

adding upto 1). However we are to find a sufficient condition for TS-LOBIC with respect to

common priors as we show below.

Definition 16 A SCF f is TS-LOBIC with respect to common priors, if there exists a

belief µ ∈ TS∗ and an ε > 0 such that f is OBIC with respect to the belief pair (µ′, µ′) all

µ′ ∈ Bε(µ) ∩ TS∗.

Our next result states that OND is sufficient in the common priors model if the SCF

satisfies the additional hypothesis of anonymity.

Theorem 2 If a SCF satisfies unanimity, anonymity and OND, then it is TS-LOBIC with

respect to common priors.

Proof : We use the same construction for conditional beliefs as in the proof of the second

part of Theorem 1. By virtue of the assumption that f satisfies anonymity, we can find

identical conditional beliefs satisfying properties 1, 2 and 3 in the definition of the set C∗i .
More precisely, there exists conditional beliefs µ∗ such that for all Pi, Pj, we have

µ∗(Pj|Pi) = µ∗(P2 = Pj|P1 = Pi) = µ∗(P1 = Pj|P2 = Pi)

Moreover

1. µ∗(Pj|Pi) > 0 for all Pj

2. µ∗(Pi|Pi) >
∑

Pj 6=Pi

µ∗(Pj|Pi)

3. for all Pj 6= Pi, µ
∗(Pj|Pi) >

∑
P ′

j∈∪r=m
r=k+1A

f
r (Pi)

µ∗(P ′j|Pi) where Pj ∈ Afk(Pi).

The matrices of conditional probabilities X and Y (Observation 7) are such that Y = XT .

Clearly any arbitrary diagonal matrix of priors P (with trace equal to 1) will satisfy the

equation PX = PY generating a common prior µ∗. Let C∗ be the set of beliefs which

generate conditional beliefs satisfying 1, 2 and 3 above. It is clearly an open set. Replicating

the arguments in Theorem 1, it follows that f is TS-LOBIC with respect to any belief (µ∗, µ∗)

where µ∗ ∈ C∗. �

In the next section, we consider the consequences of strengthening the robustness require-

ment.
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5 Incentive Compatibility with Global Robustness

In this section we analyze the issue of Global Robustness with positively correlated beliefs.

Definition 17 A SCF f : P2 → A is K-Globally Robust OBIC (K-ROBIC) if it is OBIC

with respect to all (µ1, µ2) where µ1, µ2 ∈ K∗.

We have an analogous definition for TS-correlation.

Definition 18 A SCF f : P2 → A is TS-Globally Robust OBIC (TS-ROBIC) if it is

OBIC with respect to all (µ1, µ2) where µ1, µ2 ∈ TS∗.

Observation 8 Since K∗ ⊂ TS∗, (Proposition 1), a SCF which is TS-ROBIC, is also

K-ROBIC.

Our goal is to investigate the class of K and TS- ROBIC SCFs. We first focus our atten-

tion on SCFs which are K-ROBIC. Since the K-ROBIC property is clearly a strong require-

ment, it is reasonable to conjecture that a SCF which satisfies it, is strategy-proof. Stating

it differently, it may seem plausible that the consequences of imposing incentive-compatibility

with respect to all positively correlated beliefs is equivalent to imposing incentive-compatibility

with respect to all beliefs. Rather surprisingly this is false as we show below.

Definition 19 The SCF fus is the unanimity with status-quo rule if there exists an alter-

native x such that for all profiles P ,

f(P ) =

{
r1(P1), if r1(P1) = r1(P2);

x, otherwise.
(16)

In other words, fus picks the status quo alternative x unless both voters have a common

best ranked alternative. It is clear that fus is not strategy-proof. For instance suppose

A = {a, b, x} and let P be the profile where aP1bP1x and bP2aP2x. The outcome of fus in

this profile is x (the status quo alternative). But voter 1 can misreport bP ′1aP
′
1x and obtain

b which is better than x according to P1. We show however that fus is TS- ROBIC and

therefore K-ROBIC as well.

Proposition 2 fus is TS-ROBIC.

Proof : As before, we denote the status quo alternative by x. Pick an arbitrary voter i with

ordering Pi. If r1(Pi) = x, then fus(Pi, Pj) = x for all Pj. Truth-telling is a weakly dominant

strategy in this case and will lead to a (weakly) higher expected payoff irrespective of the

representation u of Pi and beliefs µ(Pj|Pi).
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Assume therefore that r1(Pi) = a 6= x. Let P ′i be such that either b = x or xPib where

r1(P
′
i ) = b 6= a. Since fus(Pi, Pj) is either a or x for all Pj and fus(P ′i , Pj) is either b or x for

all Pj, it follows again that truth-telling will weakly dominate the strategy of misreporting

via P ′i .

It follows that the only case which needs to be considered is the one where r1(P
′
i ) = b

and bPix. Here voter i will gain by misreporting P ′i for all Pj such that r1(Pj) = b. Denote

the set of such Pj’s by G. On the other hand, i loses by misreporting P ′i for all Pj such that

r1(Pj) = a. Denote the set of such Pj’s by L. In particular observe that

• fus(Pi, Pj) = x, fus(P ′i , Pj) = b for all Pj ∈ G

• fus(Pi, Pj) = a, fus(P ′i , Pj) = x for all Pj ∈ L

• fus(Pi, Pj) = fus(P ′i , Pj) = x for all Pj /∈ G ∪ L

Let u be an arbitrary utility function that represents Pi and let µi ∈ TS∗. The expected

utility from truth-telling is∑
Pj∈L

u(a)µi(Pj|Pi) +
∑
Pj∈G

u(x)µi(Pj|Pi) +
∑

Pj /∈G∪L

u(x)µi(Pj|Pi) (17)

The expected utility from misreporting via P ′i is∑
Pj∈L

u(x)µi(Pj|Pi) +
∑
Pj∈G

u(b)µi(Pj|Pi) +
∑

Pj /∈G∪L

u(x)µi(Pj|Pi) (18)

Let ∆ denote the gain from truth-telling. The two equations above imply

∆ = [u(a)− u(x)]
∑
Pj∈L

µi(Pj|Pi)− [u(b)− u(x)]
∑
Pj∈G

µi(Pj|Pi) (19)

Since u represents Pi, we have u(a) > u(b) > u(x). Also TS correlation implies∑
Pj∈L µi(Pj|Pi) >

∑
Pj∈G µi(Pj|Pi) (since voter i of type Pi considers it more likely that

the probability of voter j’s top-ranked alternative agrees with her own (i.e. it is a) than it

is b). Hence ∆ ≥ 0 and fus is TS-ROBIC.

�

The unanimity with status quo rule has some nice features. It is both anonymous and

neutral 5. However it has a serious drawback: the rule picks the status quo in many situations

where both voters prefer other alternatives. It violates efficiency.

Our main result shows that imposing efficiency together with global robustness leads

to dictatorial SCFs. In other words, efficiency and global robustness can be satisfied only

5An SCF is neutral if it does not discriminate amongst alternatives.
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if truth-telling is a weakly dominant strategy. Observe that robustness does not directly

imply weak dominance of truth-telling because robustness is imposed only with respect to

positively correlated beliefs.

Our main result in this section is:

Theorem 3 Assume m ≥ 3. A SCF is efficient and K-ROBIC if and only if it is dictatorial.

Before proving the result, we state an prove an auxiliary result which we use repeatedly

in the proof of Theorem 3. We believe that the result is also of some independent interest

because it illuminates the restrictions that the K-ROBIC assumption imposes on a SCF.

Proposition 3 Let f be a K-ROBIC SCF. Let Pi, P
′
i and Pj be such that f(P ′i , Pj)Pif(Pi, Pj).

Then there exists P ′j satisfying the following properties:

(i) d(Pi, P
′
j) < d(Pi, Pj)

(ii) either f(Pi, P
′
j) = f(P ′i , Pj) or f(Pi, P

′
j)Pif(P ′i , Pj)

(iii) either f(Pi, Pj) = f(P ′i , P
′
j) or f(Pi, Pj)Pif(P ′i , Pj)

Proof : If f is K-ROBIC, it must also be K-LOBIC. From Theorem 1 and Observation 3 it

follows that f must satisfy OND. Suppose that Pi, P
′
i and Pj are such that f(P ′i , Pj)Pif(Pi, Pj).

Then OND implies that there exists P ′j satisfying (ii) and (iii). It only remains to show (i).

Let d(Pi, Pj) = k. Suppose that d(Pi, P
′
j) ≥ k for all P ′j ∈ G. Note that for any

δ1, δ2 > 0 we can always choose a utility function u representing Pi such that u(f(P ′i , Pj))−
u(f(Pi, Pj)) = δ1 and

max
P ′

j∈G

∣∣[u(f(Pi, P
′
j))− u(f(P ′i , P

′
j))]− [u(f(P ′i , Pj))− u(f(Pi, Pj))]

∣∣ < δ2

Also for any ε1, ε2 such that 1 > ε1 > ε2 > 0, there exists µ ∈ K∗ such that (i) µ(P̂j|Pi) > ε1 if

d(Pi, P̂j) < k or P̂j = Pj and (ii) µ(P̂j|Pi) < ε2 for all other P̂j. Let ∆ =
∑

P̂j∈P [u(f(P ′i , P̂j))−
u(f(Pi, P̂j))]µ(P̂j|Pi). It follows that∆ ≥ ε1δ1−(m!−1)(δ1+δ2)ε2. It is clear that by choosing

ε2 sufficiently close to zero, the R.H.S of the inequality above can be made strictly positive,

i.e. ∆ > 0. But this violates the assumption that f is K-ROBIC.

�

The extra strengthening of OND for K-ROBIC is natural. As we have discussed earlier,

OND (parts (ii) and (iii) above) ensures that the gain from truthful reporting at Pi instead

of P ′i at P ′j is “ordinally” greater than the loss from truthful reporting at Pj. In addition, the

Kemeny distance between the Pi and P ′j must be strictly smaller than that between Pi and

Pj. If this were not true, the expected utility from lying could be made to exceed that of

truth-telling by choosing a conditional probability distribution such that µi(P
′
j|Pi) is made

arbitrarily small relative to µi(Pj|Pi).
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Observation 9 The condition described in the statement of Proposition 3 is not sufficient

for a SCF to be K-ROBIC. A further condition is required which as follows. For all Pi
and P ′i , let G = {Pj|f(P ′i , Pj)Pif(Pi, Pj)} and let L = {P ′j|f(Pi, P

′
j)Pif(P ′i , P

′
j)}. According

to Proposition 3, there exists a map σ : G → L such that Pj ∈ G there exists a P ′j ∈ L

satisfying conditions (i), (ii) and (iii). The additional requirement which is necessary and

together with Proposition 3 is also sufficient, is that the map σ must be injective. We do not

include a proof of this result in the paper because it is not required for the proof of Theorem

3.

We now return to the proof of Theorem 3.

Proof : The sufficiency part of the theorem is trivial since dictatorial SCFs are strategy-

proof and efficient. We shall therefore only prove necessity. In what follows, we assume that

f is efficient and K-ROBIC. We shall prove the result by induction on the cardinality of the

distance between two profiles. In particular we shall prove the following claims.

CLAIM 1: There exists a voter i such that for all profiles P such that d(P1, P2) = 1, we have

f(P ) = r1(Pi).

CLAIM 2: Let k be an integer with k > 1. Suppose that there exists a voter i such that

for all profiles P ′ with d(P ′1, P
′
2) ≤ k, we have f(P ′) = r1(P

′
i ). Let P be a profile such that

d(P1, P2) = k + 1. Then, f(P ) = r1(Pi).

It is evident that Claims 1 and 2 establish that f is dictatorial and voter i is the dictator.

Proof Claim 1: Pick an arbitrary pair of alternatives {a, b} and let (P1, P2) be a profile where

1. r1(P1) = a and r2(P1) = b

2. r1(P2) = b and r2(P2) = a

3. rk(P1) = rk(P2) for all k > 2

Observe that d(P1, P2) = 1. Also a and b are the only efficient alternatives at this profile.

Since f is efficient, f(P1, P2) is either a or b. Assume w.l.o.g that f(P1, P2) = b. We will

prove Claim 1 by showing that for all profiles (P ′1, P
′
2) such that d(P ′1, P

′
2) = 1, we must

have f(P ′1, P
′
2) = r1(P

′
2). If r1(P

′
1) = r1(P

′
2), the required conclusion follows trivially from

the efficiency of f . We will assume therefore that r1(P
′
1) 6= r1(P

′
2). Since d(P ′1, P

′
2) = 1 by

assumption, it must be the case that r2(P
′
1) = r1(P

′
2), r1(P

′
1) = r2(P

′
2) and rk(P

′
1) = rk(P

′
2)

for all k > 2. We will denote the class of such profiles by D2(1). We will prove the claim in

a series of steps.
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Step 1: Let {c, d} be an arbitrary pair of alternatives and let P ′, P̂ ∈ D2(1) be such that

r1(P
′
1) = r1(P̂1) = c and r1(P

′
2) = r1(P̂2) = d. We show that if f(P ′) = d, then f(P̂ ) = d.

Suppose f(P ′) = d. Consider the case where d(P ′1, P̂1) = d(P ′2, P̂2) = 1. In other words,

P̂1 and P̂2 are obtained from P ′1 and P ′2 respectively by the transposition of some common

pair {x, y} of alternatives. Suppose f(P̂1, P
′
2) 6= d. Then the efficiency of f implies that

f(P̂1, P
′
2) = c. Note that d(P̂1, P

′
2) = 2. Since cP ′1d, Proposition 3 implies that there exists

P̃2 such that (i) d(P ′1, P̃2) ≤ 1 (ii) f(P ′1, P̃2) = c (iii) if f(P̂1, P̃2) = z, then either d = z

or dP ′1z. If r1(P̃2) = c, efficiency of f implies that f(P̂1, P̃2) = c contradicting (iii). But if

r1(P̃2) 6= c, then (i) implies that P̃2 = P ′2 which would in turn would imply that f(P ′1, P̃2) = d

contradicting (ii). Hence f(P̂1, P
′
2) = d.

We now show that f(P̂ ) = d. Suppose this is false. Then efficiency of f implies that

f(P̂ ) = c. Since dP̂2c, Proposition 3 implies that there exists P̃1 such that (i) d(P̃1, P̂2) < 1

(ii) f(P̃1, P̂2) = d and (iii) if f(P̃1, P
′
2) = z, then either z = c or cP̂2z. But (i) implies that

P̃1 = P̂2. In that case efficiency implies f(P̃1, P
′
2) = d contradicting (iii). Hence f(P̂ ) = d.

Now consider the general case where P̂ ∈ D2(1) is such that r1(P̂1) = r2(P̂2) = c and

r1(P̂2) = r2(P̂1) = d. We can find a sequence of profiles P r, r = 0, 1, .., T such that (i)

P 0 = P ′ (ii) P T = P̂ (iii) P r ∈ D2(1) with r1(P
r
1 ) = r2(P

r
2 ) = c and r1(P

r
2 ) = r2(P

r
1 ) = d for

all r and (iii) d(P r
i , d

r+1
i ) = 1, r = 0, .., T − 1, i = 1, 2. In other words, the profile P̂ can be

obtained from P ′ be a sequence of transpositions not involving c or d. Using the arguments

in the two previous paragraph, we can conclude that f(P r) = d implies f(P r+1) = d,

r = 0, ..., T − 1. Hence f(P̂ ) = d which establishes Step 1.

Let {c, d} be an arbitrary, ordered pair of alternatives. We will say that voter i, i = 1, 2

dictates over {c, d} if for all P ∈ D2(1) such that r1(P1) = r2(P2) = c and r1(P2) = r2(P1) =

d, we have f(P ) = r1(Pi). According to Step 1, some voter i will dictate over each pair of

alternatives. In particular, we can infer that voter 2 dictates over {a, b}.

Step 2: Let c be an alternative distinct from a and b. Then voter 2 dictates over {a, c}.
Let D̄ be the set of preference orderings where the top three alternatives belong to the

set {a, b, c} while the rankings of all other alternatives are fixed. Formally Pi ∈ D̄ if

1. ∪{k=1,2,3}rk(Pi) = {a, b, c}

2. for all d 6= a, b, c, there exists an integer q ≥ 4, such that d = rq(Pi). Moreover q does

not depend on Pi.

For notational convenience, we will denote elements of D̄ by abc..., acb...., bac..., bca...., cab...,

and cba..... Here abc... denotes the ordering where a, b and c are ranked first, second and third

respectively. In view of Step 1, Step 2 is complete if we can show that f(acb..., ca...) = c.

We proceed in a sequence of sub-steps.
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Step 2(i): f(acb..., bac...) = b. Since 2 dictates over {a, b} by assumption, we have

f(abc..., bac...) = b. We have also shown in the proof of Step 1 that a transposition in voter

1’s ordering which does not involve her first-ranked alternative in this profile, does not change

the outcome. Hence f(acb..., bac...) = b.

Step 2(ii): f(abc..., bca....) = b. Suppose this is false. The efficiency of f implies

f(abc..., bca...) = a. Observe that voter 2 with preference bca... obtains b by reporting bac...

which is better than a according to bca.... Since d(abc..., bca...) = 2, Proposition 3 implies

that there exists P1 such that (i) d(P1, bca...) ≤ 1 (ii) f(P1, bca..) = b (iii) f(P1, bac...) = x

implies either x = a or x is worse than a according to bca.... The only candidates for P1 are

abc... or bac... or a transposition of some pair of alternatives in bca... not involving b or c. If

P1 = abc..., then requirement (ii) is violated. If either P1 = bac..., or P1 is a transposition of

a pair of alternatives in bca.. not involving b or c, then efficiency of f implies f(P1, bac...) = b

violating requirement (iii). Therefore P1 satisfying requirements (i), (ii) and (iii) does not

exist. Hence f(abc..., bca...) = b.

Step 2(iii): f(acb..., bca...) ∈ {b, c}. Suppose this is false. Since f is efficient, the only possi-

bility is f(acb..., bca...) = a. Then voter 1 in the profile (abc..., bca...) gains by reporting acb...

(we know from Step 2(ii) that f(abc..., bca...) = b). Since d(abc..., bca...) = 1, Proposition

3 implies that there exists P2 such that (i) d(abc..., P2) < 1 (ii) f(abc..., P2) = a and (iii)

if f(acb..., P2) = x, then either x = b or x is worse than b according to abc.... However (i)

implies P2 = abc.... Hence efficiency forces x = a and (iii) is violated. Therefore P2 satisfying

requirements (i), (ii) and (iii) does not exist implying f(acb..., bca...) ∈ {b, c}.

Step 2(iv): If f(acb..., cab...) = a, then f(acb..., cba...) = a. The argument to establish this

step is identical to the one in Step 1 and Step 2(i), viz. if the outcome in a profile whose

distance is 1 is one voter’s first-ranked alternative, then this remains the outcome when there

is a transposition of a pair of alternatives not involving her first-ranked alternative of the

other voter.

Step 2(v): f(acb..., cba...) 6= a. Suppose this is false. Since f(acb..., bca...) ∈ {b, c},
voter 2 in the profile (acb..., cba...) gains by reporting bca... instead of cba.... Observe

d(acb..., cba...) = 2. Applying Proposition 3, there must exist P1 such that (i) d(P1, cba...) < 2

(ii) f(P1, cba...) ∈ {b, c} and (iii) if f(P1, bca...) = x then either x = a or x is worse than a

according to cba..., i.e x ∈ A − {a, b, c}. The only candidates for P1 are (I) cba... (II) cab...

(III) bca... and (IV) a transposition of a pair of alternatives in cba... not involving c or b.

However the efficiency of f implies that in each of the cases (I)-(IV), f(P1, bca...) ∈ {b, c}.
Hence (iii) is violated in each case. Hence P1 satisfying requirements (i), (ii) and (iii) do not

exist. Hence f(acb..., cba...) 6= a.
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We now establish Step 2. Efficiency and Steps 2(iv) and 2(v) imply f(acb..., cab...) = c.

Therefore voter 2 dictates over the pair {a, c}.

Step 3: Let c be an alternative distinct from a and b. Then voter 2 dictates over {c, b}. In view

of our earlier arguments, it will suffice to prove that f(cba..., bca...) = b. Suppose this is false.

By efficiency, f(cba..., bca...) = c. By replicating the arguments of Steps 2(i), 2(ii) and 2(iii)

with the roles of voters and alternatives interchanged, we can conclude that f(cba..., bac...) =

f(cab..., bca...) = c and f(cab..., bac...) ∈ {a, c}. We have already established in Step 2(i) that

f(acb..., bac...) = b. Therefore voter 1 gains in profile (acb..., bac...) by reporting cab... instead

of acb.... Observe that d(acb..., bac...) = 2. Applying Proposition 3, we conclude that there

exists P2 such that (i) d(acb..., P2) < 2 (ii) f(acb..., P2) ∈ {a, c} and (iii) f(cab..., P2) = x

implies either x = b or x in worse than b according to acb..., i.e. x ∈ A − {a, b, c}. The

only candidates for P2 are (I) acb... (II) cab... (III) abc... and (IV) a transposition of a pair

of alternatives in acb... not involving a or c. Notice that efficiency implies that in each case

f(acb..., P2) ∈ {a, c} contradicting requirement (iii) for P2. Therefore it is impossible to find

P2 satisfying (i), (ii) and (iii). Consequently f(cba..., bca...) = b establishing Step 3.

Step 4: Let c, d be a pair of alternatives such that a, b, c, d are all distinct. Then voter 2

dictates over the pair {c, d}. In order to verify this claim, note that Step 2 implies that voter

2 dictates over {a, d}. Now applying Step 3, we conclude that voter 2 dictates over {c, d}.

Step 5: Voter 2 dictates over the pair {b, a}. Let c 6= a, b (we are using the assumption that

|A| ≥ 3). According to Step 2, voter 2 dictates over {a, c}. Applying Step 3, voter 2 dictates

over {b, c} and applying Step 2 again, we conclude that voter 2 dictates over {b, a}.

Steps 1-5 establish Claim 1. �

Proof of Claim 2: We assume without loss of generality that k is an integer strictly greater

than 1 and that f(P ′) = r1(P
′
2) whenever d(P ′1, P

′
2) ≤ k. Let P be a profile such that

d(P1, P2) = k + 1. We will show that f(P ) = r1(P2).

Suppose f(P ) = x. Let P̂1 be the ordering obtained by lifting x to the top of P2 leaving

all other alternatives unchanged. Formally,

1. r1(P̂2) = x and

2. for all y, z 6= x, yP̂1z ⇔ yP2z.

Observe that d(P̂1, P2) = t where x is t+ 1th ranked under P2, i.e. rt(P2) = x. We claim

that exactly one of the following two cases must hold.

Case A: t < k + 1

24



Case B: P1 = P̂1.

Suppose x 6= r1(P1). Let w = r1(P1) so that wP1x. Since x is efficient in the profile P ,

we must have xP2w, i.e. the rank of w in P2 is at least t+ 2. In order to transform P1 to P2,

the minimal number of transpositions required are (i) at least one to make x first ranked and

(ii) at least t to make w, t+ 2 ranked starting from rank 2. Hence d(P1, P2) = k+ 1 ≥ t+ 1.

This implies that Case A holds.

Now suppose x = r1(P1). If the ranking of any pair of alternatives y, z distinct from x

differs between P1 and P2 (i.e. yP1z and zP2y), then d(P̂1, P2) < d(P1, P2) and Case A holds

again. The only remaining possibility is that P1 and P2 agree on all alternatives distinct

from x. In this case P1 = P̂1 and Case B holds. Note that if Case B holds, k + 1 = t so

that Case A does not hold. Summarizing, we have shown that Cases A and B are mutually

exclusive and exhaustive. We now deal with each case in turn.

Case A: Since d(P̂1, P2) < k, the induction hypothesis applies to the profile (P̂1, P2). There-

fore f(P̂1, P2) = r1(P2). Suppose r1(P2) = y 6= x. Observe that in voter 1 in (P̂1, P2)

gains by announcing P1. Applying Proposition 3, we conclude that there exists P̂2 such that

(i) d(P̂1, P̂2) < d(P̂1, P2) (ii) f(P̂1, P̂2) = x and (iii) either f(P1, P̂2) = y or yP̂1f(P1, P̂2).

Now the hypothesis of Case A and (i) implies that f(P̂1, P̂2) = r1(P̂2). Then the induction

hypothesis and (ii) implies r1(P̂2) = x.

We claim that d(P̂1, P1) = d(P1, P2) − t. First observe that by triangle inequality,

d(P̂1, P) ≥ d(P1, P2) − t. We will show that the equality is exact. Observe that for any

y, z 6= x, any one of the following three is true:

[yP1z and yP2z]⇔ [yP1z and yP̂1z] (20)

[yP1z and zP2y]⇔ [yP1z and zP̂1y] (21)

e

[zP1y and yP2z]⇔ [zP1y and yP̂1z] (22)

In other words if for any pair of alternatives y, z 6= x, if the relative rankings of y and

z agree (disagree) in P1 and P2, then they also agree (disagree) in P1 and P̂1. Also observe

that any alternative that is ahead of x in P2 will be below x in P1 and vice versa; otherwise

x /∈ PE(P1, P2). Moreover, for any such alternative z, the relative ranking of x and z is

the same in P1 and P̂1. Summarizing we have, [xP1z and zP2x] ⇒ [xP1z and xP̂1z]. Since

|{z|zP2x}| = t, equation (1), (2) and (3) together with the last argument imply that d(P̂1, P1)

can atmost be (k + 1) − t. Hence d(P̂1, P) ≤ d(P1, P2) − t. Combining this last inequality

with the inequality above we have d(P̂1, P) = d(P1, P2)− t.
By the triangle inequality, d(P1, P̂2) ≤ d(P1, P̂1) + d(P̂1, P̂2). Since we have established

that d(P1, P̂1) = d(P1, P2) − t and d(P̂1, P̂2) < t by assumption, we have d(P1, P̂2) <

d(P1, P2) = k + 1. The induction hypothesis therefore applies to the profile (P1, P̂2), i.e
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f(P1, P̂2) = r1(P̂2). But we have already established that r1(P̂2) = x. But in order for re-

quirement (iii) for P̂2 to hold, we must either have x = y or yP̂1x. Since x 6= y by assumption

and x = r1(P̂1) by construction, neither can hold and we have a contradiction. Therefore

x = y must hold, so that f(P ) = r1(P2). This completes the argument for Case A.

Case B: Suppose that (P1, P2) are such that d(P1, P2) = k+1, r1(P1) = x, P1 and P2 agree on

all alternatives other than x and f(P1, P2) = x 6= r1(P2) = y. It is clear that x = rk+2(P2).

Using Claim 1, we can also assume that k ≥ 1; otherwise d(P1, P2) = 1 which has been dealt

with in Claim 1. Construct P ′2 by transposing x with the alternative immediately above it

in P2. Since k ≥ 1 and x = rk+2(P2), r1(P
′
2) = y. We must also have d(P1, P

′
2) = k and

f(P1, P
′
2) = y by the induction hypothesis. Since yP2x, it follows from Proposition 3, that

there exists P ′1 such that (i) d(P ′1, P2) < k + 1 (ii) f(P ′1, P2) = y and (iii) f(P ′1, P
′
2) = w

implies either w = x or xP2w.

We first claim that r1(P
′
1) 6= x. If this were true, then d(P ′1, P2) > k + 1. To see this

observe that P ′1 and P2 agree on the rankings of all alternatives other than x. Hence, for

all P1 such that r1(P1) = x, d(P1, P2) ≥ k + 1 = d(P ′1, P2). So let z = r1(P
′
1). If xP2z,

then, it would require at least k + 1 transpositions from P2 for z to be first ranked, i.e.

d(P ′, P2) ≥ k+ 1. This implies that zP2x. The construction of P ′2 implies that zP ′2w. There

are two cases to consider. First, let w 6= x. Since zP ′1w, f(P ′1, P
′
2) = w contradicts the

assumption that f is efficient at profile (P ′1, P
′
2). Hence P ′1 satisfying requirements (i), (ii)

and (iii) cannot exist. The other case to consider is w = x and z is ranked immediately

above x in P2. This means that x is ranked immediately above z in P ′2. If there exists an

element between z and x under P2 the first case applies. If z is ranked immediately above

x in P2, then z = rk+1(P2). In P ′1 z is the top-ranked element. Therefore, the minimum

distance between P ′1 and P2 is k, i.e., d(P ′1, P2) ≥ k. But as mentioned above d(P ′1, P2) has

to be less than k + 1. Therefore the only allowable case is d(P ′1, P2) = k. Since z = rk+1(P2)

and d(P ′1, P2) = k, it must be the case that for all x, y 6= z,

[xP ′1y ⇔ xP2y] (23)

. Otherwise, d(P ′1, P2) > k. Equation (4) together with the fact that k ≥ 1 implies that

there exists a v ∈ A such that,

vP ′1x and vP2x (24)

But then x /∈ PE(P ′1, P2). Hence P ′1 satisfying requirements (i), (ii) and (iii) cannot exist.

Therefore f(P1, P2) = r1(P2) completing the argument for Case B. �

An obvious implication of Theorem 3 is the following result:

Corollary 1 Assume m ≥ 3. A SCF is efficient and TS-ROBIC if and only if it is

dictatorial.
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We have seen that efficiency cannot be weakened to the assumption of unanimity because

the unanimity with status quo rule clearly satisfies unanimity. However, are there other K-

ROBIC SCFs which satisfy unanimity? We have an answer in the special case where m = 3

but not to the general question.

Proposition 4 Assume m = 3. A SCF is K-ROBIC and satisfies unanimity if and only

if it is either dictatorial or the unanimity with status quo rule.

The proof of this result is omitted. It is available from the authors on request.

6 Conclusion

In this paper we have explored the problem of mechanism design in a voting environment with

two voters where a voter’s belief about the type of the other voter are positively correlated

with her own type. Our general conclusion is that the prospects for constructing incentive-

compatible social choice functions in this environment are significantly improved relative

to the independent case. In this respect, our results parallel those in environments with

transfers and quasi-linear utility such as Crémer and Mclean (1988).

In future research we hope to extend our analysis to an arbitrary number of voters, to

other notions of correlation and to understand further, the relationship between the structure

of beliefs and incentive-compatible social choice functions.
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