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1. Introduction

How should resources be divided “fairly” or “equitably” among mem-

bers of a group or society? This is a question that human beings

have wrestled with since antiquity and it is one that remains central

in the contemporary world. For instance, should there be quotas in

private sector jobs or in university student positions for ethnic, reli-

gious or caste minorities? If such quotas are ethically justified, then

how should we decide on their quantity? How should the tax rev-

enues of the Indian Government be distributed amongst the various

States? How should the assets of a bankrupt firm be divided amongst

its creditors? How should the stock of kidneys obtained from donors

be allocated amongst potential recipients? How should property and

assets be divided amongst claimants after death or divorce?

A fundamental aspect of this question is that it is ethical or nor-

mative in character. We cannot hope to obtain insights into it by

analyzing how such decisions are or have been made in practice. It will

not be sufficient to examine the consequences on resource allocation of

the operation of institutions such as the “market” or “tradition” and

“convention” or the existing legal framework. Instead, we need to pro-

ceed axiomatically by directly attempting to define what we mean by

“equity” and “fairness” and then critically examining the consequences

of adopting such a definition. In this essay, I shall briefly review and

discuss a large literature on the problem of dividing resources when
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agents differ in their preferences over these resources. This severely

restricts the scope of the analysis and precludes discussion of several of

the issues we I have raised earlier. However, the merit of this approach

is that it uses the basic model of exchange in economic theory and

can therefore be integrated into standard Welfare Economics. For an

extensive introduction into the range and complexity of fairness issues,

the reader is referred to the elegant books of Moulin [17] and Young

[30].

It is important to emphasize here that our discussion will be confined

to the question of identifying and achieving fair outcomes. It can be

argued very reasonably that fairness is not just a matter of outcomes

but of the procedures that are used to determine these outcomes. For

instance, a procedure where a dictator or a cabal of “wise” men deter-

mine what everyone gets can be justifiably regarded as unfair irrespec-

tive of the actual allocations obtained. I shall not consider the issue

of procedural fairnesss at all; however I shall discuss the formulation

of procedures where fair outcomes are achieved in environments where

decision making is decentralized and agents are self-interested. This is

an area of game theory known as mechanism design theory. The basic

model is as follows. There does not exist a disinterested central agent

who has the information required to select a fair outcome because this

information is dispersed amongst the agents themselves. The challenge

is therefore to devise ways for these agents to communicate their private

information and undertake actions so that equilibrium outcomes when

agents fully recognize their strategic power, are precisely outcomes that

are fair.

This essay is organized as follows. In Section 2, I introduce some

theoretical considerations underlying fairness. In Section 3, I discuss

various definitions for fair outcomes that have been proposed for clas-

sical exchange economies. In Section 4, I extended the discussion to a

model with indivisible objects. In Section 5, I discuss mechanisms for

implementing fair outcomes and Section 6 concludes.
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2. General Principles

One of the most celebrated principles of the normative theory of

justice is Aristotle’s equity principle: 1

“Equals should be treated equally, and unequals unequally, in propor-

tion to relevant similarities and differences” - Aristotle, Nicomachean

Ethics.

There appear to be two different aspects of Aristotle’s principle.

The first, reflected in the requirement that “equals should be treated

equally” is an anonymity or symmetry principle across agents. Thus

agents who are identical in all respects must be treated identically.

An immediate implication is that all kinds of arbitrary or whimsical

discrimination is unfair. This seems very reasonable and few would dis-

agree with it. The second requirement, “unequals (should be treated)

unequally, in proportion to relevant similarities and differences” is how-

ever, fraught with difficulties, both philosophical and practical.

One way to interpret this requirement is to regard each individual

as comprising a list of characteristics. This list could include the per-

son’s physical characteristics, whether he likes fish, is talented at chess,

whether he works hard, drives safely, has a criminal record and so on.

From this list one would have to identify a set of relevant character-

istics. One can then further divide the set of relevant characteristics

into those one whose account individuals should not suffer adversely or

gain undue advantage (let us call this set of relevant characteristics, set

A) from and those characteristics on the basis of which discrimination

is justified or legitimate (let us call this set of relevant characteristics,

set B). In the allocation of resources across individuals, variations in

the characteristics belonging to A must be sought to be equalized. On

the other hand, variations across characteristics in set B can be used

as the basis for compensating agents differently but these differences

1I shall make no effort to review the literature on normative theories of justice,
such as those of Rawls [19], Kolm [14] [15], Sen [21] and so on.
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in compensation must be proportionate to the differences in character-

istics.

It is clear that formidable conceptual difficulties are involved here.

One of the most fundamental is the way in which we partition the set

of relevant characteristics into sets A and B. A natural and widely ac-

cepted principle is to regard A as the set of immutable or involuntary

characteristics and the set B as the set of characteristics over which

the agent exercises her decision-making capacity. Involuntary charac-

teristics definitely include physical characteristics such as gender, race

and ethnicity. In India, it would include social characteristics such as

caste. It appears to be obvious that agents should not benefit or suffer

on account of differences in these characteristics. However the equity

principle can be pushed further to argue for instance, that those with

physical handicaps should receive further compensation (such as allo-

cations for building special infrastructure appropriate for people with

disabilities) than those without such disabilities. Similarly, a person

who is poor because of the accident of birth (as a result of which he

remains illiterate) can legitimately be treated differently from an indi-

vidual who is well-off. On the other hand, it may be perfectly legitimate

to pay more to people who work harder or to charge higher insurance

premia from those who drive recklessly because the decisions to work

hard and drive recklessly are decisions for which the individual can

reasonably be held responsible for.

There are several characteristics which are hard to classify as be-

longing to A or B. Perhaps the most contentious one is ownership.

Should an agent receive more because he owns more? Moulin [17]

usefully identifies four principles of fair allocation, as Compensation,

Reward, Exogenous Rights and Fitness. In determining the allocation

of a good, the principles of Compensation, Reward and Fitness corre-

spond roughly to the questions: who needs the good the most? who

deserves it the most? and who will make the best use of it? respec-

tively. Moulin illustrates these principles with reference to a classical

story about a flute that must be given to one of four children. One
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child has the fewest toys; he therefore needs the flute the most and

gets it by the Compensation principle. Another child takes the best

care of the flute; he deserves it the most and gets it by the Reward

principle. The father of the third child owns the flute. This child gets

the flute because he can claim a right to it. The fourth child is the most

talented flute player and gets it by the Fitness principle. In terms of

our earlier discussion, the basis of the four principles, viz. need, effort,

ownership (or an exogenous right) and the ability to use an object can

be thought of as the relevant characteristics which can be taken into

account while determining whether an allocation is fair.

In this essay, I shall only discuss fair division problems of a very

simple kind. There are n agents who have divide a given amount of

resources. Two different kinds of models will be considered. One will

be the classical exchange economy and the other will be a model where

a finite set of objects has to be divided amongst the agents. As we

shall see, these models will be considered separately because they differ

in a significant respect. However, in both models, the only relevant

characteristic of the agents will be assumed to their preferences over

the resources to be divided. It is natural to assume that preference

is a characteristic which is exogenous for the agent for which she is

not “responsible”. Fairness in these settings is therefore the issue of

ensuring that agents do not benefit or suffer as a consequence of their

preferences. The next two sections discusses ways in which this may

be done.

3. Exchange Economies

Suppose there are n agents who have to share a quantity of a single

infinitely divisble resource, say money. Let us also assume quite reason-

ably that all agents like more money to less. What is a fair allocation

in this case? The answer is quite obvious. Observe that all agents

have identical preferences (they all like “more” to “less”), so they are

identical with respect to all relevant characteristics. Aristotle’s equity

principle requires all agents to be treated identically in such a situation
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(“Equals should be treated equally..”). Hence they must receive a 1
n

share of the resource.

Now suppose that there are two (infinitely divisible) goods, say bread

and water to be divided amongst the n agents. However we now al-

low for the possibility that agents differ in their valuations of different

bundles of bread and water. Suppose for instance, that some agents

like “bread more than water” while the others like “water more than

bread” 2. Does fairness still require each agent to get 1
n

th
of the total

amount of bread and water available? This no longer seems necessary.

Perhaps we could give a little less bread to the agents who like bread

less and compensate them with more water while doing exactly the

reverse for the other agents and still be fair. But what are the general

principles with which we can evaluate such decisions? 3

A natural criterion for fairness would appear to be the equalization of

the well-being of all agents. This seems very attractive but it founders

on a major conceptual obstacle. Making this notion operational would

require comparisons of the well-being of one agent with that of an-

other. However, well-being or utility in economic theory is an ordinal

concept; this renders comparisons of well-being across agents mean-

ingless. A utility function is simply a representation of preferences.

If agent i prefers a bundle of commodities x to a bundle y, her util-

ity function u will have the property that u(x) > u(y). However any

monotone transformation of u will also represent the same preferences.

For example, we could construct a new utility function w by multiply-

ing the “original” utility of every bundle x, u(x) by the number 1027.

The utility function w will represent the same preferences as u in the

sense that whenever u(x) > u(y), we will have w(x) > w(y). Now sup-

pose that agents i and j get bundles xi and xj which “equalize” their

utility, i.e ui(xi) = uj(xj) where ui and uj are the utility functions of i

and j respectively. This equalization of utilities is non-robust because

new utility functions wi and wj for agents i and j could be constructed

2I shall be more formal in due course.
3A survey of some of these issues can be found in Thomson and Varian [26].
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where wi = 2ui and wj = 5uj. These new utility functions represent the

same preferences as ui and uj but it is not true that wi(xi) = wj(xj).

So the idea of equalizing utilities is completely unworkable.

One way around this impasse was proposed in Foley [11]. 4 An

allocation is said to be envy free if no agent prefers his allocated share

to that of any other agent. The idea is that no agent would like to

exchange places with or be in the shoes of any other agent. This notion

avoids the difficulties mentioned in the previous paragraph because

no interpersonal comaprisons of utility are being made. Instead, the

allocation of agent i is being compared with the allocations of all agents

j, j 6= i using i’s utiliy function. We now make this notions more precise

by formally describing the model.

There are L commodities and n agents with L, n ≥ 1. The set of

agents is denoted by N with typical element i. The space of commodi-

ties is <L+ and elements of this space will be called commodity bundles

or simply bundles. Each agent i has a preference ordering Ri defined

over <L+. The ordering Ri ranks every pair of bundles xi, yi ∈ <L+. The

statement xiRiyi will be interpreted as “xi is at least as good as yi

according to Ri”. Since Ri is an ordering, it satisfies the properties

of completeness, reflexivity and transitivity. 5 We let Pi and Ii de-

note respectively the asymmetric and symmetric components of Ri.
6

We shall say that an ordering satisfies the classical assumptions if it is

monotone, continuous and convex. 7

4Young [30] attributes a related concept to Tinbergen [24].
5We say Ri is complete if for all bundles xi and yi, either xiRiyi or yiRixi holds.

We say that Ri is reflexive if for all bundles xi, xiRixi holds. We say that Ri is
transitive if for all bundles xi, yi and zi, xiRiyi and yiRizi implies xiRizi.

6We say that xiPiyi if xiRiyi but not yiRixi. In other words, xiPiyi implies
that xi is “strictly preferred to yi according to Ri”. We say that xiIiyi if xiRiyi

and yiRixi both hold. Thus xiIiyi implies that xi and yi are “indifferent to each
other according to Ri”.

7We say that Ri is monotone, if for all bundles xi and yi such that yi is strictly
larger in every component relative to xi, we have yiPixi. Thus “more is better”.
We say that Ri is continuous if for all bundles xi, the sets {zi ∈ <L

+|ziRixi} and
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There is an aggregate endowment Ω ∈ <L of the L commodities

which have to be shared amongst the n agents. We assume that Ω >>

0, i.e. every component of the L dimensional vector Ω is strictly greater

than 0. An allocation x ≡ (x1, .., xN) ∈ <Ln+ is an n collection of

<L+ dimensional vectors. An allocation is feasible if it satisfies the

restriction
∑

i∈N xi ≤ Ω. A feasible allocation x is simply a way to

divide the aggregate endowment amongst the n agents. Here xi is the

bundle of L commodities allocated to agent i.

Definition 1. A feasible allocation x is envy-free if, for all i, j ∈ N ,

we have xiRixj.

An allocation is envy-free if no agent prefers the bundle allocated to

another agent more than her own. No agent envies another agent and

would not like to switch places with her.

Does an envy-free feasible allocation exist? Consider the allocation

0 ≡ (0, .., 0) where each agent gets 0. Observe that this allocation is

feasible because the aggregate resource constraint is satisfied with strict

inequality. Moreover the allocation is envy-free because all agents are

getting identical bundles. The answer to the question is thus, yes,

albeit trivially. However an allocation of 0 for everyone is clearly un-

satisfactory. Goods are being thrown away which could have been used

to make all agents better-off. A more appropriate question is whether

there exist envy-free allocations which are also efficient.

Definition 2. A feasible allocation x is Pareto-efficient (or simply

efficient) if there does not exist another feasible allocation y such that

yiPixi for all i ∈ N .

A feasible allocation is efficient if it is not possible to make all agents

better-off by a reallocation of resources. It is well-known that un-

der classical assumptions on preferences, this definition of efficiency is

{zi ∈ <L
+|xiRizi} are closed. Finally, Ri is convex if for all bundles xi, yi and zi

and λ ∈ (0, 1), yiRixi and ziRixi implies (λyi + (1− λ)zi)Rixi.
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equivalent to the one where it is not possible to make at least a sin-

gle agent strictly better-off with all agents remaing at least as well-off

as before. Clearly an efficient allocation cannot involve wastage of re-

sources. It is also well-known that it imposes additional restrictions

(i.e. more than non-wastage) on allocations.

We will demonstrate the existence of envy-free and efficient feasible

allocations by explicit construction. A critical notion is that of a com-

petitive equilibrium allocation. An endowment vector ω ≡ (ω1, ..., ωN)

is a vector in <Ln+ satisfying the restriction
∑

i∈N ωi = Ω.

Definition 3. A feasible allocation x∗ is a competitive equilibrium al-

location with respect to the endowment vector ω if there exists a vector

p ∈ <L+ (called a price vector) such that for all i ∈ N
(i) p.x∗i = p.ωi and

(ii) for all xi ∈ <L+, if xiPix
∗
i , then p.xi > p.ωi.

A feasible allocation x is a competitive equilibrium allocation if his

bundle xi maximizes his preference ordering Ri over all bundles xi

which he can afford to purchase with income p.ωi.

Remark 1. If preferences satisfy the classical assumptions, a compet-

itive equilibrium allocation always exists. Moreover the competitive

equilibrium allocation is efficient. These are standard results in gen-

eral equilibrium theory - details can be found in Mas-Colell, Whinston

and Green [16].

We now state an important existence result.

Proposition 1. Assume that preferences satisfy the classical assump-

tions. An envy-free and efficient feasible allocation always exists.

Proof: Let x∗ be a competitive equilibrium allocation with respect to

the endowment vector (Ω
n
, .., Ω

n
). It follows from Remark 1 that x∗ exists

and is efficient. It only remains to show that x∗ is envy-free. Suppose

to the contrary that it violates envy-freeness. Then there exists i and j

such that x∗jPix
∗
j . Since x∗ is a competitive equilibrium allocation with
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respect to (Ω
n
, ..Ω

n
), we must have p.x∗i = p.x∗j = p.Ω

n
. However since x∗

is a competitive equilibrium allocation, x∗jPix
∗
i also implies p.x∗j > p.Ω

n

whch contradicts our earlier conclusion that p.x∗j = p.Ω
n

. Hence x∗ is

envy-free.

�

The proof of Proposition 1 demonstrates that the competitive equi-

librium allocation from equal division of the aggregate endowment, is

efficient and envy-free. Its envy-freeness follows from the property that

all agents face identical budget sets, so that they can afford the bun-

dles chosen by all other agents. Observe that the equal division of the

aggregate endowment is envy-free but not efficient in general.

We assumed that preferences satisfy classical assumptions in order to

demonstrate the existence of efficient and envy-free allocations. How-

ever these allocations can be shown to exist under weaker assumptions

(see, for instance, Svensson [23] and Varian [28]). In general there are

many efficient and envy-free allocations as shown diagrammatically in

Young [30], Appendix A.8 and Thomson and Varian [26]. How should

one choose the best amongst these allocations? Is there an allocation

which is “fairest amongst them all”? One approach is that of Baumol

[2] who proposed an iterative procedure which selects an envy-free allo-

cation. Unfortunately the procedure cannot ensure that the allocation

selected is also efficient. Recently, Domı́nguez and Nicolò [8] propose

an iterative procedure which successfully deals with this issue, at least

in the case of two agents. Their idea is to define the minimal rights

of each agent as the minimal amounts of commodities she receives at

an envy-free and efficient allocation. Once minimal rights have been

assigned to each agent, residual resources can be assigned by the same

procedure in the reduced economy and so on. The authors demon-

strate this procedure leads to the selection of an envy-free and efficient

allocation.
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Although the set of envy-free and efficient allocations may be large,

there is an important sense in which the competitive equilibrium allo-

cation from equal division, is salient. Varian [29] shows that in a econ-

omy with a continuum of agents where utility functions satisfy certain

regularity properties, an allocation which satisfies a certain regularity

property, efficiency and envy-freeness must be a competitive equilib-

rium allocation from equal division. An interpretation of this result is

that if preferences are sufficiently “diverse”, then the set of efficient and

envy-free allocations is “approximately” the set of competitive equilib-

rium allocations from equal division.

There are several alternatives to envy-freeness that have been pro-

posed. One of these is the notion of egalitarian equivalence introduced

by Pazner and Schmeidler [18].

Definition 4. A feasible allocation x is egalitarian equivalent if there

exists some reference bundle z0 ∈ <L+ such that xiIiz0 for all i ∈ N .

An allocation is egalitarian equivalent if all agents are indifferent

between it and some reference bundle that is common to all agents.

Thus agents’ well-being are being equalized in the sense that they are

all indifferent to a common reference bundle. Like envy-freeness, egal-

itarian equivalence is an ordinal notion because no interpresonal com-

parisons of utility are made. Pazner and Schmeidler [18] demonstrate

that efficient egalitarian equivalent allocations exist under very general

conditions.

To see this, consider the following line of reasoning. Fix an economy

with an endowment vector and utility functions for each agent. We

can define a utility possibility set for the economy which consists of

utility vectors (each component of such a vector denotes the utility

of an agent) which are feasible for this economy. The “north-east”

frontier of this set is the set of utility vectors which are efficient, i.e.

the utility of an agent cannot be increased without diminishing that of

another agent. If preferences are classical, this frontier is continuous,

i.e cannot have ”holes” or “jumps”. Consider an arbitrary commmodity

bundle z0 with strictly positive amounts of all goods. The following two
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observations are critical (i) for r̄ positive and large enough, the utility

vector generated by the commmodity bundle vector (r̄z0, ...., r̄z0) lies

outside the utility possibility set (ii) for r̂ positive and large enough, the

utility vector generated by the commmodity bundle vector (r̂z0, ...., r̂z0)

lies inside the utility possibility set. Now trace the path in utility space

obtained by varying r from r̂ to r̄. Under classical assumptions, this

path is continuous. Since it starts from within the utility possibility

set and terminates at a point outside it, it must intersect the frontier

somewhere. Let x̄ be the allocation in the economy which corresponds

to this point of intersection. Since it lies on the frontier of the utility

possibility set, it is efficient by definition. In addition each agent at x̄

is indifferent to some commodity bundle vector (r∗z0, .., r
∗z0). Hence,

x̄ is an efficient and egalitarian equivalent allocation. I present this

argument a little more formally below.

Proposition 2. Assume that preferences satisfy the classical assump-

tions. Let z0 ∈ <L be such that z0 >> 0. Then there exists a strictly

positive real number r̄ such that an efficient and egalitarian equivalent

allocation exists with r̄z0 as the reference bundle. Moreover, for every

such reference bundle, there is at most one efficient allocation.

Proof: I shall give a proof in the case of n = 2 and the argument

is essentially the same for the general case. Consider arbitrary utility

representations ui of the preferences Ri, i.e. for all bundles xi, yi ∈ <L+,

ui(xi) ≥ ui(yi) if and only if xiRiyi. Let U = {(a1, a2) there exists a

feasible allocation (xi, x2) such that ui(xi) = ai, i = 1, 2}. Thus U is

the utility possibility set or the set of utilities which can be generated

by allocating the aggregate endowment Ω to the two agents. Since

preferences are monotone increasing and continuous, the frontier of

this set must be downward sloping and continuous. Moreover the set

U is closed, i.e. it contains its boundary.

Now consider the point z0 in commodity space and let r0 be a positive

integer small enough so that r0z0 ≤ Ω. This is always possible because

Ω >> 0. Consider the utility vector α generated by the allocation
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( r0z0
2
, r0z0

2
). Since this allocation is feasible, α ∈ U . Let r1 be a positive

integer such that r1z0 > Ω. We can find such an r1 because z0 >>

0. Let β be the utility vector generated by the allocation ( r1z0
2
, r1z0

2
).

Clearly β /∈ U and β > 0 since preferences are monotone. Consider

the path in utility space obtained by giving the two agents the same

commodity bundle rz0
2

as r varies in the interval [r0, r1]. This path

originates at α inside the set U and terminates at β outside the set

U . Since preferences are continuous, this path is continuous. Hence,

it must intersect the boundary of U . Moreover, since the boundary

of U is downward sloping and the path is upward sloping (due to the

monotonicity of preferences), this intersection can occur only once.

Suppose γ ∈ U is the point on the frontier of U and r̄, the appropriate

value of r where the intersection occurs. Let x̄ be the allocation such

that ui(xi) = γi with i = 1, 2 (such an allocation must exist since

γ ∈ U). Note that x̄ is efficient and egalitarian equivalent with respect

to the reference bundle r̄z0.

�

It is important to appreciate that the reference bundle r̄z0 may not

be feasible. For instance suppose z0 = (Ω
2
, Ω

2
). Typically, this allocation

will not be efficient, i.e. the associated utility vector will lie strictly in

the interior of the utility possibility set. In order to find the reference

bundle r̄z0 we have to move along the ray (in commodity space) joining

the origin to the point (Ω
2
, Ω

2
). Since the latter point is not efficient, we

have to move further north-east along this ray which will imply that

the reference bundle is not feasible.

According to Proposition 2, an arbitrary consumption bundle can

be used to generate an efficient and egalitarian equivalent allocation.

It follows that the set of efficient and egalitarian efficient allocations

(like the set of efficient and envy-free allocations) can be large. Pazner

and Schmeidler [18] show that efficient and egalitarian equivalent allo-

cations exist quite generally in production economies where sometimes

efficient and envy-free allocations do not.
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We now turn to some notions of equity formulated by Thomson [25]

based on the notion of opportunities. The fundamental idea is that an

allocation is equitable if all agents face equal or equivalent opportuni-

ties.

A natural condition following Kolm [14] is to require all agents to

maximize their preferences with respect to the same budget or oppor-

tunity set. An allocation obtained in this manner can be considered

as equitable since differences in the bundles obtained by various agents

can be attributed solely to differences in tastes (i.e. preferences). The

difficulty with this idea (and indeed, with the entire approach) is that

the opportunity sets cannot be determined independently of prefer-

ences. To see this, suppose that all agents faced the same budget set

<L+ irrespective of their preferences. Then one could always find pref-

erences for each agent such that maximizing choices do not constitute

an allocation (there will be excess demand for some commodity).

Thomson [25] deals with this issue by postulating a family of budget

sets B where each B ∈ B is a non-empty subset of <L+. It is convenient

to think of B as the collection of common budget sets to be given to

the agents for different preferences of the agents.

Definition 5. The feasible allocation x is an equal opportunity alloca-

tion relative to the family B if there exists B ∈ B such that for each

i ∈ N , xi maximizes Ri in B.

In an equal opportunity allocation (with respect to a family B) all

agents are maximizing their preferences over a common budget set.

The bundles chosen by all other agents are therefore feasible for any

particular agent. An immediate consequence of this observation is that

an equal opportunity allocation is envy-free. Moreover, if Ω
n
∈ B for all

B ∈ B, then the equal opportunity allocation with respect to B, say x

will have the property that xiRi
Ω
n

for all i ∈ N .

Is it possible to select the family B in order that equal opportunity

allocations exist and are efficient? The answer is yes under classical

assumptions on preferences. If these assumptions are satisfied, then

competitive allocations exist (Remark 1). Then B can be defined to
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be the collection of linear budget sets obtained from the equal divi-

sion of the endowment bundle, Ω
n

, for all competitive equilibrium price

vectors as the preferences of agents vary. This family B will generate

the competitive equilibrium allocation from equal division of the en-

dowment which is efficient. Thomson [25] provides additional axioms

under which equal opportunity allocations coincide with the competi-

tive equilibrium allocations from the equal division of the endowment.

He also demonstrates the existence of other families B which generate

different solutions when these additional axioms do not hold.

Thomson introduces two other notions of equitable allocations based

on opportunities.

Definition 6. The feasible allocation x is equal-opportunity equivalent

relative to the family B if there exists B ∈ B such that for each i ∈ N ,

xi is indifferent to the maximizer of Ri on B.

This notion is clearly inspired by egalitarian equivalence. Each agent

i is indifferent between his bundle xi and the bundle that he would ob-

tain by maximizing his preferences over a common budget set B in

the family B. If B = {{z0}|z0 ∈ <L+}, then equal opportunity equiv-

alence reduces to egalitarian equivalence. If B is chosen to be set of

linear budget sets obtained from equal division of the endowment us-

ing competitive equilibrium prices (as described previously), then equal

opportunity equivalence reduces (like equal opportunity equivalence al-

locations) to the competitive equilibrium allocation from equal division

of the endowment (Thomson [25] Lemma 2).

Definition 7. The feasible allocation x exhibits no-envy of opportuni-

ties relative to the family B if for each i ∈ N , there exists Bi ∈ B such

that xi maximizes Ri on Bi and there does not exist i, j ∈ N such that

i strictly prefers some bundle in Bj to xi.

If an allocation exhibits no-envy of opportunities, agents can have

different opportunity sets but no agent envies the opportunity set of

another agent. Since we can always pick B1 = B2 = .. = BN , it

follows that if an allocation is an equal opportunity allocation with
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respect to a family B, then it exhibits no-envy of opportunities with

respect to the same family. Moreover if an allocation exhibits no-envy

with respect to some family B, then it must be envy-free. By choosing

B = {{zo}|zo ∈ <L+}, it follows that every envy-free allocation exhibits

no-envy of opportunities relative to B.

Thomson investigates the interrelationships between these concepts

and those of envy-freeness and egalitarian equivalence in a variety of

settings including those with production and public goods. Interested

readers may consult his paper for details.

4. Indivisible Objects

In this section I consider the problem of equitably allocating a finite

number of indivisible goods amongst agents. Once again, I shall as-

sume that agents differ only in respect of their preferences over these

goods. In other words, preferences are the only relevant characteris-

tic of agents. I shall assume for simplicity that there are exactly n

goods to be divided amongst n agents. The set of goods is denoted by

A = {a1, ..., an} and the set of agents N = {1, .., n} as before. Each

agent i requires only one good and likes any good more than getting

nothing. Her preferences are characterized by an ordering Ri over the

elements of A. It is assumed further that Ri is antisymmetric 8 which

implies that indifference between distinct elements of A is ruled out.

This assumption is quite natural in an environment with a finite num-

ber of goods. However, in exchange economies it is restrictive and is

incompatible with classical assumptions on preferences 9 which is why

it was not assumed in the previous section.

An allocation x is an assignment of objects to agents. It is an n-

dimensional vector whose ith component xi is the object assigned to

agent i. The possibility that an agent does not get any object will never

8We say that Ri is antisymmetric if for all aj , ak ∈ A, ajRiak and akRiaj imply
aj = ak.

9It is not compatible with continuity of preferences.
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be considered 10 so that xi ∈ A for all i ∈ N . A feasible allocation is

an allocation x with the property that xi 6= xj for all i, j ∈ N . This

restriction ensures that the same object is not assigned to two agents.

The definition of envy-freeness introduced earlier carries over to this

setting without any modifications. Thus, a feasible allocation x is envy-

free, if xiRixj for all i, j ∈ N . Since Ri is anti-symmetric, a feasible

allocation is envy-free if the object received by agent j is strictly worse

than the object received by agent i according to i’s preferences Ri. The

notion of efficiency, however requires strengthening.

Definition 8. The feasible allocation x is strongly (Pareto) efficient if

there does not exist another feasible allocation y such that yiRixi for

all i ∈ N and yjPjxj for some j ∈ N .

If a feasible allocation is strongly efficient, it is efficient. In exchange

economies, the converse is also true so that the two notions coincide.

In finite good economies however, these notions are distinct as the

following example demonstrates.

Example 1. Let N = {1, 2, 3} and A = {a1, a2, a3}. Preferences

are as follows: a1P1a2P1a3, a2P2a1P2a3 and a3P1a1P1a2. The feasible

allocation (a3, a1, a2) 11 is not efficient because (a1, a2, a3) is a feasible

allocation where a1P1a3, a2P2a1 and a3P3a2. The feasible allocation

(a2, a1, a3) is efficient because agent 3 cannot be made better-off relative

to a3. However it is not strongly efficient because (a1, a2, a3) is a feasible

allocation where agents 1 and 2 are strictly better-off while 3 is no

worse-off relative to (a2, a1, a3).

Do envy-free and strongly efficient allocations exist? Unfortunately,

no and this is the reason why the indivisible goods model is different

from that of the exchange economy. In fact envy-free allocations may

not exist. To see this let N = {1, 2} and A = {a1, a2}. Suppose

10There is no loss of generality here because we shall always be concerned with
efficient allocations.

11Here (a3, a1, a2) is the allocation where agents 1, 2 and 3 get a3, a1 and a2

respectively.



18 ARUNAVA SEN

preferences (P1, P2) are such that a1P1a2 and a1P2a2. For instance,

an estate consisting of two paintings have to be divided between two

heirs and both consider the painting a1 to be more valuable than the

other a2. Or to consider a situation from Test Cricket, let a1 and

a2 denote respectively the “good” which is the right to bat first and

second respectively on a flat wicket that is expected to crumble on the

last day. Both teams will prefer a1 to a2. Now, whatever method is

used for allocating a1 and a2, the agent/team which gets a2 will envy

the other agent/team. Clearly, an envy-free allocation does not exist.

Non-existence is a consequence of the “lumpiness” of the goods being

divided. If they could be cut “finely”, one could hope to divide them

in manner satisfactory to both agents.

There are several ways to proceed from this point. In the case of the

warring heirs, it seems to natural to introduce monetary side-payments.

Thus one might allow one of the agents to take the more desirable

object but to pay some money to the other agent. If monetary transfers

are permitted, then we have an exchange economy model once again

where efficient and envy-free allocations exist under weak assumptions.

Another approach is to acknowledge that the problem cannot be solved

satisfactorily and to try to solve it “as best as possible”. This might

involve, for instance, finding allocations which minimize the number

of envious agents, or perhaps minimizing the extent of envy of the

most envious agent. One way to operationalize the latter idea would

be the following. The envy of an agent associated with an allocation

could be the ordinal rank of the object received by the agent in her

preference ordering. Thus an agent who receives an object which is 10th

ranked has an envy of “10”. This makes sense because some agent is

getting her first ranked object. The envy associated with an allocation

could then be the maximum of envies experienced by various agents.

The most equitable allocation would then be one which minimizes this

maximal envy over all possible allocations. This procedure is equivalent

to maximizing a Rawlsian welfare function where the utility of agent i
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getting good aj is taken to be the negative of the ordinal ranking of aj

according to Ri.

A third approach is something which Young [30] terms “Rotation”.

Consider a round-robin 12 chess tournament with n players. It is well-

known both statistically and theoretically that in games between top-

level players, playing with the white pieces is significantly more advan-

tageous than playing with black. In every individual game therefore,

one player envies the other. However if n is odd, it is possible to ar-

range the tournament schedule in a manner such that each player plays

an equal number of games with white and black pieces. If n is even, it

can be ensured that for each player, the difference between white and

black games is one. Thus, even though envy exists in every game, a

version of envy-freeness in the aggregate can be ensured.

Instead of developing the three approaches described above further, I

shall focus on a fourth method which is the method used in cricket, viz.

coin tossing and randomization. This is a well-known way to resolve

(minor!) conflicts of interest. The idea here is that it may be possible

to achieve envy-freeness ex-ante, i.e. before the coin toss although there

may be envy ex-post, i.e. after the realization of the coin toss. Ex-ante

envy-freeness is possible because agents’ prospects before the coin toss

are identical.

Recall that a feasible allocation x is an n-dimensional vector with

xi ∈ A for all i ∈ N and xi 6= xj for all i, j ∈ N . Let X denote

the set of allocations. Since X is the set of all one to one maps from

the set {1, .., n} to the set {a1, .., an}, it follows that |X| = n!. Let

the members of the set X be enumerated in some way, x1, ..., xn!. A

randomized allocation consists of a collection of n! real numbers λ ≡
(λ1, ..., λn!) such that λj ≥ 0 for all j = 1, .., n! and

∑n!
j=1 λ

j = 1. A

randomized allocation is a probability distribution over X. Thus λj

is the probability with which allocation xj, j = 1, .., n! is chosen. For

example, let N = {1, 2} and A = {a1, a2}. The set X consists of two

12A round-robin tournament is one where each player plays all other players
once.
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allocations x1 = (a1, a2) and x2 = (a2, a1). A randomized allocation

is a pair (λ1, λ2) with λ1, λ2 ≥ 0 and λ1 + λ2 = 1 with the following

interpretation: λj, j = 1, 2 is the probability with which allocation j is

picked. In the cricket example, a fair coin is used so that λ1 = λ2 = 0.5

so that the probability with which each team gets assigned a1 (or gets

to bat first) is 0.5.

The notions of envy-freeness and efficiency must now be defined with

respect to randomized allocations. A natural requirement of efficiency

in the context of randomized allocations is that of ex-post efficiency. 13

Definition 9. The randomized allocation λ is ex-post efficient if λj > 0

implies xj is strongly efficient.

A randomized allocation is ex-post efficient if every allocation which

has a strictly positive probability of being chosen, is strongly efficient.

Equivalently, every inefficient feasible allocation has zero probability of

being chosen.

The appropriate definition of envy-freeness requires some discussion.

Since agents are faced with lotteries over objects, some way of evalu-

ating such lotteries must be incorporated into the model. The natural

assumption is to assume that agents use the expected utility crite-

rion of von-Neumann and Morgenstern but there is a further difficulty.

Agents’ preferences are specified in terms of an ordinal ranking over

all possible objects rather than in terms of a vN-M utility function. I

shall once again, follow the approach of Gibbard [12] and require every

agent not to envy the lottery of any other agent for any utilty function

which represents his preferences.

Definition 10. The utility function u : A → < represents the pref-

erence ordering Ri if, for all aj, ak ∈ A, u(aj) > u(ak) if and only if

ajPiak.

Definition 11. The randomized allocation λ ≡ (λ1, ..., λn!) is ordinally

envy-free if for all i, j ∈ N and all utility functions u which represent

Ri, we have

13See Gibbard [12].
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k=1 u(xki )λ

k ≥
∑n!

k=1 u(xkj )λ
k

Consider the randomized allocation λ. Then with probability λk, the

allocation xk is realized k = 1, .., n!. Agents i and j therefore faced with

objects xki and xkj respectively with probability λk. If agent i’s pref-

erences were represented by the utility function u, then i’s expected

utility evaluation of her lottery over objects would be
∑n!

k=1 u(xki )λ
k

while that of agent k’s lottery would be
∑n!

k=1 u(xkj )λ
k. Envy-freeness

would require the former expression to be larger than the latter. Ordi-

nal envy-freeness requires this inequality to hold for all utility functions

which represent Ri. It is a demanding requirement in the sense that it

guarantees the ex-ante absence of envy, independently of the cardinal

representation that agents may have of their ordinal preferences.

There is an alternative way to define ordinal envy-freeness in terms

of stochastic dominance. For all at ∈ A and Ri let B(at, Ri) = {ar ∈
A|arRiat}. Thus B(at, Ri) consists of objects which are regarded at

least as good as at according to Ri. Note that this set includes at. For

any randomized allocation λ and at ∈ A, j ∈ N and Ri let

λj(B(at, Ri)) =
∑
{k∈{1,..,n!}|xk

j∈B(aj ,Ri)} λ
k

Thus λj(B(at, Ri)) is the probability of agent j getting an object

in the randomized allocation λ, that is at least as good as object at

according to the ordering Ri.

Definition 12. The randomized allocation is stochastically envy-free if

for all i, j ∈ N and at ∈ A, we have λi(B(at, Ri)) ≥ λj(B(at, Ri)).

Consider the following example. Suppose A = {a1, a2, a3} and let i

and j be arbitrary agents. Assume a1Pia2Pia3 and consider the ran-

domized allocation λ. If λ is stochastically envy free, then the following

must hold:

(i) The probability that i receives a1 must be at least as great as the

probability that j gets it.

(ii) The probability that i receives either a1 or a2 is at least as the

probability that j gets either of the two objects.
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The condition also requires the probability of i getting at least a1

or a2 or a3 to be at least as the probability of j getting these objects

but this always holds trivially with both probabilities being equal to

one. Observe that the definition of stochastic envy-freeness does not

involve any expected utility calculation and thereby sidesteps the issue

of utility representation of preferences entirely.

The following can be shown quite easily.

Proposition 3. A randomized allocation is ordinally envy-free if and

only if it is stochastically envy-free.

Returning to the example with three players and three objects, sup-

pose that i’s preferences over objects is a1Pia2Pia3 (as before) and the

randomized allocation λ is such that i’s lottery over objects is (1
3
, 1

3
, 1

3
)

(i.e. all three objects with equal probability) while j’s lottery is (2
5
, 0, 3

5
)

(i.e. a1, a2 and a3 with probabilities 2
5
, 0 and 3

5
respectively). Then λ

is not envy-free because if i’s has a utilty function where a1 has utility

1, a2 has utility almost 0 and a3 has utility 0, i’s expected utility from

the utility is approximately 1
3

while his expected utility from j’s lottery

is approximately 2
5

which leads i to envy j. Suppose that k’s lottery

were instead (1
5
, 3

5
, 1

5
) so that sum of the probabilities of getting a1 and

a2 for j is greater than the same probability for i. Here i will again

envy j for utility functions where the utility of a2 is “almost equal” to

the utility of a1. This example demonstrates why ordinal envy-freeness

implies stochastic envy-freeness. The converse implication is also easy

to establish.

Consider the case where N = {1, 2} and A = {a1, a2}. If the agents

have different preferences 14 then there is a unique ex-post efficient

deterministic allocation which involves giving each agent her most

preferred object. Every randomized ex-post efficient allocation must

therefore be this deterministic allocation. It is also ordinally envy-free

because each agent is getting her most preferred object. The more in-

teresting case arises where the two agents have the same preferences,

14Note that only two preferences are possible here, either a1 is preferred to a2

or its reverse.
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say a1Pia2 for i = 1, 2. We have seen earlier that every deterministic

allocation in this situation generates envy. Now consider the random-

ized allocation λ which places probability λ1 and λ2 on the allocations

(a1, a2) and (a2, a1) respectively (of course, λ1 + λ2 = 1). In order for

1 not to envy 2, we must have λ1 ≥ λ2 while λ2 ≥ λ1 must hold in

order for 2 not to envy 1. Hence λ = (0.5, 0.5) is the unique ordinally

envy-free and ex-post efficient randomized allocation.

Let us now try and extend these ideas to the case where there the

number of agents and objects is arbitrary. However in order to do that,

a digression into deterministic allocation procedures is required.

Two common deterministic allocation methods for a finite number of

objects, are the Priority Method and the Top Trading Cycle Method. 15

In the Priority Method (or PM), all agents are ordered in a queue which

we call a priority. The first agent in the queue gets her best object; the

second agent then gets his best object amongst the remaining objects

and so on. In general, the rth agent in the queue gets his best object

amongst the n − r + 1 unassigned objects. The last agent gets the

object no one else has chosen.

In the Top Trading Cycle Method (or TTCM), agents start with an

arbitrary initial assignment of objects to agents with each agent getting

exactly one object. Each agent then points to the agent (which could be

herself) who has her most preferred object. Since the number of agents

and objects are finite, there must exist at least one cycle, i.e. a set of

agents i1, i2, .., iK where i1 points at i2, i2 points to i3 and so on and iK

points to i1. Objects are then traded along these cycles which means

that i1 gets i2’s object, i2 gets i3’s object and so on and iK gets i1’s

object. Agents in these cycles now withdraw with the objects they have

been assigned. The process is now repeated with the remaining agents

and objects. Since there must be a cycle at every stage, the number

of agents who withdraw at every stage must be strictly positive. This

15Young [30] Chapter 2 and Moulin [17] contain extensive discussions of these
methods.
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ensures that the algorithm terminates after a finite number of stages

or rounds.

Suppose N = {1, 2, 3} and A = {a1, a2, a3}. Preferences are as fol-

lows: a1P1a2P1a3, a1P2a3P1a2 and a1P3a2P3a3. Consider a PM where

the queue order is 1 followed by 2 followed by 3. Then 1 will get a1,

2 will get a3 while 3 will get a2, i.e the allocation is (a1, a3, a2). Con-

sider on the other hand, the TTCM where the initial assignment is

(a2, a1, a3). Then, in the first round, 2 will get a1, while in the second

round 1 will get a2 so that 3 will get a3; hence the final allocation is

(a2, a1, a3).

What is the relationship between the allocations generated by these

procedures. The next proposition provides a partial answer.

Proposition 4. Fix the preferences of all agents (P1, ..., Pn). Let x be

the allocation generated by PM for a particular priority. Then there

exists an initial assignment of objects such that the TTCM with respect

to this initial assignment is x. Conversely, let x′ be an allocation gener-

ated by the TTCM for a particular initial assignment of objects. Then

there exists a priority such that the PM with respect to this priority is

exactly x′.

Proof: Suppose x is the allocation generated by PM for some priority.

Assume w.l.o.g that x = (aσ(1), aσ(2), ..., aσ(n)) where σ : N → N is a one

to one function. Thus agent i agets object aσ(i), for i = 1, .., n. Now

consider the TTCM from the initial assignment (aσ(1), aσ(2), .., aσ(n))

and let denote x′ this allocation. Let N1 be the set of agents who

are getting their most preferred objects in x. Clearly N1 includes the

first agent in the priority. Observe that all these players will point to

themseleves in the first stage of the TTCM and withdraw with these

objects. Hence x′i = aσ(i) for all i ∈ N1. Repeating this argument with

the remaining agents and object, we can conclude that x′i = aσ(i) for

all i ∈ N , i.e. x = x′.

Now let x′ be an allocation from a TTCM from some given initial

assignment. Let N1 be the set of agents who withdraw after the first
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round after getting their best objects. Generally let Nk, k = 1, , .K be

the set of agents who withdraw in round k. Now consider a priority

where agents in N1 precede those in N2 who precede those in N3 and

so on. It is easy to verify that the PM with this priority will generate

x′. �

According to Proposition 4 every PM for a given priority is equivalent

to a TTCM for some initial distribution of objects and vice-versa. How-

ever, for a fixed priority and a given initial distribution of objects there

exists preferences for each agent such that the PM and TTCM lead to

different allocations. To see this, consider the case where N = {1, 2}
and A = {a1, a2}. Fix the priority, 1 followed by 2. In the case where

preferences are a1Pia2, i = 1, 2, (let us call this profile (I)), PM leads

to the allocation (a1, a2) while in the case where preferences are a2Pia1,

i = 1, 2, (let us call this profile (II)), this leads to the allocation (a2, a1).

Suppose the intial distribution is of objects is (a1, a2). Then TTCM in

both profiles (I) and (II) lead to the allocation (a1, a2). If, on the other

hand, the initial distribution is (a2, a1), then the TTCM leads to the

allocation (a2, a1) in both profiles (I) and (II).

The PM and the TTCM also have important efficiency properties.

Proposition 5. Fix preferences for all agents. For every priority,

the PM leads to a strongly efficient allocation. Conversely, for every

strongly efficient allocation x, there exists a priority for which PM leads

to x. Analogous properties hold for the TTCM.

Proof: Assume contrariwise that there exists a priority for which the

PM leads to an allocation x which is not strongly efficient. Hence there

exists an allocation y and a non-empty subset of agents, say N0 such

that all agents in this subset are strictly better-off in y relative to x

and all agents in N − N0 are no worse-off in y relative to x. Observe

that the first person in the queue, say agent 1 is getting her best object

in x. Hence 1 /∈ N0 and x1 = y1. But the second person in the queue,

say 2 is getting her best object given that 1 is getting object x1. Hence
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2 /∈ N0 and x2 = y2. Proceeding in this manner, it follows that x = y

and N0 = ∅, a contradiction.

Consider an arbitrary strongly efficient allocation x. We claim that x

satisfies the following property: fix a subset of agents, N0 and consider

the set of objects, say A0 not allocated to N0 under x, i.e. A0 =

A−∪j∈N0xj. Then there exists an agent j ∈ N −N0 such that xj is j’s

best object in A0. Suppose that this property does not hold for some

N0. Then, none of the agents in N −N0 are getting their best objects

in A0. Now let each agent in N −N0 point to the agent in N −N0 who

has, according to x, her best object in A0. Given finiteness, a cycle

must exist. Let objects be reallocated from x according to this cycle

keeping the allocations of agents not belonging to the cycle, constant

relative to x. Let this new allocation be denoted y. Agents belonging to

the cycle are strictly better-off in y relative to x and the others are no

worse-off. This contradicts the assumption that x is strongly efficient.

Let N0 = ∅. According to the claim just proved, there exists an agent

who gets his best object. Construct a priority where this agent is first.

After assigning this agent his best object, the claim can be used again

to assert that there exists an agent who is getting her object amongst

the remaining objects. This agent is second in the priority. Moreover,

proceeding in this manner, a complete priority can be constructed. It

is trivial to verify that the PM according to this priority leads to x.

The claims regarding the TTCM now follow from Proposition 4.

�

Proposition 5 clearly demonstrates that PM and TTCM are salient

methods for allocation if strong efficiency is a desired property of the al-

location. However they suffer from serious deficiencies from the stand-

point of equity. In the case of PM, the agents who have positions earlier

in the queue have advantages over those who follow them. In partic-

ular, the first agent in the queue gets her most preferred object while

the last agent simply gets what is left over. The TTCM is also unsat-

isfactory because the initial (arbitrary) distribution of objects strongly
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influences the allocation. Can randomization be helpful in ameliorating

these difficulties?

According to Proposition 5, every strongly efficient allocation can

be obtained as a PM with respect to some priority or a TTCM with

respect to some initial distribution of objects. It follows therefore that

every ex-post efficient randomized allocation can be thought of either

as the outcome of PMs from a randomization over priorities or as the

outcome of TTCMs from a randomization over the initial allocation of

objects. Moreover, Proposition 5 also ensures that every such random-

ized allocation will be ex-post efficient.

What randomizations over priorities or initial allocations are appro-

priate from the perspective of fairness? For priorities, the uniform

randomization is a natural candidate. In a deterministic PM, one can

imagine agents envying the priorities of the agents who precede them.

A uniform randomization over priorities ought to eliminate such envy.

Note that are n! different priorities so that a uniform randomization

would pick each of these n! priorities with probability 1
n!

. I shall denote

the PM from the uniform distribution over priorities as the Uniform

Priority Method or UPM randomized allocation. For randomizations

over the initial distributions of objects, a uniform distribution also

seems the most natural. Once again there are n! such initial distri-

butions and the uniform distribution would pick each of these initial

distributions with probability 1
n!

. I shall denote the TTCM from the

uniform distribution over initial distribution over objects as the Uni-

form Top Trading Cycle Method or UTTCM.

But which of these two methods should we choose? Fortunately this

is not a difficult decision because Abdulkadiroglu and Sönmez [1] have

shown that the two randomized allocations are identical for all possible

preference profiles of agents. A proof of this proposition is beyond

the scope of this paper. However, an example is given below which

illustrates the general result.
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Example 2. Let N = {1, 2, 3} and A = {a1, a2, a3}. Preferences

are as follows: a1P1a2P1a3, a1P2a3P2a2 and a2P1a1P1a3. The prior-

ities 123, 132, 213, 231, 312, 321 lead to the allocations (a1, a3, a2),

(a1, a3, a2) (a2, a1, a3), (a3, a1, a2), (a1, a3, a2) and (a3, a1, a2) respec-

tively. Since the priorities are each drawn with probability 1
6
, agent

1, 2 and 3’s lotteries over a1, a2 and a3 according to UPM are (1
2
, 1

6
, 1

3
),

(1
2
, 0, 1

2
) and (0, 5

6
, 1

6
) respectively. The possible initial distributions of

objects are (a1, a2, a3), (a1, a3, a2), (a2, a1, a3), (a2, a3, a1), (a3, a1, a2)

and (a3, a2, a1). The TTCM from these initial distributions lead to the

allocations (a1, a3, a2), (a1, a3, a2), (a2, a1, a3), (a1, a3, a2), (a3, a1, a2)

and (a3, a1, a2) respectively. Hence, UTTCM leads to lotteries (1
2
, 1

6
, 1

3
),

(1
2
, 0, 1

2
) and (0, 5

6
, 1

6
) respectively. But these are exactly the lotteries

generated by UPM.

The only question which remains is: does the UPM (or UTTCM)

lead to an ordinally envy-free randomized allocation? The somewhat

surprising answer is no, as can be verified from Example 2. Observe

that the probability of agent 1 getting one of his two best objects, a1

and a2 is 1
2

+ 1
6

= 2
3
. However the probability of agent 3 getting one

of these objects is 5
6

which is strictly greater than 2
3
. Therefore when

agent 1 has a utility function which gives a2 a utility “close” to the

utility of a1, his most preferred object, he will envy agent 3. Hence the

randomized allocation fails to satisfy ordinal envy-freeness.

Do ex-post and ordinally envy-free allocations exist for these pref-

erences? Consider a randomized PM where λ1, λ2, λ3, λ4, λ5 and λ6

denote the probabilities of picking the priorities 123, 132, 213, 231, 312

and 312 respectively. This generates the following lotteries over a1, a2

and a3 for agents 1, 2 and 3 respectively: (λ1 + λ2 + λ5, λ3, λ4 + λ6),

(λ3 + λ4 + λ6, 0, λ1 + λ2 + λ3) and (0, λ1 + λ2 + λ4 + λ5 + λ6, λ3). It

can be verified that a necessary and sufficient condition for ordinal

envy-freeness to hold are the following two equations are satisfied.

(i) λ1 + λ2 + λ5 = λ3 + λ4 + λ6 = 1
2

(ii) λ3 = λ4 + λ6
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A solution to these equations exists. For example, choose λ1 = λ2 =

λ5 = 1
6
, λ3 = 1

4
and λ4 = λ6 = 1

8
. This leads to lotteries (1

2
, 1

4
, 1

4
),

(1
2
, 0, 1

2
) and (0, 3

4
, 1

4
) for agents 1, 2 and 3 respectively. Moreover this

solution for λ’s is not unique - in fact the set of solutions is a convex

set.

Is it possible to find ex-post efficient and ordinally envy-free random-

ized allocations for all possible preferences of agents? Bogomolnaia and

Moulin [3] demonstrate that is this indeed possible. In fact it is possible

to reconcile ordinal envy-freeness with a notion of efficiency stronger

than ex-post efficiency, which they call ordinal efficiency. A discussion

of these issues is, unfortunately, beyond the scope of this essay.

5. Procedures Leading to Fair Outcomes

In this section, I briefly discuss some procedures whose outcomes

are equitable. A procedure consists of decisions taken by the various

agents and a rule which specifies an allocation depending on the de-

cisions taken. Why is a procedure necessary at all? There are two

reasons. The first is an assumption that though the collective goal of

the agents is fairness, their behaviour as individuals is self interested.

For instance consider the case of the classical exchange economy where

an aggregate endowment Ω has to be divided amongst n > 1 agents.

If a particular agent is asked to make the division and allocate various

shares to everyone, then he is likely to keep the entire bundle Ω to him-

self. In that case, a natural solution might be to turn to a disinterested

arbiter or referee 16 and ask her to make the decision. For instance,

the arbiter could be asked to compute the competitive equilibrium al-

location from equal division of Ω and implement the solution. This

difficulty with this approach is that the arbiter (being an “outsider”

or a computer) is unlikely to have the information regarding agent

preferences required to compute the equitable allocation. Since these

preferences are not known to the arbiter, they have to be solicited from

the agents themselves. However rational agents will then realize that

16The arbiter need not be a “real” person - it could be a computer.
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they it may be advantageous to misrepresent their true preferences. In

the “equilibrium” that obtains when agents recognize their strategic

possibilities, there is no guarantee that the allocation received by the

agents is the competitive equilibrium allocation from equal division of

Ω with respect to the agents true preferences. The informational asym-

metry between the agents and the arbiter is the second reason why a

procedure is required.

For most of this section I shall be concerned with the classical ex-

change economy where there are n agents with preferences (R1, ..., Rn)

who have to divide between themselves an aggregate resource endow-

ment Ω ∈ <L++. It will sometimes be convenient to consider utility rep-

resentations ui of preferences Ri. The particular representation chosen

will have no bearing on any of the results. It is assumed that Ri is

continuous and increasing for all i = 1, .., n.

One of the best-known procedures for dividing resources is the method

of Divide and Choose (Crawford [5], Dubins and Spanier [9], Kolm [14],

Steinhaus [22]; see also Brams and Taylor [4] for a survey.) This method

applies in the special case where n = 2. One of the agents, say 1 is

designated as the divider. She proposes a split (x,Ω − x) of Ω where

x ∈ <L+. The other agent, 2 called the chooser, chooses one of the

portions x and Ω− x and the divider gets to keep the other portion.

How should the divider propose the split and which portion should

the chooser pick? The Divide and Choose Game is a finite game of

complete information 17. A strategy for agent 1 is a split and a strategy

for agent 2 is a function which allocates a portion to each agent for every

possible split. If agent 2 is rational, she will pick the portion which gives

her more utility, i.e. when faced with the split (x,Ω− x), she chooses

x if u2(x) > u2(Ω − x) and Ω − x otherwise. Agent 1 anticipating 2’s

rational behaviour will therefore solve the following problem:

17Details may be found in Gibbons [13], Chapter 2.
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max
x

u1(x)

subject to u2(Ω− x) ≥ u2(x)

Let x∗ be a solution to the problem above. The equilibrium of

the game can be thought as follows. Agent 1 proposes the division

(x∗,Ω− x∗) and asks agent 2 to pick Ω− x∗. In view of the constraint

u2(Ω − x∗) ≥ u2(x∗), a rational agent 2 will choose Ω − x∗. The so-

lution described above is the subgame perfect Nash equilibrium of the

Divide and Choose game and has been computed using the well-known

Backwards Induction Algorithm of Kuhn 18.

The main interest in this game lies in the fact that the solution

(x∗,Ω−x∗) is an envy-free allocation. (Note that here, x∗ is the portion

received by agent 1 and Ω−x∗, the share received by 2.) The constraint

ensures that agent 2 does not envy 1. Now suppose that agent 1 envies

agent 2, i.e. u1(Ω − x∗) > u1(x∗). First note that since preferences

are continuous, it must be true that u2(Ω − x∗) = u2(x∗). Therefore

the split (Ω− x∗, x∗) also satisfies the constraint and leads to a higher

value of the maximand (since u1(Ω−x∗) > u1(x∗) by hypothesis). This

contradicts our assumption that x∗ solves the maximization problem.

The divide and choose solution (x∗,Ω − x∗) may not, however be

efficient. In order to see this assume that the utility functions ui,

i = 1, 2 are twice continuously differentiable. Let uji (yi), j = 1, , ., L

and i = 1, 2 denote the jth partial derivative of the function ui evaluated

at the consumption bundle yi for agent i. Assuming that the solution

(x∗,Ω− x∗) is interior, it must satisfy

uj
1(x∗)

uk
1(x∗)

=
uj
1(x∗)−uj

2(Ω−x∗)

uk
1(x∗)−uk

2(Ω−x∗)

for all j, k ∈ {1, .., L}. This is clearly different from the necessary and

sufficient condition for efficiency which is

uj
1(x∗)

uk
1(x∗)

=
uj
2(Ω−x∗)

uk
2(Ω−x∗)

18Details can again be found in Gibbons [13].
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for all j, k ∈ {1, .., L}. Observe, however that the two conditions are

equivalent in the special case where the two agents have identical pref-

erences, i.e. u1 = u2. Therefore the equilibrium in the Divide and

Choose method is not efficient in general unless further assumptions

are made on preferences. Another important feature of this method

is that its outcome is the envy-free allocation most preferred by the

divider (Kolm [14], Crawford [5]).

There have been several generalizations of the Divide and Choose

Method to n players (see Brams and Taylor [4]). Here, I only present

a method due to Thomson [27] which he calls the Divide and Permute

method. Each player i = 1, .., n proposes a permutation σi of the set

N . 19 In addition, two designated agents, say 1 and 2 also announce

feasible allocations x1 and x2. The outcome of an announcement vec-

tor ((x1, σ1), (x2, σ2), σ3, ..., σn) is completely described by the following

two rules:

(i) if x1 6= x2, then all agents get the 0 bundle and

(ii) if x1 = x2 = x, then the outcome is σ1 ◦ σ2 ◦ ... ◦ σn(x).

Agents 1 and 2 propose feasible allocations. If they differ in their

proposals, then all agents get nothing. Suppose they propose the same

feasible allocation x. Then the final allocation is σ1 ◦ .... ◦ σn(x) where

σi is the permutation announced by agent i, i = 1, .., n. In other words,

each agent i gets a component of the vector x, say xk where k is the

image of i in the composed permutation σ1 ◦ ... ◦ σn. An observation

which is critical to the proof of the proposition which follows is that

for every agent i, for every n − 1 tuple (σ1, .., σi−1, σi+1, .., σn) and

k ∈ {1, .., n}, there exists σi such that σ1 ◦ .... ◦ σn(i) = k. Thus

no matter what permutations the other agents announce, agent i can

announce a permutation which will give him the kth component of x

19A permutation σi of the set N is a one-to-one map σi : N → N . The compo-
sition of any two permutations σi and σj denoted by σi ◦σj is defined by σi(σj(k))
for all k = 1, .., n. It can be easily verified that σi ◦ σj is also a permutation of the
set N . The identity permutation is the one where each element of N is mapped to
itself.
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for any k. This is an elementary fact regarding the composition of

permutations and can be verified easily.

The rules of Divide and Permute in conjunction with a preference

ordering for every agent (R1, .., Rn) consitutes a game in normal form
20. The best-known and most widely used solution concept for such

games is that of Nash equilibrium. In the present context, a Nash

equilibrium is an n-tuple ((x̄1, σ̄1), (x̄2, σ̄2), σ̄3, .., σ̄n) such that no agent

i can be strictly better-off (with respect to her preference ordering

Ri) by deviating unilaterally from it 21. The set of Nash equilibium

outcomes of the Divide and Permute game coincides with the set of

envy-free allocations.

Proposition 6. Fix an arbitrary n-tuple of preferences (R1, .., Rn).

Every Nash equilibrium of the Divide and Permute game is envy-free

with respect to (R1, ..., Rn). Conversely, every envy-free allocation with

respect to (R1, .., Rn) can be supported as a Nash equilibrium of the

Divide and Permute game.

Proof: Let ((x̄1, σ̄1), (x̄2, σ̄2), σ̄3, .., σ̄n) be an arbitrary Nash equilib-

rium of the Divide and Permute game. It must be the case that x̄1 = x̄2.

Suppose this was false. Then both agents 1 and 2 are getting the bun-

dle 0. Agent 1 can deviate by proposing the same allocation x̄2 as agent

2. Moreover by announcing a suitable permutation, he can ensure that

he obtains a strictly positive bundle (since x̄2 is an allocation, at least

one of its component must be strictly positive). Since R1 is increasing

1 will be strictly better-off by deviating which contradicts the hypoth-

esis that ((x̄1, σ̄1), (x̄2, σ̄2), σ̄3, .., σ̄n) is a Nash equilibrium. Suppose

therefore that x̄1 = x̄2 = x. The final allocation is a permutation of

the components of x which is denoted by σ(x). Suppose that agent i

20A game in normal form is a collection 〈N,S1, ..., Sn, π1, ...πn〉 where N is the set
of players, Si, i = 1, .., n is the strategy set for player i and π : S1×S2×...×Sn → <
is i’s payoff function. Details can be found in Gibbons [13] Chapter 1.

21More generally, (s̄1, .., s̄n) ∈ S1 × ... × Sn is a Nash equilibrium of
〈N,S1, ..., Sn, π1, ...πn〉 if πi(s̄i, s̄−i) ≥ πi(sis̄−i) for all si ∈ Si and i = 1, .., n.
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is getting xk (determined by the permutations of all agents). By uni-

laterally deviating, i can obtain any component of x. None of these

deviations can make i better-off by the definition of Nash equilibrium.

It follows that σ(x) is envy-free.

Now pick an envy-free allocation x. Consider the strategy profile

where all agents 1 and 2 propose x and all agents announce the identity

permutation. Then the outcome according to the rules of Divide and

Permute is x. It remains to show that these strategies constitute a Nash

equilibrium, i.e. no agent can be strictly-off by deviating. Agents 1 and

2 by unilaterally deviating with respect to the announced allocation

will only get 0 which will not make them better-off. By deviating

with respect to the permutation each agent can get only a different

component of x. By envy-freeness of x, xiRixk for all i and k so that

none of these deviations are worthwhile for any agent. Hence these

strategies constitute a Nash equilibrium. �

As with Divide and Choose, Divide and Permute does not guarantee

efficiency. Thomson [27] provides a more elaborate procedure where all

Nash equilibrium allocations are efficient, in addition to being envy-

free. Two papers which consider procedures which generate efficient

egalitarian allocations are Crawford [6] and Demange [7].

The theory of designing procedures whose outcomes (or equilibria)

satisfy some fairness and efficiency requirements is part of the more

general theory of implementation. A survey of these issues can be

found in the essay by Dutta [10] in the present volume.

6. Conclusion

In this essay I have attempted to discuss some concepts in the theory

of fairness and equity in models where agents with different preferences

have to share a fixed quantity of resources. I have pointed out that the

scope of this theory is somewhat narrow because it only considers the

case where agents differ only with respect to a single relevant charcter-

istic, viz. preferences. Nevertheless, it is a rich and elegant theory that

explores the interaction between axioms relating to fairness, efficiency
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and incentives. There is a substantial literature which examines similar

issues in other but related contexts. Some of this work has implica-

tions for public policy, for instance, the recent work on the allocation of

kidneys amongst potential transplant patients (see Roth and Sönmez

[20]). For a clear and stimulating discussion of many of these issues,

the reader is again referred to Moulin [17] and Young [30].
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