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Abstract. In this paper we analyze allocation problems where an ef-
ficient rule can be implemented in dominant strategies with balanced
transfers. We first prove an impossibility result in the homogenous
goods case when preferences over these goods are allowed to be suffi-
ciently diverse. We then consider a package assignment problem where
the planner can bundle or package various units of the homogenous
goods and wishes to allocate the packages efficiently. We characterize
the package schemes for which an efficient rule in the associated pack-
age assignment problem can be implemented in dominant strategies with
balanced transfers.

1. Introduction

In this paper we consider two allocation problems and analyze the possi-
bility of identifying domains of preferences over which efficient outcomes can
be implemented in dominant strategies with balanced transfers. Preferences
of the players or agents are assumed to be quasi-linear and their valuations
for the commodities are assumed to be private information. The objective
of the planner is to design a mechanism that attains the following:

(1) each agent has dominant strategy incentives to reveal the truth and
(2) the outcome in every state of the world is efficient.

The former requires that truthful reporting is a dominant strategy of all
agents under all profiles or states of the world. The latter requires the
allocation to maximize the sum of utilities it generates and also for aggregate
transfers to be balanced.

Although the requirements above are stringent, there are important theo-
retical reasons for investigating environments and allocation problems where
they can be satisfied. Some of these reasons are elucidated in Section 1.1
and a more complete discussion can be found in Mitra and Sen [12]. An
example of an allocation problem and an environment where all the objec-
tives can be reconciled is the single machine sequencing problem with linear
costs, first analyzed in Suijs [13]. The model and results were generalized in
Mitra [10], [11].

Our objective in this paper is to extend this line of research to another
familiar class of allocation problems, that of allocating m homogenous indi-
visible commodities amongst n agents. For instance, the commodities could
be identical plots of land and the agents could be farmers. Each farmer
can receive and (possibly) has use for more than one plot of land. These
valuations, however are private information. Agents can be compensated by
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money and utility functions are quasi-linear. Efficiency requires the m units
to be allocated in a way which maximizes the sum of agent utilities from the
commodities. Moreover transfers must be zero in the aggregate. The ques-
tion we address is the following: does there exist a reasonable restriction on
agent valuations so that efficiency can be attained with dominant strategy
incentives for agents to reveal their valuations? Our result in this case is
negative: we show that these requirements are mutually incompatible on
any domain that satisfies a mild richness condition.

In view of our negative result, we analyze a variant of the problem above
where the planner can bundle or package various units and wishes to allocate
these packages in a fully efficient way in dominant strategies. If there are n
agents and m units, a package scheme is an n vector (q1 ≤ q2 ≤ . . . ≤ qn)
with q1 + q2 + . . . + qn = m. Note that efficiency in this context is weaker
than standard efficiency. For instance, suppose that n = 3, m = 6 and the
package scheme is the vector (1, 2, 3). Here the planner is constrained to give
3 units to one agent, 2 to another and 1 to the third while standard efficiency
may require all 6 units to be given to one agent. We characterize package
schemes which have the property that there exists some admissible, non-
trivial domain over which it can be implemented efficiently with balanced
transfers.1 We can show that the scheme (1, 2, 3) can be implemented in the
sense above in the n = 3, m = 6 case and is indeed, the only one with this
property.

1.1. Related Literature. In the mechanism design literature an important
result is that in the quasi-linear setting, the class of Vickrey-Clarke-Groves
(or VCG) mechanisms (Vickrey [15], Clarke [1] and Groves [3]) achieves
truth telling in dominant strategies and guarantees an efficient allocation
in every state. Moreover if domain of valuation is convex the the VCG
mechanisms are the only ones that have these properties (Holmström [6]).2

In our problem we assume that our domain is convex which implies smooth
connectedness. Hence, in our framework too, VCG mechanisms are the only
mechanisms that works.

The main difficulty with VCG mechanisms is that in typical domains they
are not budget balancing (Groves and Ledyard [4], Green and Laffont [2],
Hurwicz [7], Hurwicz and Walker [8] and Walker [16]). The failure to obtain
balanced VCG mechanisms is quite serious since under these circumstances,
the social optimum in the second-best sense may not require getting the
decision on the allocation exactly correct in terms of efficiency. There are a
number of papers such as Groves and Loeb [5], Tian [14] and Liu and Tian
[9] which have investigated the structure of pure public goods problems
where full efficiency can be attained with dominant strategies. Results in
the same spirit for sequencing problems have been established by Suijs [13].
There is therefore a compelling reason to investigate domains on which VCG
mechanisms “work”.

1Efficiency here is, of course, with respect to the given scheme.
2Holmström [6] showed that if a domain is “smoothly connected” then we have the

uniqueness of VCG mechanisms. Since convex domains are smoothly connected, unique-
ness of VCG mechanisms also follow when the domain is convex.
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2. Homogenous Goods Problem: An Impossibility Result

We now consider the problem of allocating m identical units of an object
amongst n agents. The main result is that there are no “non-trivial” domains
over which an efficient rule can be implemented by balanced transfers.

Let N = {1, 2, . . . , n} denote the finite set of n agents. Let m denote
the number of identical indivisible units of a given commodity to be al-
located to these n agents. Let θj(k) ∈ <+ represent the utility of the
jth agent if she receives k units where k ∈ {0, 1, 2, . . . ,m}. The vector
θj = (θj(1), . . . , θj(m)) ∈ <m

+ represents the type of agent j. We make two
basic assumptions regarding types.

(1) θ(k + 1) ≥ θ(k) for all k = 1, . . . ,m− 1, i.e. receiving more units is
no worse than not receiving them.

(2) θj(0) = 0, i.e. the utility of receiving no units is normalized to zero.

The domain of type vectors of agent j is denoted by Θ ⊆ <m
+ . A state

is a set of n vectors θ = (θ1, . . . , θn) ∈ Θn. An allocation is a vector of
non-negative integers x = (x1, . . . , xn) such that xj ∈ {0, 1, 2, . . . ,m} and∑

i∈N xi = m. Let X denote the set of all possible allocations. Given an
allocation x = (x1, . . . , xn) ∈ X, the utility of an agent j with type θj ∈ Θ
is Uj(xj , tj ; θj) = θj(xj) + tj where tj ∈ < is the transfer that she receives.
A multi-unit allocation problem Γ is a triple 〈N,m, Θ〉.

Definition 2.1. An allocation x∗ ∈ X is efficient for state θ ∈ Θn if x∗ ∈
arg maxx∈X

∑
j∈N θj(xj).

An efficient rule (also denoted by x) associates an efficient allocation with
every state θ ∈ Θn. The main objective of the planner is to ensure an efficient
allocation in every profile. The difficulty however is that agents have private
information about their valuations. The planner therefore has to design a
mechanism to induce the agents to reveal their private information. It is
well known that by applying the Revelation Principle we can concentrate
on direct revelation mechanism where agents report their types and, based
on their reports, the planner decides (i) an allocation of the m goods and
(ii) a transfer for each agent. Formally, a (direct) mechanism M is a pair
〈x, t〉, where x ∈ X and t ≡ (t1, . . . , tn) : Θn → Rn. If M = 〈x, t〉 is the
mechanism, then an announcement θ̂ = (θ̂1, . . . , θ̂n) ∈ Θn, results in agent j

of type θj getting utility Uj(xj(θ̂), tj(θ̂); θj) = θj(xj(θ̂)) + tj(θ̂).

Definition 2.2. An efficient rule x∗ : Θn → X for Γ = 〈N,m, Θ〉 is imple-
mentable, if there exists a mechanism M = 〈x∗, t〉 such that, for all j ∈ N ,
for all θj , θ

′
j ∈ Θ and for all θ̂−j ∈ Θn−1, we have

Uj(x∗j (θj , θ̂−j), tj(θj , θ̂−j); θj) ≥ Uj(x∗j (θ
′
j , θ̂−j), tj(θ′j , θ̂−j); θj).

In other words the mechanism induces each agent to reveal their type
truthfully independent of what they believe about the announcements and
true types of the other agents. It is obvious that when agents are truthful,
an efficient allocation is achieved. In addition to the requirements above,
we impose budget balancedness.
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Definition 2.3. An efficient rule x∗ in Γ = 〈N,m, Θ〉 is implementable with
balanced transfers if there exists a mechanism M = 〈x∗, t〉 that implements
it and furthermore

∑
j∈N tj(θ) = 0 for all θ ∈ Θn.

Thus, an efficient rule x∗ is implementable with balanced transfers if it
can be implemented in a manner such that aggregate transfers are zero in
every state. In such problems, incomplete information does not impose any
welfare loss as the transfers are within the agents. Our goal is to identify
problems Γ = 〈N,m, Θ〉 which have the property that there exists an efficient
rule which can be implemented by balanced transfers. In order to do so, we
introduce a minimal richness requirement on domains.

Definition 2.4. The domain Θ is minimally rich if it satisfies the following
conditions:

(1) There exists α, β ∈ Θ such that α(k) > β(k) ≥ 0 for all integers
k ∈ {1, 2, . . . ,m} and α(m) > α(m − r) + r

∑r
p=0 β(p) for all r ∈

{1, 2, . . . ,m}.
(2) Θ is convex, that is if α, β ∈ Θ then λα + (1 − λ)β ∈ Θ for all

λ ∈ [0, 1].

The first part of the minimal richness assumption guarantees the exis-
tence of two sufficiently “diverse” type vectors. The vector α must strictly
dominate the vector β. Moreover the mth or last component of the α must
be strictly greater than the sum of the rth component of α and r times the
sum of the first r components of β. Observe that it is satisfied if the vector
(0, 0, . . . , 0) and any other strictly positive vector exists in the domain. In
fact for any α with distinct components, we can satisfy the condition if we
can pick another feasible type vector which is sufficiently smaller than α
componentwise. In this sense we can say that the condition is satisfied if we
can pick two type vectors, one of which is sufficiently larger than the other.

Why do we impose an assumption such as (1) and why do we think that it
is appropriate to refer to it as a requirement of non-triviality? The following
example clarifies these issues.

Example 2.5. Let n = m and Θ̄ = {λα + (1 − λ)β : ∀λ ∈ [0, 1]} where
α ≡ (α(1), . . . , α(n)) = (a, . . . , a), β = (β(1), . . . , β(n)) = (b, . . . , b) and
a > b > 0. In other words, each agent has zero marginal utility for units in
excess of one. The domain fails to satisfy minimal richness because α(n) = a
and α(n−1)+β(1) = a+b implies that α(n) < α(n−1)+β(1).3 The domain
is such that all efficient rules allocate exactly one unit to all agents in every
state, that is x∗(θ) = (x∗1(θ) = 1, . . . , x∗n(θ) = 1) for all θ ∈ Θ̄. Clearly there
are no incentive problems and the efficient rule can be implemented with no
transfers (no announcements are required either).

Minimal richness “forces” the efficient rule to have some variation across
states. In particular, for every agent j, it guarantees the existence of a state
where j receives all m units. The example makes it clear that without an
assumption of this sort, implementability with balanced transfers may be
satisfied trivially. We can now present our general impossibility theorem.

3This condition is a violation of condition (1) of minimal richness for m = n and r = 1.
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Theorem 2.6. Let Γ = 〈N,m, Θ〉 be a multi-unit allocation problem where
Θ is minimally admissible. Then Γ cannot be implemented with balanced
transfers.

Proof: Let Γ = 〈N,m, Θ〉 be a multi-unit allocation problem where Θ is
minimally admissible and let x∗ be an efficient rule in Γ. Since the do-
main is convex and transfers are balanced, the results of Holmström [6] and
Walker [16] can be applied to infer that the implementing mechanism can
be assumed w.l.o.g to be a VCG mechanism and that x∗ must satisfy the
following condition: For all pairs of profiles θ, θ′ ∈ Θn, we must have

(2.1)
∑
S⊆N

(−1)|S|
∑
i∈N

θi(x∗i (θ(S))) = 0

where θ(S) = (θ1(S), . . . , θn(S)) ∈ Θn is a state such that θj(S) = θj if
j 6∈ S and θj(S) = θ′j if j ∈ S.

Let α, β be type vectors which satisfy condition (1) of minimal richness
(i.e α(k) > β(k) for all k ∈ M and α(m) > α(m − r) + r

∑r
p=0 β(p) for

all r ∈ M). Consider a pair of states θ, θ′ ∈ ΘN where θ = (α, . . . , α) and
θ′ = (β, . . . , β). Given any S ⊆ N , θ(S) = (θ1(S), . . . , θn(S)) ∈ Θn where
θj(S) = θj = α if j 6∈ S and θj(S) = θ′j = β if j ∈ S. Our objective is to
calculate the LHS of the expression in (2.1).

The pair θ and θ′ is selected in such a way that for any S ⊂ N , the efficient
allocation x∗(θ(S)) is one where all the units are allocated to agents in the set
N −S, i.e. xi(θ(S)) = 0 for all i ∈ S. To see this consider any S1 ⊂ N such
that |S1| = n − 1. By setting r = m in condition (1) of minimally richness
it follows α(m) ≥ m

∑m
p=0 β(p). This means that any efficient rule allocates

all the m units to {i1} = N − S1 in state θ(S1) and hence θi(x∗i (θ(S1)) = 0
for all i ∈ S1. Therefore,

∑
i∈N θi(x∗i (θ(S1))) = α(m) for all S1 such that

|S1| = n− 1. Consider any S2 ⊂ N such that |S2| = n− 2. Again, all agents
with type β (that is i ∈ S2) gets nothing because α(m) ≥ m

∑m
p=0 β(p).

Hence, θi(x∗i (θ(S2)) = 0 for all i ∈ S2. Moreover, since there are exactly two
agents with type α in any state θ(S2), the allocation for {i1, i2} ∈ N − S2

is determined by that k ∈ {0, 1, 2, . . . ,m} for which α(m − k) + α(k) is
maximized. Hence,

∑
i∈N θi(x∗i (θ(S2))) = α(m− k∗) + α(k∗) ≥ α(m) where

k∗ ∈ {0, 1, 2 . . . , m}maximizes α(m−k)+α(k). Thus,
∑

i∈N θi(x∗i (θ(S2))) =
α(m) + ε1 where ε1 = α(m− k∗) + α(k∗)− α(m) ≥ 0. Continuing this way
we obtain:
Given any h ∈ {1, . . . , n}, for all Sh ⊂ N such that |Sh| = n− h,

(2.2)
∑
i∈N

θi(x∗i (θ(Sh))) = α(m) + εh−1

where εn−1 ≥ . . . ≥ ε2 ≥ ε1 = ε0 = 0.
An important observation at this point is that all the ε terms depend only

on α. Finally, if S = N (that is, θ(N) = θ′), we get

(2.3)
∑
i∈N

θi(x∗i (θ(N))) =
∑
i∈N

β(x∗i (θ(N))) =
∑
i∈N

β(x∗i (θ
′)) < α(m)
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Substituting (2.2) and (2.3) in the left hand side of (2.1) and then simplifying
it we get
(2.4)X
S⊆N

(−1)|S|
X
i∈N

θi(x
∗
i (θ(S))) =

n−1X
p=0

(−1)p

 
n

p

!
εn−1−p + (−1)n−1

 
α(m)−

X
i∈N

β(x∗i (θ
′))

!

If the right hand side of (2.4) is not equal to zero then we already have a
violation of (2.1). However, if the right hand side of (2.4) is zero then we
consider a pair of states θ, θ̃ ∈ Θ such that θ = (θ1 = α, . . . , θn = α) and
θ̃ = (θ̃1 = β̃, . . . , θ̃n = β̃) where β̃ = λα + (1− λ)β and λ ∈ (0, 1). Selecting
λ > 0 sufficiently close to zero we get α(m) > α(m − r) + r

∑r
p=0 β̃(p) for

all r ∈ {1, 2, . . . ,m}. Using the same arguments as before with the pair θ, θ̃
instead of the pair θ, θ′ we get:
(2.5)X
S⊆N

(−1)|S|
X
i∈N

θi(x
∗
i (θ(S))) =

n−1X
p=0

(−1)p

 
n

p

!
εn−1−p + (−1)n−1

 
α(m)−

X
i∈N

β̃(x∗i (θ̃))

!

Since the ε terms in (2.5) are the same as those in (2.4) (because they depend
only on α), the only difference between (2.5) and (2.4) is the last sum on the
right hand side. Given, α(k) > β(k) for all k ∈ {1, 2, . . . m}, and β̃ = λα +
(1−λ)β, we get β̃(k) > β(k) for all k ∈ {1, 2, . . . m}. Thus

∑
i∈N β̃(x∗i (θ̃)) >∑

i∈N β(x∗i (θ
′)) so that the RHS of (2.5) is non-zero. Therefore, we have a

violation of (2.1) which proves that the efficient rule cannot be implemented
with balanced transfers. �

3. Packaging Problem: Possibility Results

We have seen in the previous section that in the standard multi-unit allo-
cation problem, it is impossible to implement an efficient rule with balanced
transfers except in cases where the problem is virtually trivial. In this sec-
tion we consider a variant of this problem and demonstrate some possibility
results. We consider the problem where the planner can bundle or pack-
age various units and wishes to allocate these packages efficiently. Observe
that packaging creates “partial” heterogeneity in the goods being allocated.
We use the qualification “partial” in the statement above because we allow
for cases where some of the packages are of the same size. We address the
following question: does there exist a package scheme such that the effi-
cient rule can be implemented with balanced transfers over some nontrivial
domain? We show that the answer is affirmative for all package schemes
except for some special cases. As part of the domain we also characterize
the domain of utilities for which a package scheme is implementable with
balanced transfers. We now proceed to details.

As before, we let N = {1, . . . , n} and m denote the set of agents and
number of (identical) goods respectively. A package scheme or simply, a
scheme is a vector of n integers q = (q1, . . . , qn) such that q1 ≤ q2 ≤ . . . ≤ qn

with
∑n

i=1 qi = m. For every scheme q, we let Σ(q) be the set of all possible
permutations of the components of the vector q. For any q, an allocation xq

is an element of the set Σ(q). We shall let xq
j denote the package assigned

to agent j under xq. When the scheme q being referred to is evident from
the context, we suppress the superscript in xq.



DOMINANT STRATEGY IMPLEMENTATION 7

We illustrate the notation above by reference to an example. Assume that
the set of agents is {1, 2, 3} and that m = 6. Suppose that q = (0, 1, 5). An
allocation assigns 5 units to one agent, 1 to another. Suppose that xq gives
5 units to agent 2, then xq

2 = 5 and so on.
Fix a scheme q. A type for agent j, is a vector θj = (θj(q1), . . . , θj(qn)) ∈

<n
+ where θj(qk) denotes the utility of receiving qk units for agent j. We

shall let Θq denote the domain of such type vectors (assumed, once again, to
be the same for all agents). Observe that since the components of the vector
q need not be distinct, there may be components of θq which are identical
to each other. We assume

(1) If qk = 0 for some k, then θ(qk) = 0
(2) If qk = qk+1 for some k, then θ(qk) = θ(qk+1).

We shall let Θq denote the set of possible type vectors for the scheme q. For
any scheme q, a package allocation problem is a triple Γq = 〈N,m, Θq〉.

Definition 3.1. Consider a package problem Γq = 〈N,m, Θq〉. An alloca-
tion x∗ ∈ Σ(q) is said to be q-efficient in state θ ∈ [Θq]n if

x∗ ∈ arg max
x∈Σ(q)

∑
j∈N

θj(xj).

An allocation is q-efficient in a package problem Γq if the various packages
which constitute q cannot be permuted amongst the agents to increase ag-
gregate utility. Of course, an allocation which is q-efficient is not necessarily
efficient because the argmax in its definition is only with respect to Σ(q)
rather than the union of Σ(q)’s for all possible q’s.

A q-efficient allocation rule is a mapping x∗ : [Θq]n → Σ(q) which picks
an allocation x∗(θ) which is efficient in state θ for all θ ∈ [Θq]n. We say
that the package problem Γq = 〈N,m, Θq〉 is implementable if there exists
a q-efficient rule x∗ and a mechanism M = 〈x∗, t〉 which induces each agent
to reveal her type truthfully, i.e. j ∈ N , for all θj , θ

′
j ∈ Θq and for all

θ̂−j ∈ [Θq]n−1, we have

θj(x∗j (θj , θ̂−j)) + tj(θj , θ̂−j) ≥ θj((x∗j (θ
′
j , θ̂−j)) + tj(θ′j , θ̂−j)

We say that the Γq = 〈N,m, Θq〉 is implementable with balanced trans-
fers if there exists a q-efficient rule and a mechanism M = 〈x∗, t〉 which
implements it and furthermore

∑
j∈N tj(θ) = 0 for all θ ∈ [Θq]n.

We wish to address the following question: do schemes exist which can
be implemented with balanced transfers over “non-trivial” domains? We
are clearly motivated by the impossibility result of the previous section.
Since efficiency with balanced transfers over non-trivial domains cannot be
achieved, can the units be packaged according to some scheme q such that
a q-efficient rule can then be implemented with balanced transfers?

We let ∆θj = (∆θj(q1), . . . ,∆θj(qn−1)) represent the vector of first dif-
ferences generated by the vector θj ∈ Θq, i.e. ∆θj(qk) = θj(qk+1) − θj(qk)
for all k ∈ {1, . . . , n − 1}. An important observation is that all difference
vectors ∆θj have non-negative components. Moreover, if qk+1 = qk, then
θj(k) = 0. For any domain Θq, we denote its corresponding first difference
domain ∆Θq. Finally, we say that ∆θj < ∆θ′j if ∆θj(qk) < ∆θ′j(qk) for all
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k ∈ {1, . . . , n − 1} such that qk+1 > qk. Note that unlike in the heteroge-
nous goods case we cannot require one difference vector to strictly dominate
another. This is because if qk+1 = qk for some k, then all difference vectors
have their kth component equal to zero.

Definition 3.2. The domain ∆Θq satisfies regularity if for all ∆γ in the
relative interior of ∆Θq, there exists ∆α, ∆β ∈ ∆Θq such that ∆α < ∆γ <
∆β.

Definition 3.3. The domain Θq is admissible if it is a convex subset of <n

satisfying regularity.

In the definition of an admissible domain, there is a “natural ordering”
with respect to which these differences are computed. This is the ordering
{1, 2, . . . , n} which arises naturally because the components of the vector q
are arranged in ascending order and utilities are increasing in the number of
units that an agent receives. We believe that the admissibility requirement is
weak. Besides convexity, it imposes only regularity restrictions on admissible
utility differences.

The main result in this section characterizes admissible domains over
which a package scheme is implementable by balanced transfers.

Theorem 3.4. For any scheme q, let Γq = 〈N,m, Θq〉 be a package problem
where Θq is an admissible domain. Then Γq is implementable by balanced
transfers if and only if the associated difference domain is of the form ∆Θq =
{(1− s).δ + s.δ′ | s ∈ I} where I ⊂ <+ is an interval. Moreover if I is non-
trivial, δ, δ′ ∈ <n−1

+ are such that (i) δ′ > δ and (ii)
∑n−1

k=1(−1)k−1
(
n−2
k−1

)
δk =∑n−1

k=1(−1)k−1
(
n−2
k−1

)
δ′k.

The proof of the Theorem 3.4 is very similar to the proof of the main
result in Mitra and Sen [12] and is hence omitted.

Theorem 3.4 states that if Γq = 〈N,m, Θq〉 (where Θq is admissible) is
implementable by balanced transfers, then the associated difference domain
must be a straight line in <n−1

+ satisfying certain restrictions. But for an
arbitrary q can one find an admissible Θq such that Γq = 〈N,m, Θq〉 is im-
plementable by balanced transfers? The answer is negative as the following
example demonstrates.

Example 3.5. Let n = 3, m = 4 and q = (1, 1, 2). A typical difference
vector is of the form (0, λ) where λ > 0 is a real number. Let δ = (0, λ)
and δ′ = (0, λ′) be the two vectors specified in Theorem 3.4. Then λ =
−

∑n−1
k=1(−1)k−1

(
n−2
k−1

)
δk = −

∑n−1
k=1(−1)k−1

(
n−2
k−1

)
δ′k = λ′. Therefore δ = δ′

which contradicts the requirement that δ′ > δ.

Below we provide a complete answer to the question of what schemes
are implementable with balanced transfers over some admissible domain.
For any scheme q let ∆q denote the n − 1 vector (∆q1, . . . ,∆qn−1) where
∆qk = qk+1 − qk, for k = 1, . . . , n− 1.

Theorem 3.6. Let q be a scheme. There exists an admissible domain Θq

such that Γq = 〈N,m, Θq〉 is implementable by balanced transfers if and
only if there exist integers r, s ∈ {1, . . . , n− 1} such that ∆qr,∆qs 6= 0 and
r + s is an odd integer.
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Proof: We first prove necessity. Suppose that q is a scheme such that
there exists an admissible domain Θq and Γq = 〈N,m, Θq〉 is implementable
with balanced transfers. According to Theorem 3.4 there must exist n − 1
dimensional vectors δ and δ′ such that δ′ > δ and

∑n−1
k=1 ρ̂kδ

′
k =

∑n−1
k=1 ρ̂kδk

where ρ̂k = (−1)k−1
(
n−2
k−1

)
. Therefore

∑n−1
k=1 ρ̂k(δ′k − δk) = 0. Since δ′ > δ,

δ′k − δk ≥ 0 for all k and strictly positive for at least one k. Observe that ρ̂k

is strictly positive for k odd and strictly negative for k even. Note also from
the definition of the difference domain that δ′k and δk can be strictly positive
only for those values of k for which ∆qk is strictly positive. Suppose that for
all r, s such that ∆qr,∆qs > 0, we have that r+s is an even integer, i.e. all k
such that ∆qk > 0 are even or all are odd. Clearly then

∑n−1
k=1 ρ̂k(δ′k−δk) = 0

cannot hold and we obtain a contradiction to Theorem 3.4.
In order to prove sufficiency, let r and s be integers such that ∆qr,∆qs >

0 and r + s is an odd integer. Let δ be the n − 1 dimensional vector
(0, 0, . . . , 0). Pick ε > 0 and real numbers c and d and let δ′ be an n −
1 dimensional vector where δ′k = 0 if ∆qk = 0, δ′r = c, δ′s = d and
δ′k = ε for all other k. Moreover c and d are picked to satisfy the equa-

tion ρ̂r.c + ρ̂s.d + T = 0 where T = ε
[∑

k 6∈[Q∪{r}∪{s}] ρ̂k

]
where Q =

{k ∈ {1, . . . , n− 1} − {r, s} | ∆qk = 0}. Since ρ̂r and ρ̂s are integers and
are of opposite sign we can find strictly positive c and d which satisfy the
equation for any given T . We now construct a difference domain which is a
segment of the line passing through δ and δ′. It can be easily verified that
this domain satisfies the requirements specified in Theorem 3.4. �

Theorem 3.6 makes it easy to check whether there exists an admissible
domain over which a scheme can be implemented with balanced transfers.
For instance, we have an impossibility result for all q if n = 2. In this case
∆q is a singleton so that there does not exist r, s such that ∆qr 6= ∆qs. On
the other hand if n ≥ 3 and q is a scheme such that all the components of q
are distinct, (for instance if n = 3, m = 10 and q = (1, 2, 7)), then we have
a possibility result.

Finally consider the case where m = kn for some positive integer k and
consider the scheme q = (k, k, . . . , k). Here all agents get k units in every
state. It is therefore trivially implementable with balanced transfers over any
arbitrary domain which appears to contradict Theorem 3.4. However this is
not so because the associated difference domain for any domain consists of
the single vector, the origin in <n−1. This is the case where the interval I
in Theorem 3.4 is trivial, i.e. consists of a single point.

4. Conclusion

In this paper we have first established an impossibility theorem in a ho-
mogenous goods allocation problem where the domain satisfies a minimal
richness requirement. Given this impossibility we consider package assign-
ment problems in the homogenous goods case. We obtained a characteri-
zation of package schemes that can be implemented in dominant strategies
with balanced transfers. These results clearly suggest that one can find pos-
sibility results by introducing appropriate heterogeneity in the homogenous
goods problem.
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