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1 Introduction

A widely-held belief is that difficulties associated with satisfactory group decision-making

are significantly ameliorated if differences in the objectives of the members of the group

are not “large”. In the limit, if all agents have the same objectives, all conflicts of interest

disappear and we may expect a trivial resolution of the problem. In mechanism design

theory, agents have private information about their objectives or preferences (referred to

as “types”); the theory seeks to analyze collective (or social) goals (referred to as social

choice functions or SCFs) which are attainable subject to the constraint that all agents

have the incentive to reveal their private information truthfully (referred to as incentive-

compatibility). Here too, if the private information of all agents is perfectly correlated,

the issue of incentives can be typically resolved 1. More interestingly, an extensive literature

initiated by Crémer and Mclean (1988) has pointed out that in environments where monetary

compensation is feasible and preferences are quasi-linear (i.e. preferences over money are not

dependent on type), even a little correlation in the beliefs over types leads to a dramatic

enlargement of the class of incentive-compatible SCFs.

In this paper we explore the issue of correlated beliefs in the design of voting rules. In

this environment, voters have opinions or preferences on the ranking of various candidates

assumed to be finite in number. These preferences (types, in this model) expressed as linear

orders over the set of candidates, are private information. A SCF or voting rule is a mapping

which associates a candidate with a collection of types, one for each voter. The goal of

the theory is to identify SCFs which induce voters to reveal their types truthfully for every

conceivable realization of these types.

We consider the plausible case where beliefs over types are positively correlated. In doing

so, we have to confront the issue of how to interpret positive correlation in distributions over

linear orders. We propose two definitions of positive correlation. The first is based on the

well-known notion of the Kemeny distance (Kemeny and Snell (1962), Kendall (1970)). A

voter’s beliefs are positively correlated in this sense if she assigns higher probability to all

other voters’ types being closer to her own in the Kemeny metric. The other notion of

positive correlation is based on the likelihood of other voters top k alternatives (for any k)

agreeing with one’s own opinion of the top k alternatives. To illustrate this notion, consider

the case of voting for the annual chess Oscar award by chess journalists and experts. Assume

that the three players in serious contention are Anand (A), Carlsen (C) and Kramnik (K).

Assume that a voter’s opinion is A followed by C followed by K. Then she believes that

the event where all other voters rank A best, is strictly more likely that the event where

all other voters best alternative is either C or K. In addition she believes that the event

1The mechanism design problem is still non-trivial because the mechanism designer may be ignorant of
the common type realized. However if there are at least three agents, the problem of inducing all agents to
reveal their private information truthfully can be achieved under certain conditions. See Maskin (1999).
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where all other voters’ best two players is {A, C} is more likely than the event where all

other voters, best two alternatives are either {A,K} or {C, K}. We call these two notions of

positive correlation, K (or Kemeny) correlation and“Top-Set”or TS correlation respectively.

We show that a K-correlated belief is TS-correlated. We note that the requirements for K

as well as TS-correlation are weak in the sense that the conditions for positive correlation

apply only in “exceptional” circumstances (all other voters have types which are at a greater

distance from one’s own or all other voters are unanimous about their best k-alternatives

and so on). Our choice of definitions is deliberate because as we shall see, even these weak

notions lead to a dramatic increase in the possibilities for the design of incentive-compatible

social choice functions, at least in certain circumstances.

The equilibrium notion that we use is that of Ordinal Bayesian Incentive-Compatibility

(OBIC) introduced in d’Aspremont and Peleg (1988). This requires the probability distri-

bution over outcomes obtained by truth-telling to first-order stochastically dominate the

distribution from mis-reporting for every voter type. These distributions are obtained from

a voter’s beliefs about the types of the other voters and the assumption that the other voters

are telling the truth. The condition is equivalent to requiring that truth-telling be optimal

in terms of expected utility for all possible utility functions which represent the voter’s type.

In addition to OBIC we consider two kinds of robustness conditions of the mechanism

with respect to beliefs. The first is local robustness which requires the mechanism to remain

incentive-compatible if voter beliefs are perturbed slightly. This leads to two notions of local

robustness depending on the definition of positive correlation used: we call these K-local

robustness or K-LOBIC and TS-local robustness or TS-LOBIC. The second notion of ro-

bustness considered is global robustness where the mechanism remains incentive-compatible

with respect to all beliefs that are positively correlated. Once again, we have two kinds of

global robustness depending on the definition of positive correlation used and we call these

K global robustness or K-ROBIC and TS global robustness or TS-ROBIC. The relationship

between K correlation and TS-correlation leads to obvious relationships between K-LOBIC

and TS-LOBIC mechanisms or SCFs and between K-ROBIC and TS-ROBIC SCFs. The

motivation of imposing robustness requirements on beliefs is the well-known Wilson doctrine

(Wilson, 1987). Robust mechanisms have the attractive feature that they continue to imple-

ment the objectives of the mechanism designer even if the designer or the voters make errors

in their beliefs.

Our results are as follows. We characterize the class of TS-LOBIC SCFs subject to the

weak requirement of unanimity. In particular, we provide a necessary and sufficient condition

that a SCF needs to satisfy in order that there exist some neighborhood of TS-correlated

beliefs such that the SCF is OBIC with respect to all beliefs in the neighborhood. It is clear

that if truth-telling for a particular type is weakly dominated by a mis-report for a SCF,

then the SCF cannot be locally robust incentive compatible with respect to any class of

beliefs. We show that a minor modification of this condition to take into account the ordinal
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nature of OBIC, is also sufficient if TS-correlation is considered. We give an example to

show that this condition is not sufficient for K-LOBIC. We also prove a general possibility

result in this regard. We show that any SCF satisfying the property of neutrality and

elementary monotonicity (a large class, including for instance, SCFs derived from scoring

correspondences) is TS-LOBIC. Moreover they are incentive-compatible in a neighborhood

of the uniform prior.

We also analyze the structure of SCFs satisfying various ROBIC requirements. In view

of the weak notion of positive correlation, one may be conjecture that imposing robustness

with respect to all positively correlated beliefs on the complete domain of preferences, will

lead to truth-telling being a weakly dominant strategy, i.e. dictatorship when there are at

least three alternatives. This is not true - we provide an example of a non-dictatorial SCF

satisfying unanimity which is TS-ROBIC (and hence K-ROBIC). However if we additional

impose the requirement of efficiency, the K-ROBIC (and hence TS-ROBIC) requirement

precipitates dictatorship provided that there are at least three alternatives.

Our results contrast sharply with the negative results obtained in Majumdar and Sen

(2004) for the case of independent beliefs. In this case, there is a generic set of beliefs for each

voter such that OBIC with respect to any belief in this set is equivalent to dictatorship where

truth-telling is of course, a weakly dominant strategy. There are beliefs, such as the uniform

prior with respect to which a wide class of SCFs are OBIC. However, even local robustness

cannot be satisfied for any non-dictatorial SCF because of the generic impossibility result. In

the positively correlated case on the other hand, we demonstrate significant possibility results

with local robustness. There even exist non-dictatorial SCFs satisfying unanimity which are

OBIC with respect to all positively correlated beliefs although they must be inefficient.

Our results are in the same spirit as the possibility results in auction design theory

with correlated valuations (Crémer and Mclean, 1988). However, our results and arguments

bear no resemblance to their auction theory counterparts because of at least two significant

differences between the models. The first is that monetary transfers which are at the heart

of the possibility results in the auction model, are not permitted in the voting model. The

second is that the nature of types in the voting model (linear orders) is very different from

its counterpart in the auction model (a non-negative real number or vector). The notion of

correlation in the voting model is therefore more delicate. Several alternative approaches and

definitions are possible and the results depend on the choices made. Finally, our results are

different because we address a different question from that in (Crémer and Mclean, 1988).

In particular, we investigate the structure of social choice functions that satisfy certain

robustness properties with respect to beliefs in addition to standard incentive-compatibility

requirements.

The paper is organized as follows. In Section 2 we try to explain why correlation of

types may help in mechanism design in our model. Section 3 introduces the notations and

definitions Section 4 discusses alternative notions of positive correlation while Sections 5 and
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6 deal with incentive-compatibility with local and global robustness respectively. Section 7

concludes. The proof of the main theorem in Section 6 is contained in the Appendix.

2 Why does Correlation of types help in Mechanism Design

in Voting Models?

Consider the case where there are two voters 1 and 2 and three alternatives a, b and c to

choose from. A voter’s type is one of the six orderings of the alternatives. These types will

represented by abc etc which signifies “a is preferred to b is preferred to c”. A social choice

function or voting rule is a 6× 6 matrix where each entry in the matrix is an alternative.

Consider a “partial” social choice function described in the array below. Thus, if the row

voter’s type is abc, the outcome is a if the column voter’s type is abc, bca or cab. If the row

voter’s type is acb, the outcome is a if the column voter’s type is bac or bca.

abc acb bac bca cab cba

abc a . . a a .

acb . . a a . .

(1)

Suppose the row voter’s type is abc. Suppose further that she has a cardinal representation

of her type where the utility of alternative a is 1, that of c is 0 and that of b is arbitrarily

close to 0. What is the expected utility of this voter from truth-telling assuming that the

column voter tells the truth? It clearly depends on the prior beliefs of the row voter of type

abc about the type of the column voter. It is, in fact

µ1(abc|abc) + µ1(bca|abc) + µ1(cab|abc) (2)

where µ1(abc|abc) is the row voter’s belief that the column voter’s type is abc conditional

on the row voter’s type being abc etc. By deviating to acb, the row voter of type abc will

obtain the expected utility

µ1(bac|abc) + µ1(bca|abc) (3)

Incentive Compatibility will then require

µ1(abc|abc) + µ1(cab|abc) ≥ µ1(bac|abc) (4)

Now consider a row voter of type acb with a utility representation where the utility of a

is 1, that of b is 0 and that of c arbitrarily close to 0. In order for this type not to deviate

to abc, we require

µ1(bac|acb) ≥ µ1(abc|acb) + µ1(cab|acb) (5)
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If the row voter’s beliefs are independent, then the probabilities are not conditional on her

type realization. Removing the dependence of beliefs on the row voter’s types, inequalities

4 and 5 yield the following equality:

µ1(bac) = µ1(abc) + µ1(cab) (6)

Observe that the equality above cannot hold for a “generic”belief over the column voter’s

type. If it does for some belief, a small “perturbation” will destroy it. The only way for

incentive-compatibility to be maintained for a generic belief is for all the a’s to line up along

the same column, i.e. if the outcome is a when the row voter’s type is abc and the column

voter’s type is t2, then the outcome is also a when the row and column voter’s types acb and

t2 respectively. In fact, there are several restrictions of this sort implied by the independence

and genericity assumptions. Majumdar and Sen (2004) demonstrate that if there are at least

three alternatives, incentive-compatibility implies dictatorship.

A critical observation is that if beliefs are correlated then the distribution of the column

voter’s type conditional on different realizations of the row voter’s types, are distinct. Hence

inequalities such as 4 and 5 can hold without precipitating a restriction such as 6. Conse-

quently a much wider class of social choice functions are incentive-compatible. The rest of

the paper explores the class of incentive-compatible social choice functions under different

notions of positive correlation.

We now proceed to details.

3 Notation and Definitions

The set of voters is N = {1, . . . , n}. Individual voters are denoted by i, j etc. The set of

outcomes is the set A with |A| = m. Elements of A will be denoted by a, b, c, d etc. Let

P denote the set of strict orderings2 of the elements of A. A typical preference ordering or

type for a voter will be denoted by Pi and for all a, b ∈ A and a 6= b, aPib will be interpreted

as “a is strictly better than b according to Pi”. A preference profile is an element of the set

Pn. Preference profiles will be denoted by P, P̄ , P ′ etc and their i-th components as Pi, P̄i, P
′
i

respectively with i ∈ N .

For all Pi ∈ P and k = 1, . . . , M , let rk(Pi) denote the kth ranked alternative in Pi, i.e.,

rk(Pi) = a implies that |{b 6= a|bPia}| = k − 1. For all i ∈ N , for any Pi ∈ P and for any

a ∈ A, let B(a, Pi) = {b ∈ A|bPia} ∪ {a}. Thus B(a, Pi) is the set of alternatives that are

weakly preferred to a under Pi. For any k = 1, . . . , m, B(rk(Pi), Pi) is the set of alternatives

which are ranked k or higher in the ordering Pi. In order to economize on notation, we shall

denote B(rk(Pi), Pi) simply as Bk(Pi).

Definition 1 A Social Choice Function or (SCF) f is a mapping f : Pn → A.

2A strict ordering is a complete, transitive and antisymmetric binary relation.
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We now state some familiar axioms on SCFs which we will use at various places in the

paper.

Definition 2 A SCF f is unanimous or satisfies unanimity if f(P ) = aj whenever aj =

r1(Pi) for all voters i ∈ N .

The axiom states that in any situation where all individuals agree on some alternative

as the best, the SCF must respect this consensus. A stronger requirement than unanimity

is the notion of Pareto-efficiency or simply, efficiency. This requires that it should not be

possible to make all voters better-off relative to the outcome of the SCF at any preference

profile.

Definition 3 A SCF f is efficient or satisfies efficiency if for all profiles P ∈ Pn, there

does not exist an alternative x ∈ A such that xPif(P ) for all i ∈ N .

A dictatorial SCF picks a particular voter’s best alternative at every preference profile.

Definition 4 A SCF f is dictatorial if there exists a voter i ∈ N such that for all profiles

P ∈ Pn, f(P ) = r1(Pi).

The fundamental assumption in strategic voting theory is that a voter’s preference or-

dering is her private information. The objective of a mechanism designer is to design SCFs

which provide appropriate incentives for voters to reveal their private information. A stan-

dard requirement (for example Gibbard (1973) and Satterthwaite (1975)) is for SCFs to be

dominant strategy incentive-compatible or strategy-proof. In such a SCF no voter can prof-

itably misrepresent her preferences irrespective of what (the) other voter(s) reveal as their

preferences.

Definition 5 A SCF f is dominant strategy incentive-compatible or strategy-proof if, for

all Pi, P
′
i ∈ P, and for all P−i ∈ Pn−1 either f(Pi, P−i) = f(P ′

i , P−i) or f(Pi, P−i)Pif(P ′
i , P−i)

holds.

Gibbard (1973) and Satterthwaite (1975) show that if |A| ≥ 3, every strategy-proof SCF

satisfying unanimity is dictatorial. We employ a weaker notion of incentive-compatibility.

Definition 6 A belief for voter i is a probability distribution on the set Pn, i.e. it is a map

µi : Pn → [0, 1] such that
∑

P∈Pn

µi(P ) = 1.

Clearly µi belongs to the unit simplex of dimension m!n− 1. For all µi, for all (Pi, P−i) ∈
Pn, we shall let µi(P−i|Pi) denote the conditional probability of P−i given Pi. A belief system

is a n-tuple of beliefs (µ1, · · · , µn), one for each voter.
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Definition 7 The utility function u : A → < represents Pi ∈ P, if and only if for all

a, b ∈ A, we have aPib ⇔ u(a) > u(b).

The notion of Ordinal Bayesian Incentive Compatibility or OBIC was introduced by

d’Aspremont and Peleg (1988).

Definition 8 A SCF f is Ordinally Bayesian Incentive Compatible (OBIC) with respect to

the belief system (µ1, · · · , µn) if for all i ∈ N , for all Pi , P
′
i ∈ P, for all u representing Pi,

we have

∑

P−i∈Pn−1

u (f(Pi, P−i)) µi(P−i|Pi) ≥
∑

P−i∈Pn−1

u (f(P ′
i , P−i)) µi(P−i|Pi) (7)

Suppose f is a SCF which is OBIC with respect to the belief system (µ1, · · · , µn). Con-

sider voter i with preference Pi. Then reporting truthfully is optimal in the sense that it

yields a higher expected utility than that obtained by any misrepresentation. In computing

this expected utility, it is assumed that voters other than i will reveal truthfully so that

a probability distribution over outcomes is induced by f and voter i’s beliefs, conditional

on Pi, i.e. µi(.|Pi). Furthermore, higher expected utility from truth-telling occurs for all

representations of the true preference Pi. An equivalent way of stating the same requirement

is that truth-telling is a Bayes-Nash equilibrium of the revelation game induced by f for all

possible utility representation of true preferences.

The OBIC notion is a natural and minimal way to incorporate the weaker notion of

truth-telling as optimal in expectation, relative to truth-telling as a dominant strategy, in an

ordinal model (which is the standard model in voting theory). A fairly obvious relationship

between OBIC and dominant strategies is the following:

Observation 1 Suppose f is OBIC with respect to all belief systems (µ1, · · · , µn). Then f

is strategy-proof.

In other words, if we require f to satisfy a robustness condition that it be OBIC with

respect to all belief systems, then we are requiring nothing less than f to be strategy-proof.

An aspect of OBIC which may be regarded as somewhat unsatisfactory in some quarters,

is that it requires truth-telling to be optimal for every type of a voter for all cardinalizations

of the type. A partial response to this criticism is that OBIC can be defined in terms of

stochastic dominance without explicit reference to utility functions.

Definition 9 The SCF f is OBIC with respect to the belief system (µ1, · · · , µn) if for all

i ∈ N , for all integers k = 1, . . . , m and for all Pi and P ′
i ,

µi({P−i|f(Pi, P−i) ∈ Bk(Pi)}|Pi)

≥ µi({P−i|f(P ′
i , P−i) ∈ Bk(Pi)}|Pi) (8)
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Suppose f satisfies OBIC with respect to (µ1, · · · , µn). Consider voter i with preferences

Pi. Then the aggregate probability induced by f on the first k alternatives of her true

preference Pi for any k = 1, . . . , m, is maximized by truth-telling.

We now turn our attention to the issue of positively correlated beliefs.

4 Positive Correlation

In this section we introduce two different notions of positive correlation. The first one (K-

correlation) is in terms of a distance function on the set of preference orderings. Perhaps the

best-known distance metric in finite, ordinal models is the Kemeny metric (Kemeny and Snell

(1962),Kendall (1970)). It has been used widely in the literature on social welfare functions,

for instance Bossert and Storcken (1992), Baigent (1987).

The Kemeny Metric: Let Pi ∈ P. Two alternatives a, b ∈ A are said to be adjacent

in Pi if there does not exist any other alternative between them in Pi; formally, if there

exists k ∈ {1, . . . , m − 1} such that either rk(Pi) = a and rk+1(Pi) = b or rk(Pi) = b and

rk+1(Pi) = a. A transposition of a and b in Pi is the ordering obtained by switching the ranks

of a and b in Pi leaving all other alternatives unchanged. The Kemeny distance between two

orderings Pi and P ′
i , denoted by d(Pi, P

′
i ) is the number of transpositions required to change

Pi to P ′
i . For instance, if A = {a, b, c}, and Pi, P

′
i are given by aPibPic and cP ′

iaP ′
i b, then

d(Pi, P
′
i ) = 2. Generally, d(Pi, P

′
i ) ∈ {0, 1, . . . , (m

2
)} for any Pi, P

′
i ∈ P.

Definition 10 (K-correlation) A belief µi for voter i is said to be positively K-correlated

if, for all preference profiles (Pi, P−i) and (Pi, P
′
−i),

[d(Pi, Pj) < d(Pi, P
′
j) for all j 6= i] ⇒ µi(P−i|Pi) > µi(P

′
−i|Pi)

Thus µi is positively correlated in this sense if the following holds: voter i of type Pi

considers it more likely that the types of the other voters is P−i rather than P ′
−i if for all

j 6= i the Kemeny distance between Pi and Pj is less than the Kemeny distance between Pi

and the corresponding P ′
j .

We denote by K∗, the set of all positively K-correlated beliefs.

The notion of K-correlation may be regarded as a weak requirement because it imposes

restrictions the beliefs of voter i only when the preferences of all voters other than i are

“farther away” for Pi.

We propose an alternative notion of positive correlation which we call “Top-Set” or TS-

correlation. Consider a voter with beliefs µi and type Pi. Consider the set of k-best alterna-

tives in Pi, Bk(Pi) for some k = 1, . . . ,m. Let D ⊂ A be such that |D| = k and D 6= Bk(Pi).

Now consider the following two events:

• Event I: The k- best alternatives for all voters j 6= i is Bk(Pi).
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• Event II: The k-best alternatives for all voters j 6= i is D.

The belief µi is TS-correlated if Event I is considered strictly more likely than Event II

according to the conditional distribution µi(.|Pi). In other words, if all voters other than i

have the same k-best alternatives, then i considers it more likely this set coincides with her

k-best alternatives than the case when it does not.

Definition 11 (TS-Correlation) A belief for voter i, µi is positively TS-correlated if for

all Pi and for all k = 1, . . . , m− 1

∑

{P−i|Bk(Pj)=Bk(Pi) ∀j 6=i}
µ(P−i|Pi) >

∑

{P−i|Bk(Pj)=D ∀j 6=i}
µ(P−i|Pi) (9)

where D ⊂ A, D 6= Bk(Pi) and |D| = k.

We denote by TS∗ the set of all µ satisfying TS -correlation.

The following examples illustrate both notions of correlation.

Example 1 Let N = {1, 2} and A = {a, b, c}. Consider the following belief µi which

generates the conditional beliefs µi(.|abc) specified below: 3

abc acb bac bca cab cba

abc µ1
i µ2

i µ3
i µ4

i µ5
i µ6

i

(10)

where µ1
i = µi(abc|abc), . . . , µ6

i = µi(cba|abc).

Observe that

µi ∈ K∗ ⇒





µ1
i > µ2

i , µ
3
i , µ

4
i , µ

5
i , µ

6
i

µ2
i > µ4

i , µ
5
i , µ

6
i

µ3
i > µ4

i , µ
5
i , µ

6
i

µ4
i > µ6

i

µ5
i > µ6

i

(11)

On the other hand,

µi ∈ TS∗ ⇒





µ1
i + µ2

i > µ3
i + µ4

i

µ1
i + µ2

i > µ5
i + µ6

i

µ1
i + µ3

i > µ2
i + µ5

i

µ1
i + µ3

i > µ4
i + µ6

i

(12)

It is easy to verify if µi satisfies the system 11, then µi satisfies the system 12. The

converse is not true; for instance, pick µ1
i = 0.5, µ2

i = 0.05, µ3
i = 0.05, µ4

i = 0.05, µ5
i = 0.05

and µ6
i = 0.3.

3Here abc denotes the ordering “a is preferred to b preferred to c” etc.
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Example 2 Let N = {1, 2, 3} and A = {a, b, c}. Suppose voter 1’s type is abc. We let

(for instance) µ1(acb, bac|abc) denote the conditional probability of voter 2 and 3’s types

being acb and bac respectively. Both K and TS correlation involve too many inequalities

to be completely listed conveniently. We note, however that if µ1 ∈ K∗, then the following

inequalities hold:

µ1 ∈ K∗ ⇒





µ1(abc, abc|abc) > µ1(bac, bac|abc)

µ1(abc, acb|abc) > µ1(bac, bca|abc)

µ1(acb, abc|abc) > µ1(bca, bac|abc)

µ1(acb, acb|abc) > µ1(bca, bca|abc)

(13)

On the other hand, if µ1 ∈ TS∗, we must have

µ1(abc, abc|abc) + µ1(abc, acb|abc) + µ1(acb, abc|abc) + µ1(acb, acb|abc) (14)

> µ1(bac, bac|abc) + µ1(bac, bca|abc) + µ1(bca, bac|abc) + µ1(bca, bca|abc)

Inequality 14 is the requirement that the probability that voters’ 2 and 3 have the same

best alternative a as voter 1, is greater than the probability that they have a common best

alternative, b different from a. Note as earlier, that if 13 is satisfied, then 14 is satisfied as

well.

We show below that this relationship holds generally.

Proposition 1 K∗ ⊂ TS∗.

Proof : Pick µi ∈ K∗. Pick orderings Pi, Pj and an integer k ≤ m such that Bk(Pi) =

Bk(Pj). Let B ⊂ A be such that B 6= Bk(Pi) and |B| = k. There must exist two sets

of distinct L alternatives (L ≤ k), say ai1 , . . . , aiL and bi1 , . . . , biL such that ai1 , . . . , aiL ∈
Bk(Pi) \B and bi1 , . . . , biL ∈ B \Bk(Pi).

Consider a bijection σ : A → A defined as follows:

• σ(a) = a for all a ∈ A \ {ai1 , . . . , aiL , bi1 , . . . , biL}

• σ(ail) = bil for l = 1, . . . , L.

• σ(bil) = ail for l = 1, . . . , L.

For an arbitrary ordering Pr and a bijection σ, we define P σ
r to be the following ordering:

for all x, y ∈ A, [xPry] ⇔ [σ(x)P σ
r σ(y)]

11



Since Bk(Pj) = Bk(Pi), bil /∈ Bk(Pi), l = 1 . . . , L and ail ∈ Bk(Pi), l = 1 . . . , L, we

have ailPjbil and bilP
σ
j ail for all l = 1, . . . , L. Thus for every Pj such that Bk(Pj) = Bk(Pi),

there exists a P σ
j such that Bk(P

σ
j ) = B and d(Pi, Pj) < d(Pi, P

σ
j ). The last inequality

follows from the fact that ailPibil and ailPjbil but bilP
σ
j ail for l = 1, . . . , L and the remaining

alternatives are ranked in the same way in Pj and P σ
j . Now consider an n − 1 preference

profile P−i ≡ (Pj), j 6= i where Bk(Pi) = Bk(Pj) for all j 6= i. Let P σ
−i ≡ (P σ

j )j 6=i. Since

µi ∈ K∗, we have µi(P−i|Pi) > µi(P
σ
−i|Pi). Since the above inequality holds for every pair

(P−i, P
σ
−i), we have,

∑

{P−i|Bk(Pj)=Bk(Pi) ∀j 6=i}
µi(P−i|Pi) >

∑

{P−i|Bk(Pj)=B ∀j 6=i}
µi(P−i|Pi) (15)

Inequality 15 establishes the Proposition. ¥

Observation 2 Since the notions of K and TS correlations are defined in terms of strict

inequalities, it follows that for any belief µi that is K (resp. TS) correlated, there will exist

an ε neighborhood of beliefs that are also K (resp. TS) correlated.

We note that other notions of positive correlation in this model can be proposed. For

instance, we can define a dual of TS-correlation where a voter believes that her k worst-

ranked alternatives are most likely to be the k worst ranked alternatives of the other voter.

Notions can also be built using classical concepts in statistics such as Spearman’s coefficient

of rank correlation. We do not pursue these lines of research any further since both K and

TS offer rich and interesting possibilities.

5 Incentive-Compatibility with Local Robustness

In this section we explore incentive-compatible SCFs which satisfy an additional local ro-

bustness property. The latter requires the SCF to remain incentive-compatible if the belief

of each voter is slightly perturbed. Successful information revelation occurs in such SCFs

even if the mechanism designer makes “small mistakes” in his assessment of voter beliefs.

Definition 12 A SCF f is K-locally robust OBIC or K-LOBIC with respect to the belief

system µ if

1. µi ∈ K∗ for all i and

2. there exists ε > 0 such that f is OBIC with respect to all µ′ such that µ′ ∈ Bε(µ). 4

4Bε(µi) denotes the open ball of radius ε centered at µi.

12



Consider a belief system µ where µi is K-correlated for each voter i. Then f is K-LOBIC

with respect to µ if f is OBIC with respect every belief system in some neighborhood of µ.

In fact, all the perturbed beliefs are also K-correlated. We say that f is K-LOBIC if there

exists a belief system µ such that f is K-LOBIC with respect to µ. We can define local

robustness with respect to TS-correlation analogously.

Definition 13 A SCF f is TS-locally robust OBIC or TS-LOBIC with respect to the belief

system µ if

1. µi ∈ TS∗ for all i and

2. there exists ε > 0 such that f is OBIC with respect to all µ′ such that µ′ ∈ Bε(µ).

Observation 3 Since K∗ ⊂ TS∗, the set of SCFs that are K-LOBIC with respect to K-

correlation is a subset of the set of SCFs that are TS-LOBIC. Moreover the set inclusion is

strict as the following example shows.

Example 3 Let N = {1, 2} and A = {a, b, c}. Let f 1 be the scoring rule with score vector

(2, 1.5, 0) and tie breaking in favor of agent 1. This SCF is described in the table below with

voter 1 and 2’s preference orderings represented by rows and columns respectively.

abc acb bac bca cab cba

abc a a a b a b

acb a a a c a c

bac b a b b a b

bca b c b b c b

cab a c a c c c

cba b c b c c c

(16)

We claim that f 1 is TS-LOBIC but not K-LOBIC.

We first demonstrate the latter. In fact we can show that f 1 does not satisfy OBIC with

respect to any belief that is K-correlated. To see this, consider voter 2 with preferences

abc. Let µ2 be an arbitrary belief satisfying K-correlation. Consider voter 2 with preference

ordering abc. Then OBIC with respect to the belief pair (., µ2) requires

µ2(abc|abc) + µ2(acb|abc) + µ2(cab|abc) ≥ µ2(abc|abc) + µ2(acb|abc) + µ2(bac|abc)

This is required so that voter 2 who puts a very high utility weight on a relative to b

and c does not gain by misreporting acb. But the above inequality implies µ2(cab|abc) ≥
µ2(bac|abc). However, since d(cab, abc) = 2 > d(bac, abc) = 1, K-correlation requires

µ2(bac|abc) > µ2(cab|abc). Hence f 1 is not OBIC for any belief of voter 2 which is K-

correlated.
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We now show that f 1 is TS-LOBIC. It is easy to verify that truth-telling is weakly

dominant for voter 1 of all types. In the case of voter 2, the following inequalities for µ2 are

necessary and sufficient in order that f 1 be OBIC with respect to the belief pair (., µ2):

µ2(cab|abc) > µ2(bac|abc), µ2(bac|acb) > µ2(cab|acb), µ2(cba|bac) > µ2(abc|bac), µ2(abc|bca) >

µ2(cba|bca), µ2(bca|cab) > µ2(acb|cab) and µ2(acb|cba) > µ2(bca|cba).

These inequalities is easily satisfied by a belief µ2 satisfying TS-correlation as the fol-

lowing matrix of conditional probabilities shows. In the number associated with row i and

column j is the probability µ2(i|j).

abc acb bac bca cab cba

abc 0.50 0.10 0.08 0.12 0.10 0.10

acb 0.10 0.50 0.10 0.10 0.08 0.12

bac 0.08 0.12 0.50 0.10 0.10 0.10

bca 0.10 0.10 0.10 0.50 0.10 0.08

cab 0.12 0.08 0.10 0.10 0.50 0.10

cba 0.10 0.10 0.12 0.08 0.10 0.50

(17)

Moreover since all the necessary inequalities (for both OBIC and TS-correlation) are

satisfies strictly, they will continue to be satisfied if the conditional probabilities are perturbed

slightly. Hence f 1 is TS-LOBIC.

There are SCFs which are not TS-LOBIC as the next example demonstrates.

Example 4 Let A = {a, b, c} and N = {1, 2}. Consider the SCF f 2 as shown in the table

below.
abc acb bac bca cab cba

abc a a a b a b

acb a a a c a c

bac c a b b a b

bca b b b b c b

cab a b a c c c

cba c c b c c c

(18)

Consider voter 2 with preference abc who considers misreporting via acb. Then she

will lose by misreporting if voter 1 has preference cba by getting c instead of b; she will

gain if voter 1’s preference is bac by getting a instead of c. Suppose f 2 is OBIC with

respect to some belief pair (µ1, µ2). By virtue of the robustness criterion, we can assume

µ2(bac|abc), µ2(cab|abc) > 0. Now pick a utility representation u of abc such that u(a) =

1, u(b) = α, u(c) = 0 where 0 < α < 1. The difference in expected utility between truth-

telling and lying is ∆ = (1−α)µ2(cab|abc)− µ2(bac|abc). Since µ2(cab|abc), µ2(bac|abc) > 0,

∆ can be made strictly less than 0 by choosing α sufficiently close to 1. This contradicts the

assumption that f 2 is OBIC with respect to (µ1, µ2).
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The example above suggests a necessary condition that a TS-LOBIC SCF must satisfy.

Since all conditional probabilities can be assumed to be non-zero by local robustness, ex-

pected utility for a type cannot be maximized by truth-telling if misrepresentation weakly

dominates truth-telling. However in addition, the gain from truth-telling cannot be “washed

out” relative to the gain from misrepresentation by picking a different utility representation.

We formalize this notion below.

Definition 14 A SCF f : Pn → A satisfies Ordinal Non-Domination (OND) if for all i,

for all Pi, P
′
i and P−i such that f(P ′

i , P−i)Pif(Pi, P−i), there exists P ′
−i such that,

1. Either f(Pi, P
′
−i) = f(P ′

i , P−i) or f(Pi, P
′
−i)Pif(P ′

i , P−i) and

2. Either f(Pi, P−i) = f(P ′
i , P

′
−i) or f(Pi, P−i)Pif(P ′

i , P
′
−i).

Consider the SCF f 2 in Example 4. Observe that f 2(bac, acb) = a is strictly preferred to

c = f 2(bac, abc) under abc. According to OND, there must exist another preference ordering

for voter 1 where 2 does strictly better by reporting abc rather than acb. The only candidate

for such an ordering for 1 is cab. However f 2(cab, acb) is strictly preferred to f 2(bac, abc)

violating part 1 of the OND condition. The example clearly shows how OBIC will now fail:

by choosing a suitable utility representation, the gain from telling the truth when 1’s report

is cab can be made arbitrarily small relative to the gain from lying when 1’s report is bac.

The necessity of part 2 of OND can be demonstrated similarly.

The OND condition is weak as the example below suggests.

Example 5 Let A = {a, b, c} and N = {1, 2, 3}. Let fp be the Plurality Rule with voter

1 as the tie-breaker. In other words, the outcome at any profile is the alternative that is

ranked first by the largest number of voters. In case of a tie, voter 1’s best alternative is

selected.

Observe that voter 1 has a dominant strategy to be truthful. Suppose voter 2’s type is

abc. She can profitable deviate from truth-telling only when voter 1 and 3’s best alternatives

are c and b respectively. Then 2 obtains c by telling the truth and b by deviating to a type

where b is the best alternative. On the other hand if voter 1 and 3’s best alternatives are c

and a respectively, then 2 obtains a by truth-telling and c when deviating to a type where

b is the best alternative. It is easy to verify that these profiles and outcomes satisfy the

requirements of OND. An identical argument holds for voter 3.

More examples of SCFs satisfying OND will be provided later in the section. We now

show that OND is necessary and almost sufficient for the TS-LOBIC property to hold.

Theorem 1 If a SCF is TS-LOBIC, it satisfies OND. If a SCF satisfies unanimity and

OND it is TS-LOBIC.
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Proof : We first prove that if a SCF is TS-LOBIC it satisfies OND.

Let f be a TS-LOBIC SCF. Then, for all i there exists µi ∈ TS∗ such that for all Pi, P
′
i

and u representing Pi, we have,

∑

P−i∈Pn−1

µi(P−i|Pi) [u(f(Pi, P−i), Pi)− u(f(P ′
i , P−i), Pi)] ≥ 0 (19)

Moreover inequality 19 holds for all µ′i in a neighborhood of µi. Hence we can assume

without loss of generality that µi(P−i|Pi) > 0 in inequality 19. Suppose that there exists

Pi, P
′
i and P−i such that f(P ′

i , P−i)Pif(Pi, P−i), i.e u(f(P ′
i , P−i)) > u(f(Pi, P−i)) for all

u representing Pi. Since µi(P−i|Pi) > 0, there must exist P ′
−i such that u(f(Pi, P

′
−i)) >

u(f(P ′
i , P

′
−i)), i.e. f(Pi, P

′
−i)Pif(P ′

i , P
′
−i), in order for inequality 19 to hold. Let L denote

the set of all such P ′
−i’s.

Now suppose f(P ′
i , P−i)Pif(Pi, P

′
−i) holds for all P ′

−i ∈ L. Then we can choose a utility

representation û of Pi such that û(f(P ′
i , P−i)) is arbitrarily close to 1 and û(f(Pi, P

′
−i)),

û(f(Pi, P−i)) and û(f(P ′
i , P

′
−i)) are all arbitrarily close to 0. Then, the L.H.S of 19 for the

utility function û can be made arbitrarily close to −µi(P−i|Pi) < 0 violating inequality 19.

Now suppose f(P ′
i , P

′
−i)Pif(Pi, P−i) holds. Then we can choose a utility representation

ũ of Pi such that ũ(f(P ′
i , P−i)), ũ(f(Pi, P

′
−i)) and ũ(f(P ′

i , P
′
−i)) are arbitrarily close to 1 and

ũ(f(Pi, P−i)) is arbitrarily close to 0. Once again the L.H.S of 19 for the utility function ũ

can be made arbitrarily close to −µi(P−i|Pi) < 0 violating inequality 19.

Hence f satisfies OND.

We now consider the proof of the second part of the Theorem.

Suppose that f satisfies unanimity and OND. We will construct an open set of beliefs for

each voter satisfying TS-correlation and such that f is OBIC with respect to all beliefs in

this set.

Pick a voter i and an ordering Pi. For any k ∈ {1, · · · ,m} define Af
k(Pi) = {P−i|f(Pi, P−i) =

rk(Pi)}. Thus Af
k(Pi) is the set of preferences for voters other than i that gives under f the

kth ranked alternative of voter i as outcome. Define by P 0
−i the preference profile for vot-

ers other than i where each voter j 6= i has the preference ordering Pi. Since f satisfies

unanimity, P 0
−i ∈ Af

1(Pi).

Let C∗i denote the set of probability distributions over Pn such that for each µ∗i ∈ C∗i and

Pi, the conditional distribution µ∗i (.|Pi) satisfies the following properties:

1. µ∗i (P−i|Pi) > 0 for all P−i

2. µ∗i (P
0
−i|Pi) >

∑
P−i 6=P 0

−i

µ∗i (P−i|Pi)

3. for all P−i 6= P 0
−i, µ∗i (P−i|Pi) >

∑
P ′−i∈∪r=m

r=k+1Af
r (Pi)

µ∗i (P
′
−i|Pi) where P−i ∈ Af

k(Pi).

16



Suppose f(Pi, P−i) is the kth-ranked alternative in Pi. Then the conditional probability

µ∗i (P−i|Pi) exceeds the sum of the conditional probabilities of realizing a profile P ′
−i where

the outcome f(Pi, P
′
−i) is strictly worse than the kth-ranked alternative in Pi. In addition,

the conditional probability of realizing the profile P 0
−i exceeds the sum of the conditional

probabilities of realizing any other ordering. There are clearly no difficulties in defining

C∗i . Moreover, since the restrictions on the conditional probabilities are described by strict

inequalities, it follows that C∗i is an open set in the unit simplex of dimension m!n − 1.

We claim that C∗i ⊂ TS∗. This is easily verified by noting that the term µ∗i (P
0
−i|Pi)

appears in the L.H.S of every inequality in the system of inequalities 12 which define TS

correlation while it does not appear on the R.H.S of any one of them. In order to complete

the proof, we will show that f is OBIC with respect to all beliefs (µ∗1, · · · , µ∗n) where µ∗i ∈ C∗i ,
i ∈ N .

Pick an arbitrary voter i, orderings Pi, P
′
i and a utility function u representing Pi. Let

G = {P−i|f(P ′
i , P−i)Pif(Pi, P−i)} and L = {P−i|f(Pi, P−i)Pif(P ′

i , P−i)}. Pick an arbitrary

µ∗i ∈ C∗i . In order for OBIC to be satisfied with respect to µ∗i , we must have

∑
P−i∈L

µ∗i (P−i|Pi)β(P−i)−
∑

P−i∈G

µ∗i (P−i|Pi)γ(P−i) ≥ 0 (20)

where β(P−i) = [u(f(Pi, P−i))− u(f(P ′
i , P−i))] and γ(P−i) = [u(f(P ′

i , P−i))− u(f(Pi, P−i))].

If G = ∅, inequality 20 is clearly satisfied. Suppose therefore that G 6= ∅. We claim that

for all P−i ∈ G, there exists P ′
−i ∈ L satisfying,

1. β(P ′
−i) > γ(P−i)

2. µ∗i (P
′
−i|Pi) >

∑
{P̃−i|f(Pi,P ′−i)Pif(Pi,P̃−i)}

µ∗i (P̃−i|Pi)

Here 1 above follows from the assumption that f satisfies OND and 2 follows from 2 and 3

in the specification of µ∗i .
Let σ : G → L be a map such that for all P−i ∈ G, σ(P−i) is the P ′

−i ∈ L satisfying 1 and

2 above. Let P ′
−i be an arbitrary element in the range of σ and let Q(P ′

−i) = {P−i|σ(P−i) =

P ′
−i}. A critical observation is that for all P−i ∈ Q, OND implies f(Pi, P

′
−i)Pif(Pi, P−i), i.e.

Q(P ′
−i) ⊂ {P̃−i|f(Pi, P

′
−i)Pif(Pi, P̃−i)}. Hence 2 above implies µ∗i (P

′
−i|Pi) >

∑
P−i∈Q(P ′−i)

µ∗i (P−i|Pi).

Moreover using 1 above, we have µ∗i (P
′
−i|Pi)β(P ′

−i) >
∑

P−i∈Q(P ′−i)

µ∗i (P−i|Pi)γ(P−i). Now sum-

ming up over all P ′
−i in L and noting that OND implies that G ⊂ ∪P ′−i∈LQ(P ′

−i), we obtain

inequality 20.

¥

The proof of the first part of Theorem 1 clearly shows that OND is a necessary condition

for locally robust OBIC with respect to any subset of prior beliefs. It applies equally to beliefs
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which are restricted to lie in the set of TS or K correlated beliefs or in the set of independent

beliefs of for that matter, to some subset of negative correlated beliefs, howsoever defined.

It is an inescapable consequence of local robustness. The sufficiency part of Theorem 1 that

TS-correlation leads to the most permissive result for incentive-compatibility subject to the

very mild requirement that the SCFs under consideration satisfy unanimity.

We now show that if SCFs satisfy two additional restrictions, the are TS-LOBIC with

respect to beliefs that are arbitrarily close to the uniform prior. These additional restrictions

were introduced in Majumdar and Sen (2004).

Definition 15 Let σ : A → A be a permutation of A. Let P σ denote the profile (P σ
1 , . . . P σ

n )

where for all i and a, b ∈ A,

aPib ⇒ σ(a)P σ
i σ(b)

The SCF f satisfies neutrality if, for all profiles P and for al permutation functions σ, we

have

f(P σ) = σ(f(P )).

Neutrality is a standard axiom for social choice functions which ensures that alternatives

are treated symmetrically.

Let Pi be an ordering and let a ∈ A. We say that P ′
i represents an elementary a-

improvement of Pi if

• for all x, y ∈ A \ {a}, [xPiy] ⇔ [xP ′
iy]

• [a = rk(Pi)] ⇒ [a = rk−1(P
′
i )] if k > 1

• [a = r1(Pi)] ⇒ [a = r1(P
′
i )].

Definition 16 The SCF f satisfies elementary monotonicity if, for all i, Pi, P
′
i and P−i,

such that P ′
i represents an elementary a-improvement of Pi,

[f(Pi, P−i) = a] ⇒ [f(P ′
i , P−i) = a]

Elementary monotonicity requires that if an alternative a is the outcome at a particular

profile, then it is also the outcome at the profile where a single voter makes a single upward

local switch of a. Once again, this is a weak requirement and is discussed at greater length

in Majumdar and Sen (2004).

Finally let µ̄ denote the uniform prior system of beliefs, i.e. µ̄i(P−i|Pi) = 1
m!n−1 for all Pi.

According to our next result, any neutral SCF satisfying elementary monotonicity is TS-

LOBIC with respect to a TS-correlated prior which can be chosen arbitrarily close to the

uniform prior.
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Theorem 2 Let f be a neutral SCF satisfying elementary monotonicity and unanimity. For

all ε > 0, there exists a belief system µ such that µ ∈ Bε(µ̄) and such that f is TS-LOBIC

with respect to µ.

Proof : Pick a voter i and an ordering Pi. As in the proof of Theorem 1 let P 0
−i be the

preference profile for voters other than i where each voter j 6= i has the preference ordering

Pi. Let K ⊂ {1, . . . , m} be such that (i) if k ∈ K and k ≥ 2, then Af
k(Pi) = {P−i|f(Pi, P−i) =

rk(Pi)} 6= ∅ and (ii) If k = 1 and k ∈ K then Af
1(Pi) = {P−i|f(Pi, P−i) = r1(Pi)} \ P 0

−i 6= ∅.
In other words, if k ∈ K and k ≥ 2, there exists an n−1 voter profile P−i such that f(Pi, P−i)

is the kth-ranked alternative in Pi. The index 1 is included in K if there exists a profile P−i

distinct from P 0
−i such that f(Pi, P−i) is the first-ranked alternative in Pi.

Without loss of generality, let K = {k1, . . . , kL} such that k1 < k2 . . . < kL. For each

l = 1, . . . , L pick δl > 0 satisfying

1. 1
m!n−1 > δ0 =

∑L
l=1 δkl

and

2. δ1 < δ2 < . . . < δL.

Define the conditional beliefs µ∗i (.|Pi) as follows:

µ∗i (P−i|Pi) =

{
1

m!n−1 + δ0 if P−i = P 0
−i

1
m!n−1 − δl

|Af
kl

(Pi)|
if P−i ∈ Af

kl
(Pi) for some l = 1, . . . , L (21)

It is clear that by choosing the δ’s sufficiently small, we can generate a belief system µ∗

arbitrarily close to µ̄.

We claim that µ∗i (.|Pi) is TS-correlated for all Pi. Consider an arbitrary inequality in

12, for instance for some k = 1, . . . ,m and a set |B| = k with B 6= Bkl
(Pi). Note that

|{P−i : Bk(Pj) = B ∀j 6= i}| = |{P−i : Bk(Pj) = Bk(Pi) ∀j 6= i}|. Therefore the number

of terms in the L.H.S and R.H.S of every inequality in 12 has the same number of terms.

Each of these terms contains 1
m!n−1 which can be canceled with each other. Now consider

the inequality after canceling these terms. The term δ0 appears on the L.H.S but not in the

R.H.S. Therefore a lower bound for the L.H.S is when all the terms other than P 0
−i belong

to Af
kL

(Pi). Hence a lower bound for the LHS is δ0− δkL
> 0 by construction. On the R.H.S

all terms are strictly negative (in fact the maximum value it can attain is -δ1). Clearly the

L.H.S is strictly greater than the R.H.S so that µ∗i (.|Pi) is TS-correlated. Note that there

all exists a neighborhood of µ∗i where all beliefs are TS-correlated.

We now show that for any voter i and type Pi, f satisfies incentive-compatibility with

respect all priors chosen in a suitable neighborhood of µ∗i (.|Pi). Pick an arbitrary P ′
i and an

integer k ∈ {1, . . . , m− 1}. Let σ : A → A be a permutation such that rl(Pi) = rσ(l)(P
′
i ) for

all l = 1, . . . , m. Let P−i = {P−i : f(P ) ∈ Bk(Pi)} and Pσ
−i = {P σ

−i : f(P ) ∈ σ−1(Bk(Pi))}
5. For each P−i ∈ P−i, let s(P−i) ∈ {k1, . . . , kL} be such that f(Pi, P−i) = rs(P−i)(Pi). Let

5σ−1(Bk(Pi) = {a ∈ A : σ(a) ∈ Bk(Pi)}.
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∆(P−i) =
∑

P−i∈P−i

δs(P−i)

|Af
s(P−i)

(Pi)|
. Similarly, let ∆(Pσ

−i) =
∑

P−i∈Pσ
−i

δs(P−i)

|Af
s(P−i)

(Pi)|
.

Therefore we have

µ∗i ({P−i|f(Pi, P−i) ∈ Bk(Pi)}|Pi) =
1

m!n−1
|P−i|+ δ0 −∆(P−i) (22)

µ∗i ({P−i|f(P σ
i , P−i) ∈ Bk(Pi)}|Pi) =

1

m!n−1
|Pσ−i|+ δ0I{r1(Pi)∈σ−1(Bk(Pi))} −∆(Pσ

−i) (23)

Here I is the indicator function, i.e. I{r1(Pi)∈σ−1(Bk(Pi))} = 1 if r1(Pi) ∈ σ−1(Bk(Pi)) and 0

otherwise.

Majumdar and Sen (2004) prove that if f satisfies elementary monotonicity and neutral-

ity, then

1. |Af
k(Pi)| ≥ |Af

t (Pi)| whenever k < t

2. |P−i| ≥ |Pσ
−i|.

Fix an arbitrary k ∈ {1, . . . , m− 1}. We wish to compare the R.H.S of equations 22 and

23. Consider the following cases.

Case I: m!n−1 > |P−i| = |Pσ
−i|.

Let T 0 = {P−i : P−i ∈ P−i \ Pσ
−i} and T 1 = {P−i : P−i ∈ Pσ

−i \ P−i}. In view of 2

above, |T 0| ≥ |T 1| 6= 0. Pick an arbitrary P−i ∈ T 1. Since P−i /∈ P−i, it follows that

s(P−i) > k. On the other hand, for all P−i ∈ T 0, we have s(P−i) ≤ k. Note that for all

P−i, P
′
−i if s(Pi) > s(P

′
−i), then δs(P−i) > δs(P

′
−i)

by construction and |Af
s(P−i)

| ≤ |Af

s(P
′
−i)
|, so

that
δs(P−i)

|Af
s(P−i)

| >
δ
s(P

′
−i

)

|Af

s(P
′
−i

)
| . Therefore,

∆(Pσ
−i)−∆(P−i) =

∑

P−i∈T 1

δs(P−i)

|Af
s(P−i)

| −
∑

P−i∈T 0

δs(P−i)

|Af
s(P−i)

| > 0 (24)

Hence,

µ∗i ({P−i|f(Pi, P−i) ∈ Bk(Pi)}|Pi)− µ∗i ({P−i|f(P σ
i , P−i) ∈ Bk(Pi)}|Pi)

≥ ∆(Pσ
−i)−∆(P−i)

> 0

(25)

Case II: m!n−1 > |P−i| > |Pσ
−i|.

We claim that ∆(Pσ
−i) − ∆(P−i) < δ0. Note that ∆(Pσ

−i) − ∆(P−i) =
∑L

l=1 δkl
= δ0

only if either P−i or Pσ
−i is the set of all n − 1 voter profiles, i.e. either |P−i| = m!n−1 or

|Pσ
−i| = m!n−1. However both cases contradict underlying assumptions for Case II to hold.

Consequently ∆(Pσ
−i)−∆(P−i) < δ0. Thus,
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µ∗i ({P−i|f(Pi, P−i) ∈ Bk(Pi)}|Pi)− µ∗i ({P−i|f(P σ
i , P−i) ∈ Bk(Pi)}|Pi)

≥ 1
m!n−1 (|P−i| − |Pσ

−i|) + ∆(Pσ
−i)−∆(P−i)

> 1
m!n−1 − δ0

> 0

(26)

Observe that if either Case I or II hold, then incentive-compatibility conditions hold

with strict inequality with respect to µ∗i . Therefore they will continue to hold in a neigh-

borhood of µ∗i . The only remaining case (in view of 2) is when |P−i| = m!n−1. In this case

µ∗i ({P−i|f(Pi, P−i) ∈ Bk(Pi)}|Pi) = 1 so that incentive-compatibility conditions will continue

to hold for all beliefs.

We have established that f is TS-LOBIC at µ∗ as required. ¥

Observation 4 Majumdar and Sen (2004) show that a large class of “well-behaved” SCFs

satisfy neutrality and elementary monotonicity. These include all scoring rules with neutral

tie-breaking rules (for instance, by picking the maximal element amongst all alternatives

with the highest score according to a fixed voter’s ordering). Note that these SCFs must

also satisfy the OND condition.

We now discuss our results on local robustness at greater length.

5.1 Discussion and Interpretation

Theorems 1 and 2 stand in sharp contrast to results in Majumdar and Sen (2004) for the

independent beliefs case. Their main result says the following: if beliefs are independent,

there exists a set which is generic such that OBIC with respect to any beliefs in this set

implies that truth-telling must be a dominant strategy. It may be possible to find non-

dictatorial SCFs for very special beliefs such as the uniform prior. However, if beliefs are

picked from a slightly perturbed set, the class of incentive-compatible compatible SCFs

immediately shrinks to the dictatorial class. In contrast, if beliefs are TS or K-correlated,

it is possible to find SCFs that are incentively-compatible with respect to all beliefs in some

neighborhood of beliefs.

Theorem 1 provides a very general answer to the question of what SCFs are TS-LOBIC.

The proof of the second part of the Theorem constructs a class of conditional beliefs for

each voter with respect to which a SCF satisfying OND and unanimity, is TS-LOBIC.

These beliefs depend on the SCF. This should not be surprising; in the next section we

show that imposing stronger notions of robustness lead to a drastic reduction in the class

of incentive-compatible SCFs. The beliefs constructed are as follows: a voter i with type

i puts “high” weight on all other voters types being Pi (i.e. coinciding with her own); in

21



addition she puts higher weight on voters types being P−i instead of P ′
−i if f(Pi, P−i) is

strictly better than f(Pi, P
′
−i) according to Pi. In general, one may say that voters are

“optimistic” in their beliefs in the sense that they assign “much higher” probabilities to more

favorable events. In this case, these events are realizations of the other voter’s types which

lead to better outcomes through the SCF. Loosely speaking, this is in accordance with the

general intuition regarding why positive correlation may ameliorate the problems of designing

incentive compatible SCFs.

Theorem 2 shows that SCFs under consideration which satisfy neutrality and elementary

monotonicity are TS-LOBIC. Moreover, the neighborhood of beliefs with respect to which

the SCFs are LOBIC, can be chosen to be arbitrarily close to the uniform prior, i.e. at

the center of the simplex. In contrast, the neighborhood of beliefs constructed in the proof

of Theorem 1 was near the vertex of the simplex where an agent believes that all other

agents have the same type that she does. In the case of Theorem 2 as earlier, beliefs are

constructed assuming that voters are“optimistic”about their beliefs about the types of other

voters. However, it suffices for their optimism to be “very small” relative to uniform beliefs.

Do Theorems 1 and 2 go through for K-LOBIC? The answer is no; in fact Example 3

demonstrates that OND is not sufficient for K-LOBIC. The OND condition guarantees that

if misrepresentation is more profitable than truth-telling for voter i if the type profile of the

other voters is, say P−i, then there is another type profile of the other voters, say P ′
−i where

the misrepresentation is“ordinally costlier”than truth-telling, relative to the situation at P−i.

In order to strengthen the condition to make it K-LOBIC necessary, additional restrictions

on d(Pi, P
′
−i) relative to d(Pi, P−i) must also hold. These restrictions may be quite subtle

and we do not pursue this question further.

In the next section, we consider the consequences of strengthening the robustness require-

ment.

6 Incentive Compatibility with Global Robustness

In this section we analyze the issue of Global Robustness with positively correlated beliefs.

Definition 17 A SCF f : Pn → A is K-Globally Robust OBIC (K-ROBIC) if it is OBIC

with respect to all belief systems µ where µi ∈ K∗ for all i.

We have an analogous definition for TS-correlation.

Definition 18 A SCF f : Pn → A is TS-Globally Robust OBIC (TS-ROBIC) if it is OBIC

with respect to all belief systems µ where µi ∈ TS∗.

Observation 5 Since K∗ ⊂ TS∗, (Proposition 1), a SCF which is TS-ROBIC, is also

K-ROBIC.
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Our goal is to investigate the class of K and TS- ROBIC SCFs. We first focus our atten-

tion on SCFs which are K-ROBIC. Since the K-ROBIC property is clearly a strong require-

ment, it is reasonable to conjecture that a SCF which satisfies it, is strategy-proof. Stating

it differently, it may seem plausible that the consequences of imposing incentive-compatibility

with respect to all positively correlated beliefs is equivalent to imposing incentive-compatibility

with respect to all beliefs. Rather surprisingly this is false as we show below.

Definition 19 The SCF fus is the unanimity with status-quo rule if there exists an alter-

native x such that for all profiles P ,

f(P ) =

{
r1(P1) if r1(P1) = r1(P2) = · · · = r1(Pn)

x otherwise.
(27)

In other words, fus picks the status quo alternative x unless both voters have a common

best ranked alternative. It is clear that fus is not strategy-proof. For instance suppose

A = {a, b, x} and let P be the profile where aP1bP1x and bPjaPjx for all j 6= 1. The

outcome of fus in this profile is x (the status quo alternative). But voter 1 can mis-report

bP ′
1aP ′

1x and obtain b which is better than x according to P1. We show however that fus is

TS- ROBIC and therefore K-ROBIC as well.

Proposition 2 fus is TS-ROBIC.

Proof : As before, we denote the status quo alternative by x. Pick an arbitrary voter i

with ordering Pi. If r1(Pi) = x, then fus(Pi, P−i) = x for all P−i. Truth-telling is a weakly

dominant strategy in this case and will lead to a (weakly) higher expected payoff irrespective

of the representation u of Pi and beliefs µ(P−i|Pi).

Assume therefore that r1(Pi) = a 6= x. Let P ′
i be such that either b = x or xPib where

r1(P
′
i ) = b 6= a. Since fus(Pi, P−i) is either a or x for all P−i and fus(P ′

i , P−i) is either

b or x for all P−i, it follows again that truth-telling will weakly dominate the strategy of

misreporting via P ′
i .

It follows that the only case which needs to be considered is the one where r1(P
′
i ) = b and

bPix. Here voter i will gain by misreporting P ′
i for all P−i such that for all j 6= i, r1(Pj) = b.

Denote the set of such P−i’s by G. On the other hand, i loses by misreporting P ′
i for all P−i

such that for all j 6= i r1(Pj) = a. Denote the set of such P−i’s by L. In particular observe

that

• fus(Pi, P−i) = x, fus(P ′
i , P−i) = b for all P−i ∈ G

• fus(Pi, P−i) = a, fus(P ′
i , P−i) = x for all P−i ∈ L

• fus(Pi, P−i) = fus(P ′
i , P−i) = x for all P−i /∈ G ∪ L
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Let u be an arbitrary utility function that represents Pi and let µi ∈ TS∗. The expected

utility from truth-telling is

∑
P−i∈L

u(a)µi(P−i|Pi) +
∑

P−i∈G

u(x)µi(P−i|Pi) +
∑

P−i /∈G∪L

u(x)µi(P−i|Pi) (28)

The expected utility from misreporting via P ′
i is

∑
P−i∈L

u(x)µi(P−i|Pi) +
∑

P−i∈G

u(b)µi(P−i|Pi) +
∑

P−i /∈G∪L

u(x)µi(P−i|Pi) (29)

Let ∆ denote the gain from truth-telling. The two equations above imply

∆ = [u(a)− u(x)]
∑

P−i∈L

µi(P−i|Pi)− [u(b)− u(x)]
∑

P−i∈G

µi(P−i|Pi) (30)

Since u represents Pi, we have u(a) > u(b) > u(x). Also TS correlation implies∑
P−i∈L µi(P−i|Pi) >

∑
P−i∈G µi(P−i|Pi) (since voter i of type Pi considers it more likely

that the probability that top-ranked alternative of all the other voters agrees with her own

(i.e. it is a) than the case that all the other voters have the same top-ranked alternative

different from her own (i.e., b in this case)). Hence ∆ ≥ 0 and fus is TS-ROBIC.

¥

The unanimity with status quo rule has some nice features. It is both anonymous 6 and

neutral. However it has a serious drawback: the rule picks the status quo in many situations

where both voters prefer other alternatives. It violates efficiency.

Our main result shows that imposing efficiency together with global robustness leads

to dictatorial SCFs. In other words, efficiency and global robustness can be satisfied only

if truth-telling is a weakly dominant strategy. Observe that robustness does not directly

imply weak dominance of truth-telling because robustness is imposed only with respect to

positively correlated beliefs.

Our main result in this section is:

Theorem 3 Assume m ≥ 3. A SCF is efficient and K-ROBIC if and only if it is dictatorial.

The proof of the Theorem is complicated and relegated to the Appendix. Later in the

section we provide a sketch of the proof. Before doing so, we state and prove an auxiliary

result which we use repeatedly in the proof. We believe that the result is also of some

independent interest because it illuminates the restrictions that the K-ROBIC assumption

imposes on a SCF.

6A SCF is anonymous if it does not discriminate amongst voters.
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Proposition 3 Let f be a K-ROBIC SCF. Let (Pi, P−i) and (P ′
i , P−i) be two profiles such

that f(P ′
i , P−i)Pif(Pi, P−i). Then there exists P ′

−i satisfying the following properties:

(i) for all j 6= i, d(Pi, P
′
j) < d(Pi, Pj)

(ii) either f(Pi, P
′
−i) = f(P ′

i , P−i) or f(Pi, P
′
−i)Pif(P ′

i , P−i)

(iii) either f(Pi, P−i) = f(P ′
i , P

′
−i) or f(Pi, P−i)Pif(P ′

i , P
′
−i)

Proof : If f is K-ROBIC, it must also be K-LOBIC. From Theorem 1, it follows that

f must satisfy OND. Suppose that there exist profiles (Pi, P−i) and (P ′
i , P−i) such that

f(P ′
i , P−i)Pif(Pi, P−i). Then OND implies that there exists P ′

−i satisfying (ii) and (iii). It

only remains to show (i).

Let L = {P ′
−i|f(Pi, P

′
−i)Pif(P ′

i , P
′
−i)}. Suppose that for all P ′

−i ∈ L, there exists a j 6= i

such that d(Pi, P
′
j) ≥ d(Pi, Pj). Note that for any δ1, δ2 > 0 we can always choose a utility

function u representing Pi such that u(f(P ′
i , P−i))− u(f(Pi, P−i)) = δ1 and

∣∣ max
P ′−i∈L

[u(f(Pi, P
′
−i))− u(f(P ′

i , P
′
−i))]− [u(f(P ′

i , P−i))− u(f(Pi, P−i))]
∣∣ < δ2

Also for any ε1, ε2 such that 1 > ε1 > ε2 > 0, there exists a belief system (µ1, · · · , µn) ∈
K∗ such that (i) µ(P ′

−i|Pi) > ε1 if either (a) P ′
−i = P−i or (b) for all j 6= i, d(Pi, P

′
j) <

d(Pi, Pj) and (ii) µ(P ′
−i|Pi) < ε2 for all other P ′

−i. Let ∆ =
∑

P ′−i∈Pn−1 [u(f(P ′
i , P

′
−i)) −

u(f(Pi, P
′
−i))]µ(P ′

−i|Pi). It follows that∆ ≥ ε1δ1 − (m!− 1)N−1(δ1 + δ2)ε2. It is clear that by

choosing ε2 sufficiently close to zero, the R.H.S of the inequality above can be made strictly

positive, i.e. ∆ > 0. But this violates the assumption that f is K-ROBIC. ¥

The extra strengthening of OND for K-ROBIC is natural. As we have discussed earlier,

OND (parts (ii) and (iii) above) ensures that the gain from truthful reporting at Pi instead

of P ′
i at P ′

−i is “ordinally” greater than the loss from truthful reporting at P−i. In addition,

the Kemeny distance between the Pi and P ′
−i must be strictly smaller than that between

Pi and P−i. If this were not true, the expected utility from lying could be made to exceed

that of truth-telling by choosing a conditional probability distribution such that µi(P
′
−i|Pi)

is made arbitrarily small relative to µi(P−i|Pi).

Observation 6 The condition described in the statement of Proposition 3 is not sufficient

for a SCF to be K-ROBIC. A further condition is required which as follows. For all Pi and P ′
i ,

let G = {P−i|f(P ′
i , P−i)Pif(Pi, P−i)} and let L = {P ′

−i|f(Pi, P
′
−i)Pif(P ′

i , P
′
−i)}. According

to Proposition 3, there exists a map σ : G → L such that P−i ∈ G there exists a P ′
−i ∈ L

satisfying conditions (i), (ii) and (iii). The additional requirement which is necessary and

together with Proposition 3 is also sufficient, is that the map σ must be injective. We do not

include a proof of this result in the paper because it is not required for the proof of Theorem

3.
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We now provide the sketch of the proof of Theorem 3.

Sketch of Proof: For any profile P we define D(P ) to be the maximal Kemeny distance

between any two preference orderings in the profile P . The result is proved by an induction

on D(P ). The proof consists of two claims. In Claim 1 we show that there exists voter i such

that for all profiles, P with D(P ) = 1, we have f(P ) = r1(Pi). There are three steps to prove

Claim 1. In Step 1 we consider a subclass of profiles where all voters other than say voter k

have the same preference ordering that is different from voter k’s. We denote such profiles

by D(k). Let us consider a profile P̃ ∈ D(k) where voter k has preference P̃j and all other

voters have preference P̃i. By Pareto efficiency f(P̃ ) ∈ {r1(P̃j), r1(P̃i)}. In Step 1 we show

that if in such a profile P̃ ∈ D(k), the social choice function picks the common top-ranked

alternative of all voters other than k, r1(P̃i) as the outcome, then for all profiles P ∈ D(k),

f(P ) = r1(Pi) where Pi is the common preference ordering of all voters other than k in the

profile P . By varying k = 1, · · · , n we get the collections of profiles D(1),D(2), · · · ,D(n).

In any profile P ∈ D(1) for example, voter 1 has preference ordering Pj and all voters other

than 1 has a common preference ordering Pi. Since k is arbitrarily chosen, Step 1 holds for all

such collection of profiles, D(1),D(2), · · · ,D(n). In Step 2 we show that there exists a k and

profile P k = (Pi, · · · , Pi, Pj, Pi, · · · , Pi) ∈ D(k) such that f(P k) = r1(Pj). We can describe

Step 2 as “identifying the dictator step”. Step 3 completes Claim 1 by showing that the voter

identified as the dictator in Step 2 indeed dictates over all profiles P with D(P ) = 1.

We then move to Claim 2, where we use induction on D(P ) to complete the proof.

Specifically, we assume without loss of generality that k is an integer greater than 1 and

that f(P ′) = r1(P
′
1) whenever D(P ′) ≤ k. Let P be a profile such that D(P ) = k + 1. In

Claim 2 we show that f(P ) = r1(P1). The proof of Claim 2 is divided in two parts. First we

consider profiles where voter 1 has preference ordering P1 and all other voters have common

preference ordering Pi and d(P1, Pi) = k + 1. Let P 1 be such a profile. In the first part

we show that f(P 1) = r1(P1). In the next part we show that if f(P 1) = r1(P1), then for

all P such that D(P ) = k + 1, f(P ) = r1(P1). we show this by sequentially changing the

preference orderings of all voters other than 1 and ensuring that the social choice outcome

remains unchanged in all these profiles.

An obvious implication of Theorem 3 is the following result:

Corollary 1 Assume m ≥ 3. A SCF is efficient and TS-ROBIC if and only if it is

dictatorial.

We have seen that efficiency cannot be weakened to the assumption of unanimity because

the unanimity with status quo rule clearly satisfies unanimity. However, are there other K-

ROBIC SCFs which satisfy unanimity? We have an answer in the special case where m = 3

but not to the general question.
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Proposition 4 Assume m = 3. A SCF is K-ROBIC and satisfies unanimity if and only

if it is either dictatorial or the unanimity with status quo rule.

The proof of this result is omitted. It is available from the authors on request.

7 Conclusion

In this paper we have explored the problem of mechanism design in a voting environment

with an arbitrary number of voters where a voter’s belief about the type of the other voters

are positively correlated with her own type. Our general conclusion is that the prospects

for constructing incentive-compatible social choice functions in this environment are signifi-

cantly improved relative to the independent case. In this respect, our results parallel those

in environments with transfers and quasi-linear utility such as Crémer and Mclean (1988).

However the reasons behind the enhanced possibilities in the voting environment are quite

different from the quasi-linear context.

In future research we hope to extend our analysis to other notions of correlation and to

understand better, the relationship between the structure of beliefs and incentive-compatible

social choice functions.
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8 Appendix

We provide a proof of Theorem 3 below.

Proof : The sufficiency part of the theorem is trivial since dictatorial SCFs are strategy-

proof and efficient. We shall therefore only prove necessity. In what follows, we assume that

f is efficient and K-ROBIC.

For any profile P , let D(P ) = maxi,j d(Pi, Pj). Thus D(P ) is the maximal Kemeny

distance between any two preference orderings in the profile P . We shall prove the result by

induction on D(P ). In particular we shall prove the following claims.

CLAIM 1: There exists a voter i such that for all profiles P such that D(P ) = 1, we have

f(P ) = r1(Pi).

CLAIM 2: Let k be an integer with k > 1. Suppose that there exists a voter i such that

for all profiles P ′ with D(P ′) ≤ k, we have f(P ′) = r1(P
′
i ). Let P be a profile such that

D(P ) = k + 1. Then, f(P ) = r1(Pi).

It is evident that Claims 1 and 2 establish that f is dictatorial and voter i is the dictator.

We begin our proof of Claim 1 with two useful Lemmas.

Lemma 1 Let Pi and P ′
i be orderings for voter i such that B(rt(Pi), Pi) = B(rt(P

′
i ), P

′
i ) for

some integer t lying between 1 and m− 1. Let P−i be a profile of orderings for voters other

than i such that D(Pi, P−i) = 2. Then

[f(P ′
i , P−i) ∈ B(rt(P

′
i ), P

′
i )] ⇒ [f(Pi, P−i) ∈ B(rt(Pi), Pi)]
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Proof : Suppose that the Lemma is false. Let f(P ′
i , P−i) = y and f(Pi, P−i) = x /∈

B(rt(Pi), Pi). Following Proposition 3 there exists a P ′
−i such that,

1. d(Pi, P
′
j) < d(Pi, Pj) for all j 6= i

2. f(Pi, P
′
−i) ∈ B(y, Pi) and

3. f(P ′
i , P

′
−i) ∈ W (x, Pi).

7

Observe that since B(rt(Pi), Pi) = B(rt(P
′
i ), P

′
i ), W (x, Pi) ∩ B(rt(P

′
i ), P

′
i ) = ∅. Since

D(Pi, P
′
−i) = 1, for any j 6= i, either,

(a.) r1(Pi) = r1(P
′
j) or

(b.) r1(P
′
j) = r2(Pi), r2(P

′
j) = r1(Pi) and for all l /∈ {1, 2}, rl(Pi) = rl(P

′
j).

Consider any z ∈ W (x, Pi). Since, B(rt(Pi), Pi) = B(rt(P
′
i ), P

′
i ), (a) and (b) implies that,

there exists a w ∈ B(rt(Pi), Pi), such that for all j ∈ N , wP ′
jz. But then, z /∈ PE(P ′

i , P
′
−i).

Therefore, Pareto-efficiency of f implies that f(P ′
i , P

′
−i) 6= z. Since the above statement is

true for any z ∈ W (x, Pi), part 3. in the above requirement is violated. ¥

Lemma 2 Fix an integer t ∈ {1, · · · ,m− 1}. Consider a profile (Pi, P−i) such that

1. there exists a j 6= i such that B(rt(Pi), Pi) = B(rt(Pj), Pj) and

2. f(Pi, P−i) ∈ B(rt(Pi), Pi)

Then, f(Pj, P−i) ∈ B(rt(Pj), Pj)

Proof : Suppose the claim is false. Then voter i with preference ordering Pj gains by mis-

reporting ordering Pi at the profile (Pj, P−i) . However in the preference profile (P−i) for the

voters other than i, there exists voter j with preference ordering Pj. Since d(Pj, Pj) = 0, the

condition in Proposition 3 will be violated. ¥

Proof of Claim 1: We prove Claim 1 in three steps. Some of the steps have several

substeps.

Proof : Let H denote the set of pairs of orderings Pi, Pj satisfying the following conditions.

1. r1(Pi) = r2(Pj)

7The set W (x, Pi) is the set of alternatives that are weakly worse than x according to Pi, i.e. W (x, Pi) =
{z ∈ A|xPiz} ∪ {x}.

29



2. r2(Pi) = r1(Pj)

3. rt(P1) = rt(P2) for all t > 2

In other words, H consists of pairs of orderings which agree on the rankings of all alter-

natives except those which are ranked first and second. Let k be an integer lying between

1 and n. Then D(k) is the set of preference profiles where voter k has ordering Pj and all

voters other than k have the ordering Pi and (Pi, Pj) ∈ H. A typical element of D(k) will be

denoted by P k where

P k ≡ (Pi, · · · , Pi︸ ︷︷ ︸
k−1

, Pj, Pi, · · · , Pi︸ ︷︷ ︸
N−k

)

and (Pi, Pj) ∈ H.

Step 1: We will show the following. Fix an integer k and let P̃ k ∈ D(k) be the profile where

voter k has the ordering P̃j and all other voters have the ordering P̃i. Suppose f(P̃ k) = r1(P̃i).

Then f(P k) = r1(Pi) for all P k ∈ D(k). Here P k is the profile where voter k has the ordering

Pj and all other voters have the ordering Pi and (Pi, Pj) ∈ H. Without loss of generality let

r1(P̃i) = b and r1(P̃j) = a. Since f is efficient f(P̃ k) is either a or b. Under our assumption

f(P̃ k) = b. Without loss of generality let k = 1. That is voter 1 has the preference Pj and

all the other voters have the preference Pi. In order to simplify the notation (so that there

is no confusion) we will set Pj = P1 and Pi = P2. In other words, we say voter 1 has the

preference ordering P1 and all voters other than 1 has the preference ordering P2. This is just

to simplify the notation and does not, in any way, affect the analysis that follows. We will

prove Step 1 in a series of sub-steps. Step 1(i): Let {c, d} be an arbitrary pair of alternatives

and let P ′1, P̂ 1 ∈ D(1) be such that r1(P
′
1) = r1(P̂1) = c and r1(P

′
2) = r1(P̂2) = d. We show

that if f(P ′1) = d, then f(P̂ 1) = d.

Suppose f(P ′1) = d. Consider the case where d(P ′
1, P̂1) = d(P ′

2, P̂2) = 1. In other words,

P̂1 and P̂2 are obtained from P ′
1 and P ′

2 respectively by the transposition of some common pair

{x, y} of alternatives. Consider the profile(P̂1, P
′
2, · · · , P ′

2). Suppose f(P̂1, P
′
2, · · · , P ′

2) 6= d.

Then Pareto efficiency implies f(P̂1, P
′
2, · · · , P ′

2) = c. Since cP ′
1d, Proposition 3 implies that

there exists a P̃−1 such that,

(i.) for all j 6= 1, d(P ′
1, P̃j) < d(P ′

1, P
′
2)

(ii.) f(P ′
1, P̃−1) = c and

(iii.) f(P̂1, P̃−1) = d or f(P̂1, P̃−1) = x where dP ′
1x.

Note that d(P ′
1, P

′
2) = 1. Therefore the only candidate P̃−1 is where for all j 6= 1,

d(P ′
1, P̃j) = 0. In other words, for all j 6= 1, P̃j = P ′

1. Since r1(P
′
1) = r1(P̂1) = c,

30



f(P ′
1, P̃−1) = c ⇒ f(P̂1, P̃−1) = c. Hence conditions (ii.) and (iii.) above are not simultane-

ously satisfied. Hence f(P̂1, P
′
2, · · · , P ′

2) = d. Consider now the profile (P̂1, P̂2, P
′
2, · · · , P ′

2).

In other words, in the profile (P̂1, P̂2, P
′
2, · · · , P ′

2), voter 1 has preference P̂1, voter 2 has

preference P̂2 and all other voters have the preference ordering P ′
2. By Pareto efficiency,

f(P̂1, P̂2, P
′
2, · · · , P ′

2) ∈ {c, d}. Suppose f(P̂1, P̂2, P
′
2, · · · , P ′

2) 6= d. Then the previous state-

ment implies f(P̂1, P̂2, P
′
2, · · · , P ′

2) = c. Since dP̂2c, Proposition 3 implies that there exists a

P̃−2 such that,

(i.) d(P̂2, P̃1) < d(P̂2, P̂1)

(ii.) for all j 6= 1, 2, d(P̂2, P̃j) < d(P̂2, P
′
2)

(iii.) f(P̂2, P̃−2) = d and

(iv.) f(P ′
2, P̃−2) = c or f(P ′

2, P̃−2) = x where cP̂2x

Now d(P̂2, P̂1) = 1 and for all j 6= 1, 2, d(P̂2, P
′
2) = 1. This implies the only candidate

P̃−2 is one where for all j 6= 2, P̃j = P̂2. Since P̂2 and P ′
2 have the same top-ranked element

d, [f(P̂2, P̃−2) = d] ⇒ [f(P ′
2, P̃−2) = d]. Hence conditions (iii.) and (iv.) cannot hold

together. Therefore, f(P̂1, P̂2, P
′
2, · · · , P ′

2) = d. We now consider the profile (P̂ 1). Observe

that since r1(P
′
1) = r1(P̂1) = c, r1(P

′
2) = r1(P̂2) = d and P ′1, P̂ 1 ∈ D(1), it has to be

the case that r1(P̂1) = r2(P̂2) = c and r2(P̂1) = r1(P̂2) = d. We can find a sequence of

profiles P (r), r = 2, · · · , N such that (i) P (2) = (P̂1, P̂2, P
′
2, · · · , P ′

2), (ii) P (N) = P̂ 1 and

(iii) P (r) = (P̂1, P̂2, · · · , P̂2, P
′
2, · · · , P ′

2), r = 3, · · · , N . In other words, the profile P̂ 1 can be

obtained from the profile (P̂1P̂2, P
′
2, · · · , P ′

2) by sequentially changing the preference of one

voter at a time from P ′
2 to P̂2. The profile P (r) is the one where voter 1 has preference P̂1,

voters 2 to r have preference P̂2 and all other voters have preference P ′
2. Using the arguments

in the precious two paragraph we can conclude that f(P (r)) = d implies f(P (r + 1)) = d,

r = 2, · · · , N − 1. Hence f(P̂ 1) = d which establishes Step 1(i).

Since we will be looking at profiles where all voters other than voter 1 has the same

preference ordering, we will abuse notation slightly and denote this block of voters other

than 1 (the ‘coalesced voter’) by 1̄. Let {c, d} be an arbitrary ordered pair of alternatives.

We will say that a voter i ∈ {1, 1̄} dictates over {c, d} if for all P 1 = (P1, P2, · · · , P2) such that

(i) P 1 ∈ D(1), (ii)r1(P1) = r2(P2) = c and (iii) r2(P1) = r1(P2) = d, we have f(P 1) = r1(Pi).

In view of Step 1(i) some voter i ∈ {1, 1̄} dictates over each pair of alternatives. In particular

we can infer that voter 1̄ dictates over {a, b}.
Step 1(ii): Let c be an alternative distinct from a and b. Then voter 1̄ dictates over {a, c}.

Let D̄ be the set of preference orderings where the top three alternatives belong to the

set {a, b, c} while the rankings of all other alternatives are fixed. Formally Pi ∈ D̄ if

1. ∪{k=1,2,3}rk(Pi) = {a, b, c}
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2. for all d 6= a, b, c, there exists an integer q ≥ 4, such that d = rq(Pi). Moreover q does

not depend on Pi.

For notational convenience, we will denote elements of D̄ by abc . . . , acb . . . , bac . . . , bca . . . , cab . . .

and cba . . .. Here abc . . . denotes the ordering where a, b and c are ranked first, second and

third respectively. In view of Step 1(i), Step 1(ii) is complete if we can show that

f(P 1) = f




a c c · · · c
c a a · · · a
b b b · · · b
. . . · · · .


 = c

We proceed in a sequence of sub-steps. Let us consider the profile,

P̂ 1 =




a b b · · · b

b a a · · · a

c c c · · · c

. . . · · · .




Step 1(ii)a: f(acb..., P̂ 1
−1) = b. Since 1̄ dictates over {a, b} by assumption, we have f(P̂ 1) =

b. We have also shown in Step 1(i) that a transposition in voter 1’s ordering which does

not involve her first-ranked alternative in this profile, does not change the outcome. Hence

f(acb..., P̂−1) = b.

Step 1(ii)b: f(P̂ 1
−2, bca...) = b. Observe that f(P̂ 1) = b. Since the top-ranked element

of bac... and bca... are the same and D(P 1
−2, bca...) = 2, using Lemma 1 we get the desired

result. Now repeatedly using Lemma 1 we get that,

f(P̃ ) = f




a b b · · · b
b c c · · · c
c a a · · · a
. . . · · · .


 = b (31)

Step 1(ii)c: From equation 31 we claim that,

f(P̄ ) = f




a b b · · · b
c c c · · · c
b a a · · · a
. . . · · · .


 ∈ {b, c} (32)

Suppose equation 32 is false. Since f is efficient the only possibility is that,

f




a b b · · · b
c c c · · · c
b a a · · · a
. . . · · · .


 = a
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Then voter 1 in the profile P̃ gains by reporting acb... (we know from the previous step that

f(P̃ ) = b). Since D(P̃ ) = 2 and the top ranked elements of abc... and acb... are the same,

Lemma 1 implies that

f




a b b · · · b
c c c · · · c
b a a · · · a
. . . · · · .


 6= a

Hence the claim.

Step 1(ii)d: Observe that the two top-ranked elements in cba... and bca... are the same.

Moreover for any j ∈ N , d(P̄j, cba...) ≤ 2. From equation 32 and using Lemma 1 we get that

f




a b c · · · b
c c b · · · c
b a a · · · a
. . . · · · .


 ∈ {b, c} (33)

Repeatedly using the above argument, we obtain,

f(P ?) = f




a b c · · · c
c c b · · · b
b a a · · · a
. . . · · · .


 ∈ {b, c} (34)

Let us now consider the profile

P 1 =




a c c · · · c
c a a · · · a
b b b · · · b
. . . · · · .




By Pareto efficiency, f(P 1) ∈ {a, c}. If f(P 1) = a then f(P 1
−2, cba...) = a. The argument to

establish this step is identical to the one in Step 1(i) and Step 1(ii)a. Repeatedly using the

same argument we get,

f(P̆ ) = f




a c c · · · c
c b b · · · b
b a a · · · a
. . . · · · .


 = a (35)

Step 1(ii)e: f(P̆ ) 6= a. Since f(P ?) ∈ {b, c} and (P̆−2, bca...) = (P ?), voter 2 in the

profile P̆ gains by reporting bca... instead of cba.... Observe that D(P̆ ) = 2. Since the two

33



top-ranked alternatives in cba... and bca... are the same, we apply Lemma 1 to arrive at the

conclusion.

We now establish Step 1(ii). Efficiency and Steps 1(ii)d and 1(ii)e imply f(P 1) = c.

Hence voter 1̄ dictates over {a, c}.

Step 1(iii): Let c be an alternative distinct from a and b. Then voter 1̄ dictates over {c, b}.
In view of our earlier arguments it is suffice to show that,

f(P 1) = f




c b b · · · b
b c c · · · c
a a a · · · a
. . . · · · .


 = b (36)

Suppose equation 36 is false. By efficiency f(P 1) = c. By replicating the arguments of Steps

1(i), 1(ii) and 1(iii) with the roles of voters and alternatives interchanged, we can conclude

that,

f




c b b · · · b
b a c · · · c
a c a · · · a
. . . · · · .


 = f




c b b · · · b
b c c · · · c
a a a · · · a
. . . · · · .


 = b (37)

Using Lemma 1 we get from equation 37 that,

f




c b b · · · b
b a c · · · c
a c a · · · a
. . . · · · .


 ∈ {a, c} (38)

Consider now the profile

P̂ =




c b b · · · b
b a a · · · a
a c c · · · c
. . . · · · .




Repeatedly using Lemma 2 we get, from equation 38 that,

f(P̂ ) = f




c b b · · · b
b a a · · · a
a c c · · · c
. . . · · · .


 ∈ {a, c} (39)

We have already established in Step 2(i) that f(acb, P̂−1) = b. Therefore voter 1 gains in

profile (acb..., P̂−1) by reporting cab... instead of acb.... Observe that D(acb..., P̂−1) = 2.
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Moreover, the two top-ranked elements in acb... and cab... are the same. Hence by applying

Lemma 1 we arrive at a contradiction. Therefore, voter 1̄ dictates over {c, b}.

Step 1(iv): Let c, d be a pair of alternatives such that a, b, c, d are all distinct. Then voter

1̄ dictates over the pair {c, d}. In order to verify this claim, note that Step 1(ii) implies that

voter 1̄ dictates over {a, d}. Now applying Step 1(iii), we conclude that voter 1̄ dictates

over {c, d}

Step 1(v): Voter 1̄ dictates over the pair {b, a}. Let c 6= a, b (we are using the assumption

that |A| ≥ 3). According to Step 1(ii), voter 1̄ dictates over {a, c}. Applying Step 1(iii),

voter 1̄ dictates over {b, c} and applying Step 1(ii) again, we conclude that voter 1̄ dictates

over {b, a}.

Step 2: We show that there exists voter k and P k ∈ D(k) (where voter k’s ordering is Pj

and all other voters have ordering Pi) such that f(P k) = r1(Pj).

Proof of Step 2: Without loss of generality, let Pi = bac... and Pj = abc.... Then the

claim made in Step 2 implies the following:

f




a b b · · · b
b a a · · · a
c c c · · · c
. . . · · · .


 = f




b a b · · · b
a b a · · · a
c c c · · · c
. . . · · · .


 = f




b b a · · · b
a a b · · · a
c c c · · · c
. . . · · · .


 = · · · =

f




b b b · · · a
a a a · · · b
c c c · · · c
. . . · · · .


 6= b (40)

Suppose that the claim is not true.

Step 2(i): Consider now the preference orderings Pi = cba... and Pj = bca.... Then,

f(P 2) = f




c b c · · · c
b c b · · · b
a a a · · · a
. . . · · · .


 = c (41)
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Consider now the preference ordering cab... for voter 1. From equation 41 we claim that,

f




c b c · · · c
a c b · · · b
b a a · · · a
. . . · · · .


 = c (42)

Otherwise voter 1 of type cab... is losing to type cba... on a profile P with D(P ) = 2. Since

B(r1(cab), cab) = B(r1(cba), cba) the result follows using Lemma 1 . By repeatedly making

use of the above argument we can show that,

f




c b c · · · c
a c a · · · a
b a b · · · b
. . . · · · .


 = c (43)

Consider now the preference ordering acb... for voter 3. Since, B(r2(acb...), acb...) = B(r2(cab...), cab...) =

{a, c} and

f




c b c · · · c
a c a · · · a
b a b · · · b
. . . · · · .


 ∈ {a, c}

we have,

f




c b a · · · c
a c c · · · a
b a b · · · b
. . . · · · .


 ∈ {a, c} (44)

Let us now consider preference orderings Pi = cab... and Pj = acb.... Then,

f(P 3) = f




c c a · · · c
a a c · · · a
b b b · · · b
. . . · · · .


 = c (45)

Using an argument similar to above, but now changing the preference ordering for voter 2

to bca... we get

f




c b a · · · c
a c c · · · a
b a b · · · b
. . . · · · .


 ∈ {b, c} (46)
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Combining equations 45 and 46 we get that,

f




c b a · · · c
a c c · · · a
b a b · · · b
. . . · · · .


 = c (47)

Using similar logic, but changing the identity of the voter with preference ordering acb... we

get,

f




c b a · · · c
a c c · · · a
b a b · · · b
. . . · · · .


 = f




c b c a · · · c
a c a c · · · a
b a b b · · · b
. . . . · · · .


 = · · · = f




c b c · · · a · · · c
a c a · · · c · · · a
b a b · · · b · · · b
. . . · · · . · · · .


 =

f




c b c · · · a
a c a · · · c
b a b · · · b
. . . · · · .


 = c (48)

Since we have assumed that the claim in Step 2 is false, we have,

f(P 1) = f




a b b · · · b
b a a · · · a
c c c · · · c
. . . · · · .


 = b (49)

In Step 1 we have already established that if f(P 1) = b (as in equation 49) then, following

the arguments in Step 1, we have,

f




a b b · · · b
c a a · · · a
b c c · · · c
. . . · · · .


 = b (50)

Consider now the preference ordering cab... for voter 1. Observe that, B(r2(acb...), acb...) =

B(r2(cab...), cab...). Then from equation 50 and Lemma 1 it follows that,

f




c b b · · · b
a a a · · · a
b c c · · · c
. . . · · · .


 /∈ {a, c} (51)
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Imposing Pareto efficiency we get from equation 51 that,

f




c b b · · · b
a a a · · · a
b c c · · · c
. . . · · · .


 = b (52)

Now take any voter i ∈ {3, · · · , n}. Consider the preference ordering abc... for agent i.

Applying Lemma 1 to equation 52 we get that,

f




c b b · · · a · · · b
a a a · · · b · · · a
b c c · · · c · · · c
. . . · · · . · · · .


 ∈ {a, b} (53)

By varying i from 3 to n we actually get n − 2 such conditions. Without loss of generality

take i = 3. Then equation 53 implies,

f




c b a · · · b
a a b · · · a
b c c · · · c
. . . · · · .


 ∈ {a, b} (54)

Repeating the argument above we can conclude that,

f(P̂ ) = f




c b a b a · · · a
a a b a b · · · b
b c c c c · · · c
. . . . . · · · .


 ∈ {a, b} (55)

There are two cases to consider:

Case I: Let,

f(P̂ ) = f




c b a b a · · · a
a a b a b · · · b
b c c c c · · · c
. . . . . · · · .


 = b (56)

Consider now a preference ordering acb... for voter 1. Using an argument similar to the

on made before equation 51 we can say that

f




a b a b a · · · a
c a b a b · · · b
b c c c c · · · c
. . . . . · · · .


 = b (57)
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Observe that if we now change voter 3’s preference ordering to acb... ROBIC and Pareto

efficiency would imply that

f




a b a b a · · · a
c a c a b · · · b
b c b c c · · · c
. . . . . · · · .


 = b (58)

Repeating the argument above we get,

f




a b a b a · · · a
c a c a c · · · c
b c b c b · · · b
. . . . . · · · .


 = b (59)

Let,

P = (acb..., P−1) =




a b a b a · · · a
c a c a c · · · c
b c b c b · · · b
. . . . . · · · .




For any Pj in the profile P , d(acb..., Pj) ≤ 2. Moreover we have already noted that the two

top-ranked alternatives in acb... and cab... are the same. Therefore using Lemma 1 repeatedly

we get,

f




c b c b c · · · c
a a a a a · · · a
b c b c b · · · b
. . . . . · · · .


 = b (60)

Consider now the preference ordering bca... for voter 2. The top ranked elements of bac...

and bca... are the same. Then from equation 50 and using Lemma 1, it follows that,

f




c b c b c · · · c
a c a a a · · · a
b a b c b · · · b
. . . . . · · · .


 = b (61)

Using a similar argument we get,

f(P̃ ) = f




c b c a c · · · c
a c a b a · · · a
b a b c b · · · b
. . . . . · · · .


 ∈ {a, b} (62)
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Case Ia: Let f(P̃ ) = a. Then we claim that,

f(P̄ ) = f




c b c a c · · · c
a c a c a · · · a
b a b b b · · · b
. . . . . · · · .


 = a (63)

Suppose not. Then

f(P̄ ) = f




c b c a c · · · c
a c a c a · · · a
b a b b b · · · b
. . . . . · · · .


 ∈ {b, c} (64)

If f(P̄ ) = b, and given that the top two elements in cab... and acb... are the same, a repeat

of the arguments earlier shows that,

f




a b a a a · · · a
c c c c c · · · c
b a b b b · · · b
. . . . . · · · .


 = b (65)

Given that the top ranked elements of bac... and bca... are the same and that for any Pi in

the profile in equation 55 d(bac..., Pi) = 2, we can use Lemma 1 to say,

f(P̌ ) = f




a b a a a · · · a
c a c c c · · · c
b c b b b · · · b
. . . . . · · · .


 = b (66)

Given that the top-ranked elements of acb and abc are the same and the profile P̌ is such

that D(P̌ ) = 2, by repeatedly using Lemma 1 we get,

f(P̌ ) = f




a b a a a · · · a
b a b b b · · · b
c c c c c · · · c
. . . . . · · · .


 = b (67)

Now in the profile P̌ , voter 2 has preference ordering (bac...) and all other voters have

preference ordering (abc...). Given that we have assumed that the claim in Step 2 is false,

equation 67 cannot hold. Therefore we have f(P̄ ) = c. According to Case IA f(P̃ ) =

f(P̄−4, abc...) = a. Therefore, voter 4 of type acb... can gain by mis-reporting her type as

abc... at the profile P̄ . Observe that, D(P̄ ) = 3. Specifically d(P̄2, acb...) = 3 and for any

i 6= 2, 4, d(P̄i, acb...) = 1. Proposition 3 then implies that there must exist a P ′
−4 such that,

Proposition 3 then implies that there must exist a P ′
−4 such that,
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(i) for all i 6= 2, 4, d(P ′
i , acb...) = 0

(ii) d(P ′
2, acb...) ≤ 2

(iii) f(acb..., P ′
−4) = a and

(iv) f(abc..., P ′
−4) = c

For any i 6= 2, 4 the candidates for P ′
i is acb.... For P ′

2 the candidates are acb..., abc..., bac..., cab...,

and cba... For the first 3 candidates of P ′
2,

[f(acb..., P ′
−4) = a] ⇒ [f(abc..., P ′

−4) = a]

If P2 = cab... then Lemma 1 implies that,

[f(acb..., P ′
−4) = a] ⇒ [f(abc..., P ′

−4) = a]

So for P ′
2 ∈ {acb..., abc..., bac..., cab...} conditions (iii) and (iv) above cannot be satisfied

simultaneously. The only other case to consider is when P ′
2 = cba.... Now we have seen

that [f(acb..., P ′
−4) = a] ⇒ [f(abc..., P ′

−4) = a]. Now the top ranked element in the orderings

cab... and cba... are the same. Moreover D(abc..., cab..., P ′
−{3,4}) = 2. Therefore using Lemma

1 again, we get that f(abc..., cab..., P ′
−{3,4}) ∈ {a, b}. But that contradicts requirement (iv).

Therefore we get that, f(P̄ ) 6= c. Hence,

f(P̄ ) = a (68)

But equation 68 contradicts equation 48. Therefore, f(P̃ ) 6= a.

Case Ib: Let f(P̃ ) = b. Since the top two elements in cab... and acb... are the same and

D(cab..., P̃−1) = 2, using Lemma 1 we can show that f(acb, P̃−1) = b. repeating the argument

above we see that,

f(P̆ ) = f




a b a a a · · · a
c c c b c · · · c
b a b c b · · · b
. . . . . · · · .


 = b (69)

Since the top-ranked elements of bca... and bac... are the same and D(bac..., P̆−2) = 2, we

can use Lemma 1 to say that f(bac..., P̆−2) = b. Now repeatedly using the arguments of

Proposition 3 we get

f




a b a a a · · · a
b a b b b · · · b
c c c c c · · · c
. . . . . · · · .


 = b (70)
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But equation 70 contradicts our supposition that the claim made in Step 2 is false. Hence,

f(P̃ ) 6= b and as a consequence, f(P̂ ) 6= b. This completes Case I.

Case II: Let,

f(P̂ ) = f




c b a b a · · · a
a a b a b · · · b
b c c c c · · · c
. . . . . · · · .


 = a (71)

Given a preference profile P and a preference ordering Pi let S(P, Pi) = {j ∈ N |Pj = Pi}.
There are two sub-cases to consider:

Case IIa: Let |S(P̂ , abc...)| > 1. That is there are more than one agent with preference

abc... in P̂ . Now pick a j ∈ S(P̂ , abc...) and change her preference to bac.... Applying

proposition 3 it follows that f(P̂−j, abc...) ∈ {a, b}. Let f(P ?) = f(P̂−j, abc...) = b. Then

proceed to Case I and we will arrive at the contradiction. So suppose

f(P ?) = a (72)

If |S(P ?, abc...)| > 1 we go back to the beginning of Case IIa with P ? as the relevant profile.

Case IIb: Since N is finite the process will reach a stage i.e., a P̃ such that |S(P̃ , abc...)| =
1. Let j = 3 be the individual with P̃3 = abc.... For agent 1 P̃1 = cab.... For all other agents

P̃i = bac... and f(P̃ ) = a. i.e.,

f(P̃ ) = f




c b a b b · · · b
a a b a a · · · a
b c c c c · · · c
. . . . . · · · .


 = a (73)

But then using Lemma 1 we get that,

f(P̃−n, bca...) = f




c b a b b · · · b
a a b a a · · · c
b c c c c · · · a
. . . . . · · · .


 ∈ {a, c} (74)

If f(P̃−n, bca...) = c then Lemma 1 implies that,

f(P̃−{3,n}, bca..., bac...) = f




c b b b b · · · b
a a a a a · · · c
b c c c c · · · a
. . . . . · · · .


 = c (75)
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Repeatedly using the above argument, we get,

f(P̄ ) = f




c b b b b · · · b
a c c c c · · · c
b a a a a · · · a
. . . . . · · · .


 = c (76)

If f(P̄ ) then f(cba..., P̄−1) = c which contradicts our assumption that the ‘coalesced’ voter

1̄ dictates over the pair {c, b}. So

f(P̃−n, bca...) = a (77)

Using the same argument as above we can say that,

f(P̆ ) = f




c b a b b · · · b
a c b c c · · · c
b a c a a · · · a
. . . . . · · · .


 = a (78)

But then since the top two elements of cba... and bca... are the same, equation 78 implies that,

f(P̆−4, cba...) = a. And repeatedly using the above argument for all agents j ∈ {4, ..., n} we

get that,

f




c b a c c · · · c
a c b b b · · · b
b a c a a · · · a
. . . . . · · · .


 = a (79)

But 79 implies that,

f(P̀ ) = f




c b a c c · · · c
a c b a a · · · a
b a c b b · · · b
. . . . . · · · .


 = a (80)

But then using the arguments made in Case I we can see that f(P̀ ) = f(P̀−3, acb...) = a

which contradicts equation 48.

Step 3. We complete the proof of Claim 1 by showing that f(P ) = r1(Pk) for all profiles P

such that D(P ) = 1. We have already established in Step 2 that for any profile for any profile

P k = (Pi, · · · , Pi, Pk, Pi, · · · , Pi) such that D(P k) = 1, f(P k) = r1(Pk). In the preference

profile P k the k-th voter has the preference Pk and all the other voters have the preference

ordering Pi. Let us now consider a preference profile P such that (i) the k-th agent has

the preference ordering Pk and (ii) D(P ) = 1. We will show that f(P ) = r1(Pk). Since

D(P ) = 1, for any i ∈ N \ {k} Pi has to be of the following form:
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(i) either [r1(Pi) = r2(Pk) and r2(Pi) = r1(Pk) and for all t 6= 1, 2, rt(Pi) = rt(Pk)] or

(ii) r1(Pi) = r1(Pk)

Define S(P, Pk) = {j ∈ N \ {k}|Pj = Pk}. If S(P, Pk) = ∅ and D(P ) = 1, then P = P k

and by Step 2, f(P ) = r1(Pk). Consider now the case where D(P ) = 1 and |S(P, Pk)| = 1.

In other words there exists only one voter j ∈ N \ {k} such that Pj = Pk. We claim that

f(P ) = r1(Pk). Without loss of generality assume r1(Pk) = b and r2(Pk) = a. From the

discussion above it follows that for all the voters i 6= k, j the top-two alternatives in their

preferences are a and b respectively. For voter j the top ranked alternative is b and the

second-ranked alternative is a. The rankings of all the other alternatives are the same across

all voters. Suppose that f(P ) 6= r1(Pk) = b. From Pareto efficiency it follows then that

f(P ) = a. Now in the profile P k, for voter j we have aP k
j bP k

j x for all x ∈ A \ {a, b} and in

the profile P , for voter j we have bPjaPjx for all x ∈ A \ {a, b}. So in the profile P , voter j

can gain by mis-reporting his preference ordering as P k
j instead of Pj. From Proposition 3

it then follows that there must exist a profile P̃−j such that

(i.) for all i 6= j d(P̃i, Pj) < d(Pi, Pj),

(ii.) f(P̃−j, Pj) = b and

(iii.) f(P̃−j, P
k
j ) = z where either z = a or aPjz.

However, Pk = Pj i.e., d(Pk, Pj) = 0. Hence there does not exist a profile P̃−j satisfying

condition (i.). Therefore, f(P ) = b. Now we consider the general case where the profile

P is such that D(P ) = 1 and |S(P, Pk)| > 1. We can find a sequence of profiles P r,

r = 0, 1, · · · , T such that (i) P 0 = P k (ii) P T = P (iii) for all r, P r is such that D(P r) = 1

and (iv) |S(P r+1, Pk)| = |S(P r, Pk)|+ 1, r = 1, · · · , T − 1. In other words, the profile P can

be obtained from P k by sequentially changing the preferences of the voter j’s from P k
j to Pj.

Using the arguments in the previous two paragraphs we can conclude that f(P r) = b implies

f(P r+1) = b, r = 0, · · · , T . Hence f(P ) = b = r1(Pk) which establishes Step 3. Steps 1, 2

and 3 complete the proof of Claim 1. ¥

Proof of Claim 2: We now complete the proof of Claim 2.

Proof : We assume without loss of generality that k is an integer strictly greater than 1 and

that f(P ′) = r1(P
′
1) whenever D(P ′) ≤ k. Let P be a profile such that D(P ) = k + 1. We

will show that f(P ) = r1(P1).

Let P 1 be a profile such that

1. P 1 = (Pj, Pi, · · · , Pi︸ ︷︷ ︸
n−1

)
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2. d(Pi, Pj) = k + 1

That is all voters other than voter 1 has preference ordering Pi and voter 1 has preference

ordering Pj. We first show that f(P 1) = r1(Pj). Suppose f(P 1) = x. Let P̂i be an ordering

obtained by lifting x to the top of Pj leaving the relative rankings of all other alternatives

unchanged. Formally,

1. r1(P̂i) = x and

2. for all y, z 6= x, yP̂iz ⇔ yPjz.

Observe that d(P̂i, Pj) = t where x is t + 1th ranked under Pj, i.e. rt+1(Pj) = x. We

claim that exactly one of the following two cases must hold.

Case A: t < k + 1

Case B: Pi = P̂i.

Suppose x 6= r1(Pi). Let w = r1(Pi) so that wPix. Since x is efficient in the profile P , we

must have xPjw, i.e. the rank of w in Pj is at least t+2. In order to transform Pi to Pj, the

minimal number of transpositions required are (i) at least one to make x first ranked and

(ii) at least t to make w, t + 2 ranked starting from rank 2. Hence d(Pi, Pj) = k + 1 ≥ t + 1.

This implies that Case A holds.

Now suppose x = r1(Pi). If the ranking of any pair of alternatives y, z distinct from x

differs between Pi and Pj (i.e. yPiz and zPjy), then d(P̂i, Pj) < d(Pi, Pj) and Case A holds

again. The only remaining possibility is that Pi and Pj agree on all alternatives distinct from

x. In this case Pi = P̂i and Case B holds. Note that if Case B holds, k + 1 = t so that Case

A does not hold. Summarizing, we have shown that Cases A and B are mutually exclusive

and exhaustive. We now deal with each case in turn.

Case A: We begin by claiming claim that,

d(P̂i, Pi) = d(Pi, Pj)− t

First observe that by triangle inequality d(P̂i, Pi) ≥ d(Pi, Pj) − t. We will show that the

equality is exact. Observe that for any y, z 6= x, any one of the following three is true:

[yPiz and yPjz] ⇔ [yPiz and yP̂iz]

[yPiz and zPjy] ⇔ [yPiz and zP̂iy]

[zPiy and yPjz] ⇔ [zPiy and yP̂jz] (81)

In other words if for any pair of alternatives y, z 6= x, if the relative rankings of y and z

agree (disagree) in Pi and Pj, then they also agree (disagree) in Pi and P̂i. Also observe that
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any alternative that is ahead of x in Pj will be below x in Pi and vice versa; otherwise x /∈
PE(P n). Moreover, for any such alternative z, the relative ranking of x and z is the same in

Pi and P̂i. Summarizing we have, [xPiz and zPjx] ⇒ [xPiz and xP̂iz]. Since |{z|zP2x}| = t,

equation 81together with the last argument imply that d(Pi, P̂i) can at most be (k + 1)− t.

Hence d(P̂i, Pi) ≤ d(Pi, Pj) − t. Combining the last inequality with the in equality above

we have d(P̂i, Pi) = d(Pi, Pj) − t. This implies d(P̂i, Pi) ≤ k. We have already seen that

d(P̂i, Pj) = t ≤ k. Now consider the profile P̂ = (Pj, P̂i, Pi, · · · , Pi). In other words in the

profile P̂ voter 1 has the ordering Pj, voter 2 has the ordering P̂i and all other voters have

the preference ordering Pi. Given the above argument D(P̂ ) ≤ k. Therefore the induction

hypothesis applies to the profile P̂ . Hence, f(P̂ ) = ri(Pj). Suppose r1(Pj) = y 6= x. Observe

that voter 2 in profile P̂ gains by mis-reporting Pi instead of P̂i. (If voter 2 mis-reports

his preference ordering as Pi, the outcome is f(Pj, Pi, · · · , Pi) = x = r1(P̂i)). Applying

Proposition 3, we conclude that there exists a P̃−2 (a preference profile for voters other than

2) such that,

(i.) for all l 6= 2, d(P̂i, P̃l) < d(P̂i, Pl)

(ii.) f(P̂i, P̃−2) = x

(iii.) f(Pi, P̃−1) ∈ W (y, P̂i)

The hypothesis of Case A. and (i) implies, that f(P̂i, P̃−2) = r1(P̃1). Then (ii) implies that

r1(P̃1) = x.

Since, for all l /∈ {1, 2}, Pl = Pi, from (i) we get that, for all l /∈ {1, 2}, d(P̂i, P̃l) <

d(P̂i, Pi) = k + 1− t < k + 1. For l = 1, (notice P1 = Pj), by triangle inequality, d(Pi, P̃n) ≤
d(P̂i, Pi) + d(P̂i, P̃n). Now d(P̂i, P̃n) < d(P̂i, Pn) = d(P̂i, Pj) = t, by assumption. Since

d(P̂i, Pi) = d(Pi, Pj) − t we have, d(Pi, P̃n) < d(Pi, Pj) = k + 1. The induction hypothesis

therefore applies to the profile (Pi, P̃−2), i.e., f(P̃ ) = r1(P̃1). We have already established

that r1(P̃1) = x. But in order for requirement (iii) for P̂i to hold, we must either have x = y

or yP̂ix. Since x 6= y by assumption and x = r1(P̂i) by construction, neither can hold and

we have a contradiction. Therefore x = y must hold, so that f(P 1) = r1(P1) = r1(Pj). This

completes the argument for Case A.

Case B: Suppose that P 1 = (Pj, Pi, · · · , Pi︸ ︷︷ ︸
n−1

) is such that d(Pi, Pj) = k + 1, r1(Pi) = x,

Pi and Pj agree on all alternatives other than x and f(P 1) = x 6= r1(Pj) = y. It is clear

that x = rk+2(Pj). Using Claim 1, we can also assume that k ≥ 1; otherwise d(Pi, Pj) = 1

which has been dealt with in Claim 1. Construct P ′
j by transposing x with the alternative

immediately above it in Pj. Since k ≥ 1 and x = rk+2(P2), we still have r1(P
′
j) = r1(Pj) = y.

We must also have d(Pi, P
′
j) = k and hence D(P 1

−1, P
′
j) = k. Hence, f(P 1

−1, P
′
j) = y by the

46



induction hypothesis. Since yPjx, it follows from Proposition 3, that there exists a P ′
−1 such

that,

(i.) for all i 6= 1, d(P ′
i , Pj) < k + 1,

(ii.) f(P ′
−1, Pj) = y and

(iii.) f(P ′
−1, P

′
j) = w implies either w = x or xPjw

We first claim that for any i 6= 1, r1(P
′
i ) 6= x. If this were true then d(P ′

i , Pj) > k + 1.

To see this observe that Pi and Pj agree on the rankings of all alternatives other than x.

Hence, for any P ′
i with r1(P

′
i ) = x, d(P ′

i , Pj) ≥ k + 1 with the equality holding only if

Pi = P ′
i . Let l be such that d(P ′

l , Pj) = maxi∈N\1 d(P ′
i , Pj), that is, in the profile P ′

−1,

the l-th voter has the ordering P ′
l that has the maximum distance from Pj. Given the

argument above r1(P
′
l ) 6= x. So let z = r1(P

′
l ). If xPjz then it would require at least k + 1

transpositions from Pj for z to be first ranked, i.e., d(P ′
l , Pj) ≥ k + 1. Therefore, zPjx.

Since by construction d(P ′
i , Pj) ≤ d(P ′

l , Pj) for all i 6= 1, either, (i) z = r1(P
′
i ) or (ii) zP ′

ix.

Otherwise, d(P ′
i , Pj) > d(P ′

l , Pj). The same is true for any w such that xPjw, i.e., zP ′
iw. The

construction of P ′
j implies zP ′

jw. There are two cases to consider. First, let w 6= x. Since

for all i 6= 1, zP ′
iw, and for voter 1 with preference P ′

j , zP ′
jw, f(P ′

−1, P
′
j) = w contradicts

the assumption that f is efficient at profile (P ′
−1, P

′
j). Hence P ′

−1 satisfying requirements (i),

(ii) and (iii) cannot exist. The other case to consider is w = x and z is ranked immediately

above x in Pj. This means that x is ranked immediately above z in P ′
j . If there exists an

element between z and x under Pj the first case applies. If z is ranked immediately above

x in Pj, then z = rk+1(Pj). Since z is the top-ranked element in P ′
l , the minimum distance

between P ′
l and Pj is k, i.e., d(P ′

l , Pj) ≥ k. But as mentioned above d(P ′
l , Pj) has to be

less than k + 1. Therefore the only allowable case is d(P ′
l , Pj) = k. Since z = rk+1(Pj) and

d(P ′
l , Pj) = k, it must be the case that for all x, y 6= z,

[xP ′
l y ⇔ xPjy]. (82)

Otherwise, d(P ′
l , Pj) > k. Since for all i 6= 1, d(P ′

i , Pj) ≤ d(P ′
l , Pj), equation 82 together

with the fact that k ≥ 1 implies that there exists a v ∈ A \ z such that, for all i 6= 1

vP ′
ix and vPjx (83)

Since Pj and P ′
j agree on the ranking of all alternatives other than x and z, vPjx ⇒ vP ′

jx.

But then x /∈ PE(P ′
−1, P

′
j). Hence P ′

−1 satisfying requirements (i), (ii) and (iii) cannot exist.

Therefore f(P 1) = r1(Pj) completing the argument for Case B.

We now complete the proof of Claim 2. We show that for any preference profile P such

that, D(P ) = k + 1, f(P ) = r1(P1).
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We know from the previous steps that for any i ∈ N \{1}, f(P1, Pi, · · · , Pi︸ ︷︷ ︸
n−1

) = r1(P1) = y

(say). Therefore,

f(P1, P2, · · · , P2) = f(P1, P3, · · · , P3) = y

Consider now the profile (P1, P2, P3, · · · , P3). We claim f(P1, P2, P3, · · · , P3) = y. Sup-

pose not. Suppose f(P1, P2, P3, · · · , P3) = x 6= y. We claim that yP3x. To see this observe

that f(P1, P3, · · · , P3) = y. If xP3y, it implies voter 2 gains by reporting P2 at the profile

(P1, P3, · · · , P3) where there is at least another voter with the same preference P3 as voter 2.

But according to Lemma 2 that is not possible. Therefore, yP3x. Now suppose xP2y. From

Lemma 2 then it follows that f(P1, P2, P2, P3, · · · , P3) ∈ B(x, P2). Repeatedly using the

same argument we get that f(P1, P2, · · · , P2) ∈ B(x, P2) = z (say). Since z ∈ B(x, P2), and

xP2y by assumption, zP2y which contradicts the fact that f(P1, P2, · · · , P2) = y. Therefore,

yP2x. Since y = r1(P1), x /∈ PE(P1, P2, P3, · · · , P3). Therefore we have a contradiction.

Hence f(P1, P2, P3, · · · , P3) = y.

Let us now consider the profile, (P1, P2, P3, P4, P3, · · · , P3), that is voters 1, 2, 3 and 4

have preferences P1, P2, P3 and P4 respectively, and the remaining voters have preferences P3.

We claim f(P1, P2, P3, P4, P3, · · · , P3) = y. Suppose not. Let f(P1, P2, P3, P4, P3, · · · , P3) =

w 6= y. Using the same argument as before we get yP3w. Now we claim that yP2w. To

see this observe that if wP2y, then repeatedly using a similar argument as above we get

f(P1, P2, · · · , P2) = z ∈ B(w,P2). In other words zP2y. But this contradicts the fact

that f(P1, P2, · · · , P2) = y. Now suppose that wP4y. Then again using Lemma 2 re-

peatedly we get f(P1, P4, · · · , P4) = a ∈ B(y, P4). This implies aP4y. But this contra-

dicts the fact that f(P4, P4, P4, P4, P4, · · · , P4) = y. Therefore, yP4w. Now y = r1(P1).

This implies, w /∈ PE(P1, P2, P3, P4, P3, · · · , P3). Thus, we have arrived at a contradiction.

Therefore, f(P1, P2, P3, P4, P3, · · · , P3) = y. Now suppose that for some 1 < t ≤ n − 1

f(P1, P2, · · · , Pt, Pt, · · · , Pt) = y We will show that f(P1, P2, · · · , Pt, Pt+1, · · · , Pt) = y. Sup-

pose not. Let f(P1, P2, · · · , Pt, Pt+1, · · · , Pt) = v 6= y. Using the same arguments as be-

fore we can say that for all l ≤ t, yPlv. Let vPt+1y. Then using Lemma 2 repeatedly

we get that, f(P1, Pt+1, · · · , Pt+1) = b ∈ B(v, Pt+1). But that contradicts the fact that

f(P1, Pt+1, · · · , Pt+1) = y. Therefore yPt+1v. But then v /∈ PE(P1, P2, · · · , Pt, Pt+1, · · · , Pt).

This completes the proof of claim 2. ¥

Claims 1 and 2 together complete the proof of Theorem 3.

¥
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