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1 Binary Relations and Orderings

Let A = {a, b, c, . . . , x, y, z, . . .} be a finite set of alternatives. Let N = {1, . . . , n} be a finite

set of agents. Every agent has a preference over alternatives. The preference relation of

agent i over alternatives is denoted by Ri, where aRib denotes that preference a is at least

as good as b for agent i in preference relation Ri. It is conventional to require Ri to satisfy

the following assumptions.

1. Ordering: A preference relation Ri of agent i is called an ordering if it satisfies the

following properties:

• Completeness: For all a, b ∈ A either aRib or bRia.

• Reflexivity: For all a ∈ A, aRia.

• Transitivity: For all a, b, c ∈ A,
[
aRib and bRic

]
⇒
[
aRic

]
.

We will denote the set of all orderings over A as R.

2. Binary Relation: A preference relation Ri of agent i is called a binary relation if

it satisfies completeness and reflexivity. Hence, a binary relation gives unordered pairs

of A. An ordering is a transitive binary relation.

Let Qi be a binary relation. The symmetric component of Qi is denoted by Q̄i, and

is defined as: for all a, b ∈ A, aQ̄ib if and only if aQib and bQia. The asymmetric component

of Qi is denoted by Q̂i, defined as: for all a, b ∈ A, aQ̂ib if and only if aQib but ∼ (bQia).

Informally, Q̂i is the strict part of Qi, whereas Q̄i is the weak part of Qi. Sometimes, we

will refer to the symmetric component of a preference relation Ri as Ii and asymmetric
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component as Pi. We define transitivity of Q̂i and Q̄i in the usual way, i.e. Q̂i is transitive

if for all a, b, c ∈ A,
[
aQ̂ib and bQ̂ic

]
⇒
[
aQ̂ic

]
. Similarly for Q̄i.

The asymmetric and symmetric components of an ordering Ri will be denoted by Pi and

Ii respectively.

Proposition 1 Let Ri be an ordering. Then Pi and Ii are transitive. Conversely, suppose

Qi is a binary relation such that Q̂i and Q̄i are transitive. Then Qi is an ordering.

Proof : Consider a, b, c ∈ A and and ordering Ri such that aPib and bPic. Assume by way

of contradiction that ∼ (aPic). Since Ri is an ordering, it is complete. Hence, aRic or cRia

holds. Since ∼ (aPic), we get cRia. But aPib. By transitivity of Ri, we get cRib. This

contradicts bPic.

Similarly, assume aIib and bIic. This implies, aRib and bRic. Also, bRia and cRib. Due

to transitivity, we get aRic and cRia. This implies that aIic.

Now consider a, b, c ∈ A and a binary relation Qi such that aQib and bQic. We have to

show that aQic. If aQ̂ib and bQ̂ic, then aQ̂ic holds because of the transitivity of Q̂i. Hence

aQic. The argument for the case where aQ̄ib and bQ̄ic is analogous. The two remaining

cases are (i) aQ̂ib and bQ̄ic and (ii) aQ̄ib and bQ̂ic. Suppose (i) holds but ∼ (aQic), i.e cQia.

If cQ̂ia, then the transitivity of Q̂i implies cQ̂ib which contradicts the assumption that bQ̄ic.

If cQ̄ia, then the transitivity of Q̄i implies bQ̄ia which contradicts the assumption that aQ̂ib.

Case (ii) can be dealt with analogously. �

Definition 1 A quasi-ordering is a binary relation Qi whose asymmetric component is

transitive.

Remark: The symmetric component of a quasi-ordering need not be transitive. Hence,

a quasi-ordering is not an ordering. Indeed, in many situations it is natural to regard the

“indifference” relation to be intransitive - for instance, an agent may be indifferent between

Rs x and Rs x+ ε (ε > 0 and ε very small). Transitivity would imply the agent is indifferent

between x and x+ ∆ for arbitrarily large ∆ which is implausible.

Definition 2 An ordering Ri is anti-symmetric if for all a, b ∈ A aRib and bRia implies

a = b (i.e., no indifference). An anti-symmetric ordering is also called a linear ordering.

Remark: If Ri is anti-symmetric then its asymmetric component Pi is complete.

2 Arrovian Social Welfare Functions

Definition 3 An Arrovian social welfare function (ASWF) F is a mapping F : Rn →
R.
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A typical element of the set Rn will be denoted by R ≡ (R1, . . . Rn) and will be referred

to as a preference profile.

We give several examples of well-known social welfare functions.

2.1 Scoring Rules

For simplicity assume that individual orderings Ri are linear. Let #A = p and s =

(s1, . . . , sp), where s1 ≥ . . . ≥ sp ≥ 0 and s1 > sp. The vector s is called a scoring vec-

tor. For all i ∈ N , Ri ∈ R, a ∈ A, define the rank of a in Ri as

r(a,Ri) = #{b ∈ A \ {a} : bPia}+ 1

The score of rank r(a,Ri) is sr(a,Ri). For every profile R ∈ Rn compute the score of

alternative a ∈ A as

s(a,R) =
∑
i∈N

sr(a,Ri)

The scoring rule F s is defined as for all a, b ∈ A, for all R ∈ Rn we have aF s(R)b if

and only if s(a,R) ≥ s(b, R). It is easy to see that F s defines an ordering. Here are some

special cases of the scoring rule.

• Plurality Rule: This is the scoring rule when s = (1, 0, 0, . . . , 0).

• Borda Rule: This is the scoring rule when s = (p− 1, p− 2, . . . , 1, 0).

• Anti-plurality Rule: This is the scoring rule when s = (1, 1, . . . , 1, 0).

2.2 Majority Rules

For every R ∈ Rn define the binary relation Qmaj(R) as follows: for all a, b ∈ A we have

aQmaj(R)b if and only if #{i ∈ N : aRib} ≥ #{i ∈ N : bRia}.

Proposition 2 (Condorcet Paradox) There exists R for which Qmaj(R) is not a quasi-

ordering, and hence not an ordering.

Proof : Let N = {1, 2, 3} and A = {a, b, c}. Consider the preference profile in Table

??, where every agent has a linear ordering. Verify that {i ∈ N : aRib} = {1, 2}, {i ∈ N :

bRic} = {1, 3}, and {i ∈ N : cRia} = {2, 3}. Hence, aQ̂maj(R)b, bQ̂maj(R)c, and cQ̂maj(R)a.

This means that Q̂maj(R) is not an ordering.

�

The proposition above demonstrates that the majority rule procedure (the map which

associates Qmaj(R) with every profile R) is not a ASWF.
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R1 R2 R3

a c b

b a c

c b b

Table 1: Condorcet Cycle

2.3 Oligarchies

Let R ∈ Rn be a preference profile and let ∅ 6= G ⊆ N be a group of agents. The binary

relation QOL
G (R) is defined as: for all a, b ∈ A we have aQOL

G (R)b if and only if there exists

i ∈ G such that aRib. In other words, aQ̂OL
G (R)b if and only if for all i ∈ G we have aPib

and aQ̄OL
G (R)b otherwise.

Proposition 3 For all profiles R, the binary relation QOL
G (R) is a quasi-ordering. More-

over, when #G = 1, QOL
G (R) is an ordering.

Proof : Consider a preference profile R and a, b, c ∈ A. Let aQ̂OL
G (R)b and bQ̂OL

G (R)c. By

definition, aPib and bPic for all i ∈ G. Since Pi is transitive (Proposition ??) we have aPic

for all i ∈ G. This immediately implies that aQ̂OL
G (R)c. Hence, Q̂OL

G (R) is transitive. This

implies that QOL
G (R) is a quasi-ordering.

When G = {i}, aQ̂OL
G (R)b if and only if aPib and aQ̄OL

G (R)b if and only if aIib. This

means aQOL
G (R)b if and only if aRib. Since Ri is transitive, QOL

G (R) is transitive. Hence,

QOL
G (R) is an ordering. �

Remark: The quasi-ordering QOL
G (R) is not an ordering if #G ≥ 2. As an example, consider

the preference profile (linear orderings) of two agents with three alternatives in Table ??.

Let G = N = {1, 2}. Then aQ̂OL
G (R)b, bQ̄OL

G (R)c and cQ̄OL
G (R)a. Transitivity would imply

that aQ̄OL
G (R)b, which is not true.

R1 R2

a c

b a

c b

Table 2: Oligarchy is not an ordering if #G ≥ 2

3 Arrow’s Impossibility Theorem

This section states and proves Arrow’s impossibility theorem. In what follows, F (R) is

social ordering induced by F at the profile R and F̂ (R) and F̄ (R) denote its asymmetric
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and symmetric components respectively.

3.1 The Axioms

The following axioms are used in Arrow’s impossibility theorem.

Definition 4 The ASWF F satisfies the Weak Pareto (WP) axiom if for all profiles R,

a, b ∈ A we have aPib for all i ∈ N implies that aF̂ (R)b.

For the next axiom, we need some notation. Let R,R′ be profiles and let a, b ∈ A. We

say that R and R′ agree on {a, b} if

aPib⇔ aP ′i b ∀i ∈ N
aIib⇔ aI ′ib ∀i ∈ N.

We denote this by R |a,b= R′ |a,b.

Definition 5 The ASWF F satisfies Independence of Irrelevant Alternatives (IIA)

axiom if for all R,R′ ∈ Rn and for all a, b ∈ A, if R |a,b= R′ |a,b then F (R) |a,b= F (R′) |a,b.

Proposition 4 Scoring rules violate IIA.

Proof : We show it for Plurality rule and Borda rule. Let A = {a, b, c} and N = {1, 2, 3}.
Consider the linear orderings in Table ??. Observe that R |a,b= R′ |a,b. By IIA, we should

R1 R2 R3 R′1 R′2 R′3
a c b a c c

b a c b a b

c b a c b a

Table 3: Scoring rules violate IIA

have F (R) |a,b= F (R′) |a,b. Also, aF̄ (R)b but aF̂ (R′)b in Plurality and Borda. This proves

the claim. �

Definition 6 The ASWF F is dictatorial if there exists an agent i ∈ N such that for all

a, b ∈ A and for all profiles R we have [aPib⇒ aF̂ (R)b]. Voter i is called a dictator in this

case.

Remark: Notice that if F is dictatorial, it is not the case that there exists a voter i such

that F (R) = Ri for all profiles R. For example, the following rule is still dictatorial. For all

R ∈ Rn, there exists an agent i such that aPib implies aF̂ (R)b. But if aIib then aF̂ (R)b if

aPjb for some j 6= i. But F (R) = Ri is true if Ri is anti-symmetric. Check that F (R) is an

ordering for all profiles R.

5



3.2 Arrow’s Theorem

Arrow’s theorem demonstrates that the consequence of requiring ASWFs to satisfy WP and

IIA is extremely restrictive.

Theorem 1 (Arrow’s Impossibility Theorem) Suppose #A ≥ 3. A ASWF which sat-

isfies IIA and WP must be dictatorial.

Proof : Consider an ASWF F that satisfies IIA and WP. We say a group of agents ∅ 6= G ⊆
N is decisive for a, b ∈ A (denoted by DG(a, b)) if for all R ∈ Rn[

aPib ∀ i ∈ G
]
⇒
[
aF̂ (R)b

]
.

We say a group of agents ∅ 6= G ⊆ N is almost decisive for a, b ∈ A (denoted by D̄G(a, b))

if for all R ∈ Rn [
aPib ∀ i ∈ G, bPia ∀ i ∈ N \G

]
⇒
[
aF̂ (R)b

]
.

Clearly, DG(a, b)⇒ D̄G(a, b) for all ∅ 6= G ⊆ N and for all a, b ∈ A. We prove the following

two important lemmas.

Lemma 1 (Field Expansion) For all ∅ 6= G ⊆ N and for all a, b, x, y ∈ A

D̄G(a, b)⇒ DG(x, y).

Proof : We consider seven possible cases.

C1 Suppose x 6= y 6= a 6= b. Consider R′ ∈ Rn such that xP ′iy for all i ∈ G and R ∈ Rn

such that xPiaPibPiy for all i ∈ G. Also, for all i ∈ N \ G, impose xPia, bPiy, bPia,

Ri |x,y= R′i |x,y.

Now, D̄G(a, b) ⇒ aF̂ (R)b. By WP, xF̂ (R)a and bF̂ (R)y. By transitivity, we get

xF̂ (R)y. But R |x,y= R′ |x,y. By IIA, xF̂ (R′)y. Hence, DG(x, y).

C2 Suppose x 6= a 6= b but y = b. Consider R′ ∈ Rn such that xP ′i b for all i ∈ G and

R ∈ Rn such that xPiaPib for all i ∈ G. Also, for all i ∈ N \G, impose xPia, bPia and

Ri | x, b = R′i |x,b.

Now, D̄G(a, b) ⇒ aF̂ (R)b. Pareto gives xF̂ (R)a. By transitivity, xF̂ (R)b. By IIA,

xF̂ (R′)b. Hence, DG(x, b).

C3 Suppose x = a and y 6= a 6= b. Consider R′ ∈ Rn such that aP ′iy for all i ∈ G and

R ∈ Rn such that aPibPiy for all i ∈ G. Also, for all i ∈ N \G, impose bPiy, bPia, and

Ri |a,y= R′i |a,y.

Now, D̄G(a, b) ⇒ aF̂ (R)b. Pareto give bF̂ (R)y. By transitivity, aF̂ (R)y. By IIA,

aF̂ (R′)y. Hence, DG(a, y).
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C4 Suppose x = b and y 6= a 6= b. From (C3), we get D̄G(a, b) ⇒ DG(a, y) ⇒ D̄G(a, y).

From (C2), we get D̄G(a, y)⇒ DG(b, y).

C5 Suppose y = a and x 6= a 6= b. From (C2), we get D̄G(a, b) ⇒ DG(x, b) ⇒ D̄G(x, b).

From (C3), we get D̄G(x, b)⇒ DG(x, a).

C6 Suppose x = a and y = b. Consider some y 6= a 6= b (since #A ≥ 3, this is possible).

From (C3) D̄G(a, b) ⇒ DG(a, y) ⇒ D̄G(a, y). Apply (C3) again to get D̄G(a, y) ⇒
DG(a, b).

C7 Suppose x = b and y = a. Consider some y 6= a 6= b. From (C5), we get D̄G(a, b) ⇒
DG(y, a)⇒ D̄G(y, a). From (C2), we get D̄G(y, a)⇒ DG(b, a).

�

As a consequence of Field Expansion Lemma, we can speak of a decision group of agents

without reference to any pair of alternatives. We now prove the other important lemma.

Lemma 2 (Group Contraction) Suppose ∅ 6= G ⊆ N is decisive. If #G ≥ 2, then there

exists a proper non-empty subset of G which is also decisive.

Proof : Let G = G1 ∪G2 with G1 ∩G2 = ∅ and G1, G2 6= ∅. Let a, b, c ∈ A and let R ∈ Rn

be a preference profile as in Table ??. Since aPib for all i ∈ G and G is decisive, we get that

aF̂ (R)b. We consider two possible cases.

G1 G2 N \G
a c b

b a c

c b a

Table 4: A preference profile

C1 Suppose aF̂ (R)c. But aPic for all i ∈ G1 and cPia for all i ∈ N \G1. Hence D̄G1(a, c).

By Field Expansion Lemma, G1 is decisive.

C2 Suppose cF (R)a. Since aF̂ (R)b, transitivity implies cF̂ (R)b. But cPib for all i ∈ G2

and bPic for all i ∈ N \G2. Hence, D̄G2(c, b). By Field Expansion Lemma, we get that

G2 is decisive.

�

By WP, the grand coalition N is decisive. Repeated application of Group Contraction

Lemma gives us that there exists an agent i ∈ N such that i is decisive. By definition an

ASWF is dictatorial if there is a single agent who is decisive. �
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4 Relaxing the Weak Pareto Axiom: Wilson’s Theorem

We follow Malawski-Zhou (SCW 1994).

Definition 7 The ASWF F satisfies Non-Imposition or NI if for all a, b ∈ A, there

exists a profile R such that aF (R)b.

An example of a ASWF violating NI is the following: for all profiles R, the social ordering

F (R) is a fixed ordering R̄i. Note that it trivially satisfies IIA.

Remark: If a ASWF satisfies WP, it satisfies NI.

Definition 8 The ASWF F is anti-dictatorial if there exists a voter i such that for all

a, b ∈ A and all profiles R, we have [aPib⇒ bF̂ (R)a].

The null ASWF F n is defined as follows: for all a, b ∈ A and for all profiles R, aF̄ n(R)b.

Theorem 2 (Wilson’s Theorem) Assume |A| ≥ 3. A ASWF which satisfies IIA and NI

must be null or dictatorial or anti-dictatorial.

Proof : Let F be a SWF satisfying IIA and NI.

For all a, b ∈ A, we write PO(a, b) if for all profiles R, [aPib for all i ∈ N ⇒ aF̂ (R)b].

For all a, b ∈ A, we write APO(a, b) if for all profiles R, [aPib for all i ∈ N ⇒ bF̂ (R)a].

Lemma 1: For all a, b, x, y ∈ A we have PO(a, b)⇒ PO(x, y).

Proof: There are several cases to consider like in the Field Expansion Lemma. We only prove

the case PO(a, b) ⇒ PO(a, y) where b 6= y. Pick an arbitrary profile R where aPiy for all

i ∈ N . We will show that aF̂ (R)y.

Since F satisfies NI, there exists a profile R′ such that bF (R)y. Construct the profile

R̃ as follows: for all i ∈ N , aP̃ib, aP̃iy and R̃ |b,y= R′ |b,y. This is clearly feasible. Since

PO(a, b) we have aF̂ (R̃)b. On the other hand, IIA implies bF (R̃)y. Since F (R̃) is transitive,

we have aF̂ (R̃)y. Now IIA implies aF̂ (R)y. This completes the proof of Lemma 1.

Lemma 2: For all a, b, x, y ∈ A we have APO(a, b)⇒ APO(x, y).

Proof: Once again there are several cases to consider. We only prove the case APO(a, b)⇒
APO(a, y) where b 6= y. Pick an arbitrary profile R where aPiy for all i ∈ N . We will show

that yF̂ (R)a.

Since F satisfies NI, there exists a profile R′ such that yF (R)b. Construct the profile

R̃ as follows: for all i ∈ N , aP̃ib, aP̃iy and R̃ |b,y= R′ |b,y. This is clearly feasible. Since

PO(a, b) we have bF̂ (R̃a). On the other hand, IIA implies yF (R̃)b. Since F (R̃) is transitive,

we have yF̂ (R̃)a. Now IIA implies yF̂ (R)a. This completes the proof of Lemma 2.
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Lemma 3: One of the following statements must hold

(i) F is null.

(ii) PO(a, b) holds for some pair a, b.

(iii) APO(a, b) holds for some pair a, b.

Proof: Suppose that neither (i) nor (ii) nor (iii) hold. Since (i) does not hold, there exists

a pair x, y and a profile R such that xF̂ (R)y holds. Pick z 6= x, y and let R′ be a profile

such that xP ′iz, yP ′iz for all i ∈ N and R′ |x,y= R |x,y. Again this is clearly feasible.

Since neither PO(x, z) nor APO(x, z) hold, we must have xF̄ (R′)z. Similarly, since neither

PO(y, z) nor APO(y, z) hold, we must have yF̄ (R′)z. Since F (R′) is transitive, we have

xF̄ (R′)y. Applying IIA, we have xF̄ (R)y. But this contradicts our assumption that xF̂ (R)y

and completes the proof of Lemma 3.

Suppose F is not null. Applying Lemma 3, either PO(a, b) must hold for some a, b or

APO(a, b) must hold for some pair a, b. Suppose the former holds. Then WP holds and the

existence of a dictator follows from Arrow’s Theorem. If the latter holds, then the proof

of Arrow’s Theorem can be modified in a straightforward manner to show that F is anti-

dictatorial. �

5 Existence of Maximal Elements

Let Qi be a binary relation over the elements of the set A. Let B ⊂ A.

Definition 9 The set of maximal elements of B according to Q denoted by M(B,Qi) is

the set {x ∈ B|@y ∈ B and yQ̂ix}.

Remark: Since Qi is complete, we can define the set of maximal elements equivalently as

M(B,Qi) = {x ∈ B|xQiy for all y ∈ B}.

Definition 10 The binary relation Qi is acyclic if for all a1, a2, ..., aK ∈ A, we have

[a1Q̂ia2, a2Q̂ia3, ...., aK−1Q̂iaK ]⇒ a1QiaK.

Remark: Qi is transitive ⇒ Qi is quasi-transitive ⇒ Qi is acyclic.

Proposition 5 Let Qi be a binary relation over a finite set A. Then [M(B,Qi) 6= ∅] ⇒
[ Qi is acyclic ].

Proof : ⇒ Suppose not, i.e there exists a1, ..., aK such that a1Q̂ia2, ....., aK−1Q̂iaK and

aKQ̂ia1. Let B = {a1, ...., aK}. Clearly M(B,Qi) = ∅ which contradicts our hypothesis.
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⇐ Suppose Qi is acyclic and let B be an arbitrary subset of A. Pick an arbitrary element

a1 ∈ B. If a1 ∈ M(B,Qi), we are done. Suppose a1 /∈ M(B,Qi). There must exist

a2 ∈ B such that a2Q̂ia1. If a2 ∈ M(B,Qi), we are done again. Otherwise there exists

a3 such that a3Q̂ia2. Note that acyclicity implies a3Qia1, i.e a3 6= a1. If a3 ∈ M(B,Qi)

our algorithm stops; otherwise we find an element a4 such that a4Q̂ia3. Critically acyclicity

implies a4 6= a2, a1. In general, acyclicity implies that the sequence a1, ..., ak.... constructed

in the manner above contains no repetitions. Since B is finite, the algorithm must stop, i.e

M(B,Qi) 6= ∅. �

Remark: Acyclicity over triples is not sufficient for maximal elements to exist. Consider

the following example: A = {a1, a2, a3, a4} and a1Q̂ia2, a2Q̂ia3, a3Q̂ia4, a4Q̂ia1, a1Q̄ia3 and

a2Q̄ia4. Then acyclicity over triples is satisfied but M(B,Qi) = ∅.

Remark: Acyclicity does not guarantee the existence of maximal elements if A is not finite.

For example, let Qi be the natural ordering of the real numbers and let A = [0, 1). Then

M(A,Qi) = ∅.

6 Domain Restrictions: Single-Peaked Preferences

We endow A with additional structure.

Let ≥ be a linear order over A. For instance A could be the unit interval and ≥ the

natural ordering over the reals.

Definition 11 The ordering Ri is single-peaked if there exists a∗ ∈ A (called the peak

of Ri) such that for all b, c ∈ A

[a∗ ≥ b > c or c > b ≥ a∗]⇒ bPic

Let RSP (≥) be the set of all single-peaked preferences with respect to the ordering ≥.

Throughout the this section we shall keep ≥ fixed so that we shall refer to the set of single-

peaked preferences simply as RSP . We shall denote the peak of a single-peaked (or any

other, for that matter) ordering Ri as τ(Ri).

Example 1 Let A = [0, 1] denote the fraction of the Central Government’s budget that is

spent on education. According to voter i the optimal fraction is 0.1. If her preferences are

single-peaked, she strictly prefers 0.2 over 0.3 and 0.08 over 0.05. Note that single-peakedness

places no restrictions on alternatives on different “sides” of the peak, i.e. the voter can either

prefer 0.05 to 0.2 or vice-versa.
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Remark: Let A = {a, b, c} and consider the set of linear orders (R1, R2, R3) which constitute

the following Condorcet in Table 1. It is easy to check that there does not exist an ordering

≥ over A such that (R1, R2, R3) are single-peaked with respect to ≥. Suppose for instance

a > b > c. Then R2 is not single-peaked because if c is the peak, then b must be strictly

better than a.

Remark: Let |A| = m. Then |RSP | = 2m−1.

Definition 12 Let R ∈ RSP be a profile of single-peaked preferences. The median voter

in the profile R is the voter h such that |{i ∈ N : τ(Rh) ≥ τ(Ri)}| ≥ n
2

and |{i ∈ N : τ(Ri) ≥
τ(Rh)}| ≥ n

2
.

Remark: The median voter exists for all profiles although she may not be unique. However

if n is odd, the median peak τ(Rh) will be unique.

Theorem 3 (Median Voter Theorem) Let R ∈ RSP be a profile of single-peaked pref-

erences. Then M(A,Qmaj) 6= ∅. In particular τ(Rh) ∈M(A,Qmaj).

Proof : Pick an arbitrary profile R ∈ RSP . We will show that τ(Rh)Q
majb for all b 6= τ(Rh).

We consider two cases.

Case 1. τ(Rh) > b. Let i ∈ N be such that τ(Ri) ≥ τ(Rh). Since Ri is single-peaked and

τ(Ri) ≥ τ(Rh) > b, we have τ(Rh)Pib. Since |{i ∈ N : τ(Ri) ≥ τ(Rh)}| ≥ n
2

since h is a

median voter, it follows that τ(Rh)Q
majb.

Case 2. b > τ(Rh). Let i ∈ N be such that τ(Rh) ≥ τ(Ri). Since Ri is single-peaked and

b > τ(Rh) ≥ τ(Ri), we have τ(Rh)Pib. Since |{i ∈ N : τ(Rh) ≥ τ(Ri)}| ≥ n
2

since h is

median voter, it follows that τ(Rh)Q
majb.

This covers all possible cases. �

Is Qmaj(R) transitive for all single-peaked profiles? No, as the following example shows.

Example 2 Let A = [0, 1], N = {1, 2}. Let R1 and R2 be the following single-peaked

orderings:

• τ(Ri) = 0.4 and xPiy whenever 0.4 > x and y > 0.4, i.e voter 1 prefers all alternatives

to the “left” of 0.4 to everything on the “right” of 0.4.

• τ(Ri) = 0.5 and xPiy whenever x > 0.5 and 0.5 > y, i.e voter 1 prefers all alternatives

to the “right” of 0.5 to everything on the “left” of 0.5.

Now consider the alternatives a = 0.1, b = 0.2 and c = 0.6. Note that bP1c and cP2b

so that bQ̄majc. Similarly, aP1c and cP2a so that aQ̄majc. However single-peakedness of R1

and R2 imply bP1a and bP2a so that bQ̂maja. Clearly Qmaj is not transitive. Note that all

alternatives in the interval [0.4, 0.5] are maximal according to Qmaj in A.
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The binary relation Qmaj defined over single-peaked preferences is transitive in special

cases.

Proposition 6 Assume that n is odd and that voter preferences are linear and single-

peaked. Then for all profiles R, Qmaj(R) is an ordering.

Proof : We only need to show that for all profiles R, Qmaj(R) is transitive. Since n is odd

and voter preferences do not admit indifference, Qmaj(R) admits no indifferences, i.e. for all

a, b ∈ A, either aQ̂maj(R)b or bQ̂maj(R)a holds. Now pick a, b, c ∈ A and a profile R and

assume w.l.o.g. that aQ̂maj(R)b and bQ̂maj(R)c. Observe that for for all voters i, Ri induces

single-peaked preferences over {a, b, c} (prove!). Applying Theorem ?? to the set {a, b, c}, it

follows that M({a, b, c}, R) 6= ∅. Therefore cQ̂maja is impossible, i.e aQ̂majc holds and Qmaj

is transitive. �

7 Interpersonal Comparability

We now turn our attention to models where voters are endowed with “richer information”

which can be used for aggregation.

Voter i will be assumed to have a utility function ui : A→ <. We shall let U denote the

set of all such utility functions. A utility profile u is an n-tuple (u1, ..., un) ∈ Un.

Definition 13 A Social Welfare Functional (SWFL) F is a mapping F : Un → R.

Let F be a SWFL. For all utility profiles u we shall let Ru denote the social ordering

F (u).

We now restate some axioms that we had introduced earlier for this environment and

also introduce some new ones.

Definition 14 A SWFL F satisfies Binary Independence of Irrelevant Alternatives

(BIIA) if for all profiles u, u′ and a, b ∈ A,

[ui(a) = u′i(a) and ui(b) = u′i(b) ∀i ∈ N ]⇒ [Ru |a,b= Ru′ |a,b]

let a, b, c, d ∈ A and let Ri be an ordering. We say Ri |a,b= Ri |c,d if [aPib ⇔ cPid] and

[aIib⇔ cIid].

A stronger version of BIIA is Strong Neutrality defined below.

Definition 15 A SWFL F satisfies Strong Neutrality (SN) if for all profiles u, u′ and

a, b, c, d ∈ A,

[ui(a) = u′i(c) and ui(b) = u′i(d) ∀i ∈ N ]⇒ [Ru |a,b= Ru′ |c,d]

12



In other words, if the utilities associated with a and b in profile u agree with those of c

and d respectively in profile u′, then a and b must be ranked in exactly the same way under

Ru as c and d under Ru′ . Note that while a and b are distinct and c and d are also distinct,

it may be the case that b = c and a = d etc.

We introduce some some Pareto type axioms.

Definition 16 The SWFL F satisfies Pareto Indifference (PI) if, for all a, b ∈ A and

profiles u, [ui(a) = ui(b) for all i ∈ N ]⇒ aIub.

Definition 17 The SWFL F satisfies Strong Pareto (SP) if, for all a, b ∈ A and profiles

u, [ui(a) ≥ ui(b) for all i ∈ N ] ⇒ aRub. Moreover if there exists k ∈ N such that uk(a) >

uk(b), then aPub.

7.1 Measurability and Comparability Axioms

Let φ ≡ (φ1, ..., φn) be an n-tuple of strictly increasing functions φi : < → <. Let Φ be an

arbitrary set of such n-tuples.

Let u be a profile. The profile φ.u denote the profile (φ1.u1, ..., φn.un), i.e the utility for

alternative a for voter i is φi(ui(a)).

Definition 18 The SWFL F satisfies invariance with respect to Φ if for all profiles u,

F (u) = F (φ.u).

The idea is as follows. Divide the set of all profiles Un into equivalence classes. Two

profiles u, u′ belong to the same equivalence class if there exists φ ∈ Φ such that u = φ.u. A

SWFL F which is invariant with respect to Φ if f(u) = f(u′). In other words, two profiles

in the same equivalence class have the same “information” permissible for aggregation from

the viewpoint of F . Observe that the finer the partition of Un into equivalence classes or

partitions, the greater is the information that is being allowed for aggregation.

We now consider various assumptions on φ.

Definition 19 A SWFL satisfies Ordinally Measurable, Non-Comparable Utilities (OMNC)

if Φ consists of all n-tuples of increasing functions (φ1, ..., φn).

Remark: In the OMNC, only ordinal information is being allowed for aggregation. This is

the Arrovian case.

Definition 20 A SWFL satisfies Cardinally Measurable, Non-Comparable Utilities (CMNC)

if φ ∈ Φ if for all i ∈ N , φi(t) = αi + βit with βi > 0.

Remark: In CMNC we allow for independent affine transformations of utilities for voters.

13



Definition 21 A SWFL satisfies Ordinally Measurable, Fully-Comparable Utilities (OMFC)

if φi ∈ Φ if, for all i ∈ N , φi = φ0 for some increasing function φ0 : < → <.

Definition 22 A SWFL satisfies Cardinally Measurable, Fully-Comparable Utilities (CMUC)

if φi ∈ Φ if, for all i ∈ N , φi = α + βt with β > 0.

Question: What are the SWFLs which satisfy a certain class of measurability and compa-

rability restriction together with the classical Arrovian assumptions?

7.2 Welfarism

Our goal in this subsection is to show that the questions raised in the previous subsection

can be reduced to problems of ranking vectors in <n.

Proposition 7 (Welfarism) SN ⇒ BIIA. If |A| ≥ 3, then BIIA + PI ⇒ SN.

Proof : The first proof of the proposition is trivial. There are several cases to deal with like

in the Field Expansion Lemma. Consider the case where a, b, c ∈ A, and profiles u, u′ are such

that ui(a) = u′i(a) and ui(b) = u′i(c) for all i ∈ N . We have to show that Ru |a,b= Ru′ |a,c.
Construct a profile ũ such that ũi(a) = ui(a) = u′i(a) and ũi(b) = ũi(c) = ui(b) = u′i(c) for

all i ∈ N . By BIIA, Ru |a,b= Rũ |a,b and Ru′ |a,c= Rũ |a,c. By PI, bIũc so that the transitivity

of Rũ implies Rũ |a,b= Rũ |a,c. Hence Ru |a,b= Ru′ |a,c.
Similar arguments can be used to prove all cases. Note that in the case where u, u′ are

such that ui(a) = u′i(b) and ui(b) = u′i(a) for all i ∈ N we need a third alternative c, i.e we

need to use the assumption that |A| ≥ 3. �

We shall often use the following notation: for all a ∈ A and profile u, u(a) ≡ (u1(a), ..., un(a)).

Proposition 8 Assume |A| ≥ 3. A SWFL satisfies PI and BIIA if and only if there exists

an ordering � on <n such that for all a, b ∈ A and for all profiles u, Ru |a,b = �|α,β where

u(a) = α and u(b) = β.

Proof : Let � be an ordering on <n. Construct a SWFL F as follows: for all profiles u

and a, b ∈ A, Ru |a,b = �|u(a),u(b). The transitivity of Ru is a direct consequence of the

transitivity of � while BIIA and PI of F follows directly from its definition.

Let F satisfy BIIA and PI. Define � as follows: for all α, β ∈ <n, �|α,β = Ru |a,b for

some a, b ∈ A and profile u such that u(a) = α and u(b) = β. Since F satisfies PI and BIIA,

it satisfies SN (Proposition ??). This implies that the ranking of vectors α, β ∈ <n according

to � does not depend on the alternatives a, b and profile u chosen in the construction (i.e.

so that u(a) = α and u(b) = β). In other words, � is well-defined. It is transitive because

Ru is transitive for all u. �
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Figure 1: Arrow’s Theorem

Proposition ?? reduces the problem of finding an SWFL satisfying PI and BIIA to the

problem of finding an appropriate ordering of utility vectors. We only need to reinterpret

the measurability and comparability requirement in this environment.

Let F be an SWFL satisfying PI, BIIA and invariance with respect to Φ. Let � be the

ordering over <n induced by F . Let α, β ∈ <n and φ ∈ Φ. Let φ.α and φ.β denote the

n-tuples (φi(α1), ...., φn(αn)) and (φi(β1), ...., φn(βn)) respectively. By invariance on F , we

have Ru |a,b= Rφ.u |a,b. From the construction of � we know that Ru |a,b = �|α,β and

Rφ.u |a,b = �|φ.α,φ.β. Therefore �|α,β=�|φ.α,φ.β. This motivates the following definition.

Definition 23 The ordering � over <n satisfies invariance with respect to Φ, if for all

α, β ∈ <n and φ ∈ Φ, we have �|α,β = �|φ.α,φ.β.

Proposition 9 Assume |A| ≥ 3. Let F be a SWFL satisfying PI and BIIA and invariance

with respect to Φ. Then the induced ordering � over <n satisfies invariance with respect to

Φ.

Proposition ?? follows from our earlier discussion.

7.3 Arrow’s Theorem: A Geometrical Approach

We restate Arrow’s Theorem in this environment.

Theorem 4 (Arrow’s Theorem for Social Welfare Functionals) Assume |A| ≥ 3. If

a SWFL satisfies PI, WP, BIIA and OMNC, then it must be dictatorial.

Proof : We will only do the case of n = 2. Let F satisfy PI, WP, BIIA and OMNC. Applying

Proposition ??, we will show that the induced ordering � over <2 has the following property:

there exists i = {1, 2} such that for all α, β ∈ <2, we have α � β only if αi > βi.

Refer to Figure 1. Let α be an arbitrary point in <2. We will try to draw an “indifference

curve” through α. Consider Regions I, II, III and IV which do not include the dotted lines.

Step 1: All vectors in region II must be strictly better than α according to �. In other

words β � α for all β ∈ Region I. This follows from WP. Similarly all vectors in Region IV

must be worse than α by WP.

Step 2: Let β, γ ∈ Region I. Then �|α,β = �|α,γ.
Let φ1 : < → < be a linear function such that φ1(β1) = γ1 and φ1(α1) = α1. Since

β1, γ1 < α1 it follows that φ1 is strictly increasing. Similarly let φ2 : < → < be such

that φ1(β2) = γ2 and φ1(α2) = α2. Since β2, γ2 > α2 φ2 is also increasing. Observe the
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φ(β) = γ and φ(α) = α. Since φ1, φ2 are increasing and � satisfies OMNC, we must have

�|α,β = �|α,γ.
Step 3: Let β, γ ∈ Region III. Then �|α,β = �|α,γ.

The arguments here are identical to those in Step 2.

Step 4: Let β ∈ Region I. Then either β � α or α � β must hold.

Suppose that the claim above is false, i.e. β ∼ α. Since Region II is an open set, we can

find γ ∈ Region II (sufficiently close to β) such that γ > β. From Step 2, we must have

γ ∼ α, so that β ∼ γ by transitivity of �. However γ � β by WP. Contradiction.

Step 5: Let β ∈ Region III. Then either β � α or α � β must hold.

The arguments here are identical to those in Step 4.

Step 6: Let β ∈ Region I and γ ∈ Region III. Then β � α ⇒ α � γ. Similarly

α � β ⇒ γ � α.

Suppose β � α. Consider the following functions: φ1(t) = t + (α1 − β1) and φ2(t) =

t− (β2−α2). Note that φ1 and φ2 are strictly increasing. Also φ(β) = α. Since α1−β1 > 0,

we have φ1(α1) > α1. Since β2 − α2 > 0, we have φ2(α2) < α2. Hence φ(α) ∈ Region III.

Since β � α, invariance implies φ(β) � φ(α), i.e. α � γ where γ ∈ Region III.

Step 7: Let β ∈ Region I. If β � α. Let γ be a point on the boundary of Regions I and II

and let γ
′

be a point on the boundary of Regions III and IV . Then γ � α and α � γ
′
. This

follows from Step 6 and WP. By an identical argument, if α � β where β ∈ Region I, then

all points in on the boundary of Regions I and IV are strictly worse than α according to �
and all points on the boundary of Regions III and IV are strictly better than α according

to �.

Summary: Steps 1 through 7 imply that there are exactly two possibilities: (i) Regions I

and II are better than α and Regions III and IV are worse than α according to � (ii)

Regions II and III are better than α and Regions I and IV are worse than α according to

�. We say that the pseudo-indifference curve through α is horizontal if possibility (i) holds

and vertical if possibility (ii) holds.

Step 8: If the pseudo-indifference curve is horizontal (resp. vertical) for some α, it must be

horizontal (resp. vertical) for all α ∈ <2. If this was false, the two pseudo-indifference curves

would intersect, contradicting the transitivity of �.

We can now complete the proof of the theorem. If all pseudo-indifference curves are

horizontal, voter 2 is the dictator; if they are horizontal, voter 1 is the dictator. �

Remark: The ordering � that we have constructed above is not complete. For instance if

all the pseudo-indifference curves are vertical, we know the following: for α, β ∈ <2 such that

β1 > α1, we have β � α. But we say nothing in the case β1 = α1. In order to characterize

�, we need additional axioms.
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Definition 24 The ordering � satisfies continuity, if for all α ∈ <n the sets {β : β � α}
and {β : α � β} are closed.

Definition 25 The ordering � is strongly dictatorial, if there exists a voter i such that for

all α, β ∈ <n, [αi ≥ βi]⇔ [α � β]

Suppose � is strongly dictatorial and that voter i is the dictator. Then for all α, β ∈ <n,

[αi > βi]⇒ [α � β], [βi > αi]⇒ [β � α] and [αi = βi]⇒ [α ∼ β].

Definition 26 The ordering � is lexicographic, if there exists an ordering of voters i1, i2, ..., in
such that for all α, β ∈ <n, α � β implies that there exists an integer K lying between 1 and

n such that

• αik = βik for all k = 1, ...K − 1

• αiK > βiK .

Corollary 1 Assume |A| ≥ 3. If a SWFL satisfies PI, WP, BIIA and OMNC and the

induced ordering � satisfies continuity, then it must be strongly dictatorial.

Corollary 2 Assume |A| ≥ 3. If a SWFL satisfies PI, SP, BIIA and OMNC then it must

be lexicographic.

8 Mechanism Design: Complete Information

8.1 The King Solomon Problem: A Motivating Example

Two women, referred to as 1 and 2 both claim to be the mother of a child. King Solomon

has to decide whether (i) to give the child to 1 (which we shall call outcome a) (ii) to give

the child to 2 (outcome b) or (iii) to cut the child in half (outcome c).

There are two “states of the world”, θ and φ. In state θ, 1 is the real mother while 2

is the impostor; the reverse is true in state φ. The preferences of the two women over the

outcomes {a, b, c} depend on the state. We assume that the following holds.

State θ State φ

1 2 1 2

a b a b

b c c a

c a b c

Table 5: Preferences in states θ and φ
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The best choice for each woman is to get the child in both states. However the true

mother would rather see the child be given to the other mother rather than cut in half; the

opposite is true for the false mother.

King Solomon’s objectives are specified by a social choice function f : {θ, φ} → {a, b, c}
where f(θ) = a and f(φ) = b. The key difficulty of course, is that King Solomon does not

know which state of the world has occurred. He might therefore devise a “mechanism” of

the following kind. Both women are asked to reveal the state (i.e. the identity of the true

mother). If both women agree that state is θ, outcome a is enforced; if both agree that it is

state φ, outcome b is enforced; if they disagree outcome c is enforced. This s shown in Table

?? below where 1’s messages are shown along the rows and 2’s along the columns.

θ φ

θ a c

φ c b

Table 6: King Solomon’s mechanism

Does this work? Unfortunately not. Suppose the state is θ. Observe that the mechanism

together with the preferences specified in θ constitutes a game in normal form. The unique

pure strategy Nash equilibrium of this game is for both women to announce φ leading to

outcome b. Similarly, the equilibrium in state φ is for both women to announce θ leading to

the outcome a. This mechanism gives the baby to wrong mother in each state!

QUESTION: Does there exist a better mechanism?

8.2 A General Formulation

• A = {a, b, c, . . .}: set of outcomes or alternatives.

• I = {1, 2, . . . N}: set of agents or players.

• Θ = {θ, φ, ψ, . . .}: set of states.

• Ri(θ): preference ordering of agent i of the elements of A in state θ, i.e Ri(θ) is a

complete, reflexive and antisymmetric binary relation defined on the elements of A.

Definition 27 A Social Choice Correspondence (scc) F associates a non-empty subset of

A denoted by F (θ) with every state θ ∈ Θ.

A Social Choice Function (scf) is a singleton-valued scc.

The SCC specifies the objectives of the planner/principal/mechanism designer.
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Definition 28 A mechanism G is an N + 1 tuple (M1,M2 . . . ,MN ; g) where Mi, i =

1, 2 . . . , N is the message set of agent i and g is a mapping g : M1 × . . .×MN → A.

For all θ ∈ Θ, the pair (G, θ) constitutes a game in normal form. We let NE(G, θ) denote

the set of pure strategy Nash equilibria in (G, θ), i.e.

m̄ ∈ NE(G, θ)⇒ g(m̄)Ri(θ)g(mi, m̄−i) for all mi ∈Mi and i ∈ I.

Definition 29 The mechanism G ≡ (M1,M2, . . . ,MN) implements the scc F if

g(NE(G, θ)) = F (θ) for all θ ∈ Θ.

We require all Nash equilibria to be optimal according to F . However we restrict attention

to pure strategy equilibria.

QUESTION: What are the scc’s that can be implemented?

8.3 The Information Structure

An important feature of the formulation above is that, once a state is realized, agents are

assumed to play Nash equilibrium. For them to be able to do so, it must be the case that the

payoffs are common knowledge to the players. This means that we are assuming that once a

state is realized, it is common knowledge to all except the mechanism designer. In the earlier

example, both women know who the real mother is but King Solomon does not. This is the

basis for the classification of this model as a complete information model. In incomplete

information models, agents have residual uncertainty about others even after receiving their

private information.

The complete information structure applies to two situations of particular interest.

1. The private information (common knowledge to all agents) is not verifiable by an

outside party (for instance, by a judge or arbiter), as in the King Solomon case. These

models are important bilateral contracting tc.

2. The mechanism has to be put in place before (in the chronological sense) the realization

of the state. We may, for example have to design electoral procedures or a constitution

which once decided upon, will remain in place for a while.

Some classical questions in equilibrium theory can also be addressed within the framework

of this model. For example, can Walrasian equilibrium be attained when there is asymmetric

information and a small number of agents? Questions of this nature motivated Leonid

Hurwicz who is the founder of the theory of mechanism design.

Observation 1 The physical presence of a planner or mechanism designer is not an issue.

The scc could reflect the common goals of all agents.
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8.4 Ideas behind Maskin’s Mechanism

Suppose the mechanism designer wishes to implement the scc F . For every θ and a ∈ F (θ),

there must exist a message vector which is a Nash equilibrium under θ whose outcome is

a. Assume w.l.o.g that this message vector is labeled (a, θ), i.e. when everybody sends the

message (a, θ), the outcome is a. Since this is an equilibrium in θ, any deviation by player

i must lead to an outcome in the set L(a, i, θ) = {b ∈ A|aRi(θ)b}. If N ≥ 3, it is easy to

identify the deviant and “punish” him (i.e. pick an outcome in L(a, i, θ)). The mechanism

designer has already ensured that F (θ) ⊂ g(NE(G, θ)) for all θ ∈ Θ. Now he must try

to ensure that there are no other equilibria in (G, θ). Consider the following candidate

equilibrium message vectors.

1. Message vectors that are non-unanimous, i.e some agents send (a, θ), others (b, φ) and

yet others (c, ψ) etc. This situation is relatively easy to deal with because the mecha-

nism designer knows that such a message vector does not need to be an equilibrium in

any state of the world. He can therefore attempt to “destroy” it as an equilibrium by

by allowing all agents to deviate and get any alternative in A.

2. Message vectors that are unanimous. Suppose everyone sends the message (a, θ). The

true state is however φ. The planner must however continue to behave as though the

true state is θ because there is no way for him to distinguish this situation from the one

where the true state is θ. In particular the outcome will be a and deviations by player

i must lead to an outcome in L(a, i, θ). But this implies that if L(a, i, θ) ⊂ L(a, i, φ),

then (a, θ) will be an equilibrium under φ. If F is implementable, it must be the case

that a ∈ F (φ). This is the critical restriction imposes on F and is called Maskin-

Monotonicity.

8.5 Maskin’s Theorem

Definition 30 The scc F satisfies Maskin-Monotonicity (MM)if, for all θ, φ ∈ Θ and

a ∈ A,

[a ∈ F (θ) and L(a, i, θ) ⊂ L(a, i, φ) for all i ∈ I]⇒ [a ∈ F (φ)]

Suppose a is F -optimal in state θ. Suppose also that for all agents, all alternatives that

are worse than a in θ are also worse than a in φ. Then a is also F -optimal in φ. The MM

condition can also be restated as follows.

Definition 31 The scc F satisfies MM if, for all θ, φ ∈ Θ and a ∈ A,

[a ∈ F (θ)− F (φ)]⇒ [∃i ∈ I and b 6= a s.t. aRi(θ)b and bPi(φ)a]
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Suppose a is F -optimal in θ but not in φ. Then there must exist an agent and an

alternative b such that a preference reversal takes place over a and b between θ and φ.

Definition 32 The scc F satisfies No Veto Power (NVP if, for all a ∈ A and θ, φ ∈ Θ,

[#{i ∈ I|aRi(θ)b for all b ∈ A} ≥ N − 1]⇒ [a ∈ F (θ)]

If at least N − 1 agents rank an alternative as maximal in a state, then that alternative

must be F -optimal in that state. NVP is a weak condition. It is trivially satisfied in

environments where there is a private good in which agent preferences are strictly increasing.

Theorem 5 (Maskin 1977, 1999) 1. If F is implementable, then F satisfies MM.

2. Assume N ≥ 3. If F satisfies MM and NVP, then it is implementable.

Proof : 1. Let G ≡ (M1,M2 . . . ,MN , g) implement F . Let θ, φ ∈ Θ and a ∈ A be such

that L(a, i, θ) ⊂ L(a, i, φ) for all i ∈ I. There must exist m̄ ∈ M1 × . . . ,MN such that

g(m̄) = a and m̄ ∈ NE(G, θ) i.e {g(mi, m̄−i),mi ∈ Mi} ⊂ L(a, i, θ) for all i ∈ I. Therefore

{g(mi, m̄−i),mi ∈ Mi} ⊂ L(a, i, φ) for all i ∈ I. This implies m̄ ∈ NE(G, φ). Since G

implements F , a = g(m̄) ∈ g(NE(G, φ)) = F (φ).

2. Assume N ≥ 3 and let F satisfy MM and NVP. We explicitly construct the mechanism

that implements F .

Let Mi = {(ai, θi, ni, bi, ci) ∈ A×Θ× N× A× A|ai ∈ F (θi)}, i ∈ I. 1

The mapping g : M1 × . . . ,MN → A is described as follows:

(i) if mi = (a, θ, ., ., .) for all i ∈ I, then g(m) = a.

(ii) if mi = (a, θ, ., ., .) for all i ∈ I − {j} and mj = (aj, φ, nj, bj, cj), then

g(m) =

{
bj if bj ∈ L(a, i, θ)

a otherwise

Observe that in order for (ii) to be well-defined, we require N ≥ 3.

(iii) if (i) and (ii) do not hold, then g(m) = ck where k is the lowest index in the set of

agents who announce the highest integer , i.e k = arg min{i ∈ I|ni ≥ nj for all j 6= i}.

Let φ ∈ Θ be the true state of the world and let a ∈ F (φ).

1Here N is the set of all integers.
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Claim 1 F (φ) ⊂ g(NE(G, φ)).

Proof : Consider m̄i = (a, φ, ., ., .) for all i ∈ I. Then g(m̄) = a. Observe that if i deviates,

she gets an outcome in the the set L(a, i, φ). Hence m̄ ∈ NE(G, φ) which establishes the

Claim. �

Claim 2 g(NE(G, φ)) ⊂ F (φ).

Proof : Let m̄ ∈ NE(G, φ). We will show that g(m̄) ∈ F (φ). We consider two cases.

Case 1: m̄i = (a, θ, ., ., .) for all i ∈ I. Therefore g(m̄) = a. By construction, {g(mi, m̄−i)|mi ∈
Mi} = L(a, i, θ) for all i ∈ I. Since m̄ is a Nash equilibrium in (G, φ), we must have

L(a, i, θ) ⊂ L(a, i, φ) for all i ∈ I. Since a ∈ F (θ), MM implies a ∈ F (φ).

Case 2: Case 1 does not hold. Let g(m̄) = a. By construction {g(mi, m̄−i)|mi ∈Mi} = A for

all i except perhaps some j (the exception occurs when all agents i other than j announce

m̄i = (a, θ, ., ., .)) Since m̄ is a Nash equilibrium in (G, φ), it must be the case that aRi(φ)b

for all b ∈ A for all i ∈ I − {j}. Since F satisfies NVP, a ∈ F (φ).

The two cases above exhaust all possibilities and complete the proof of the Claim. �

Claims?? and ?? complete the proof of the result. �

8.6 Understanding Maskin Monotonicity

The following sccs are Maskin Monotonic.

1. The Pareto Efficient Correspondence.

2. The Walrasian Correspondence in exchange economies provided that all Walrasian

allocations are interior.

3. The Individually Rational Correspondence in exchange economies.

4. The Pareto Efficient and Individually Rational Correspondence. In general, the inter-

section of two MM sccs is also MM, i.e if F and G are MM sccs and F (θ) ∩G(θ) 6= ∅
for all θ ∈ Θ, then F ∩G also satisfies MM.

5. The dictatorship scc. There exists an agent, say i such that for all θ ∈ Θ, d(θ) = {a ∈
A|aRi(θ)b for all b ∈ A}.

The following are examples of sccs that violate MM.
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State θ State φ

1 2 3 4 5 1 2 3 4 5

a a b c d a a b b b

b b c b b b b c c c

c c d d c c c d d d

d d a a a d d a a a

Table 7: Preferences in states θ and φ

1. The King Solomon scc.

2. Scoring methods, for example, the plurality rule. LetA = {a, b, c, d} and I = {1, 2, 3, 4, 5}.

Note that a = F (θ) and b = F (φ). However aRi(θ)x→ aRi(φ)x for all x ∈ A and for

all i ∈ I. Hence MM is violated.

3. The class of scfs satisfying MM over “large domains” is small. For instance, if one

considers scfs defined over the domain of all strict orderings, the only ones which

satisfy MM and the “full range” condition are the dictatorial ones. Over the domain of

all orderings, only the constant scf satisfies MM.

8.7 The case of N = 2

In this case an extra condition is required to ensure that equilibria can be sustained. Suppose

agent 1 sends the message (a, θ) while 2 sends the message (b, φ) where a ∈ F (θ) and

b ∈ F (φ). It could be that 1 is deviating unilaterally from the Nash equilibrium which

supports (b, φ) or that 2 is deviating unilaterally from the Nash equilibrium which supports

(a, θ). Clearly the resulting outcome must not upset either equilibrium, i.e. it must be an

alternative in both L(b, 1, φ) and L(a, 2, θ). Hence a necessary condition (which does not

appear in the N ≥ 3 case) is that for all θ, φ ∈ Θ and a, b ∈ A such that a ∈ F (θ) and

b ∈ F (φ)

L(b, 1, φ) ∩ L(a, 2, θ) 6= ∅

Other conditions are also required for implementation.

8.8 Subgame Perfect Implementation

Here a mechanism is specified in extensive form. It consists of a (finite) game tree, a player

partition, an information partition and a mapping which associates elements of A with

every terminal node of the tree. A mechanism Γ together with a state θ ∈ Θ is a game
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in extensive form. Let SPE(Γ, θ) denote the set of subgame pefect equilibrium outcomes of

(Γ, θ). We say that the SCC F can be implemented if there exists a mechanism Γ such that

F (θ) = SPE(Γ, θ) for all θ ∈ Θ.

It is clear that an scc that can be implemented in Nash equilibrium can be implemented

in subgame perfect equilibrium by simply using the Maskin mechanism which is a simul-

taneous move game and has n proper subgames. But can more be implemented by using

extensive-form mechanisms and the notion of subgame perfect Nash equilibrium? The fol-

lowing example answers this question in the affirmative.

Example 3 A = {a, b, c}, I = {1, 2, 3} and Θ = { all strict orderings over A}. consider the

following scf: f(θ) = arg maxR1(θ){a, majority winner over {b, c}}. We claim that f is not

monotonic.

State θ State φ

1 2 3 1 2 3

b c c b b b

a b b a c c

c a a c a a

Table 8: Preferences in states θ and φ

Observe that f(θ) = a and L(a, i, θ) ⊂ L(a, i, φ) for all i ∈ I. However f(φ) = b.

Therefore f does not satisfy MM and is not implementable.

However f can be implemented in subgame perfect equilibrium by the extensive mecha-

nism in Figure ??. Observe that the backwards induction outcome at the node z is always

the majority winner of {b, c}.

b c

1

1

2 3

z

b c

a

Figure 2: Tree implementing f
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QUESTION: How much does the class of implementable sccs expand when we consider

subgame perfect rather than Nash equilibrium?

The answer is, surprisingly quite considerably as illustrated by the result below. First we

make some simplifying assumptions on the set Θ.

A.1 For all θ ∈ Θ and i, j ∈ I, max(Ri(θ), A) ∩max(Rj(θ), A) = ∅.

A.2 For all θ, φ ∈ Θ, there exists k ∈ I and x, y ∈ A such that (i) xRk(θ)y (ii) yPk(φ)x and

(iii) x, y /∈ max(Ri(ψ), A) for any i ∈ I and ψ ∈ Θ.

According to A.1, no two agents have a common maximal element in any state. This

rules out the possibility of having any equilibria in the “integer game”. According to A.2,

there must exist an agent whose preferences are “reversed” over a pair of outcomes in two

distinct states of the world. Moreover, neither of these outcomes is maximal for any agent

in any state of the world.

Both the assumptions above are satisfied in any environment where there is a transferable

good which agents’ prefer monotonically (money?). This implies that the maximal alternative

for an agent will be one where she gets the entire amount of this good. Clearly, maximal

elements of different agents must be distinct in every state of the world.

Definition 33 The scc F is interior if there does not exist a, θ, φ ∈ Θ and i ∈ I such that

a ∈ F (θ) and a ∈ max(Ri(φ), A).

In exchange economies, an interior scc never gives all resources to a single agent.

Theorem 6 (Moore-Repullo (1988), Abreu-Sen (1990)) Assume N ≥ 3. Let F be

any Pareto-efficient, interior scc defined over an environment satisfying A.1 and A.2. Then

F can be implemented in subgame perfect Nash equilibrium.

Proof : Let a ∈ F (θ)−F (φ). From A.2, it follows that there exists k ∈ A and x, y ∈ A such

that xRk(θ)y, yP (φ)x and x, y are not Ri(ψ) maximal for any i ∈ I and ψ ∈ Θ. Henceforth,

we refer to these outcomes and agents as x(a, θ, φ), y(a, θ, φ) and k(a, θ, φ) respectively. Since

F is efficient, there exists an agent j(a, θ, φ) such that aRj(a,θ,φ)x(a, θ, φ).

The mechanism Γ has two stages.

STAGE 0

Let M0
i = {(ai, θi, n0

i , c
0
i ) ∈ A×Θ× N× A|ai ∈ F (θi)}, i ∈ I.

(i) if m0
i = (a, θ, ., .) for all i ∈ I, then the outcome is a. STOP
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(ii) if m0
i = (a, θ, ., .) for all i ∈ I − {j} and m0

j = (aj, φ, ., .) and

(iia) j = j(a, θ, φ), then go to Stage 1.

(iib) j 6= j(a, θ, φ), then the outcome is a. STOP

(iii) if (i) and (ii) do not hold, then the outcome is c0k where k is the lowest index in the

set of agents who who announce the highest integer , i.e k = arg min{i ∈ I|n0
i ≥

n0
j for all j 6= i}. STOP

STAGE 1

Let M1
i = {(Bi, n

1
i , c

1
i ) ∈ {0, 1} × N× A}, i ∈ I.

(i) if #{i|m1
i = (0, ., .)} ≥ N − 1 then the outcome is c1j where j = j(a, θ, φ). STOP

(ii) if #{i|m1
i = (1, ., .)} ≥ N − 1 then

(iia) the outcome is x(a, θ, φ) if m1
k = (1, ., .) where k = k(a, θ, φ). STOP

(iib) the outcome is y(a, θ, φ) if m1
k = (0, ., .) where k = k(a, θ, φ). STOP

(iii) if (i) and (ii) do not hold, then the outcome is c1k where k is the lowest index in the

set of agents who who announce the highest integer , i.e k = arg min{i ∈ I|n1
i ≥

n1
j for all j 6= i}. STOP

Let θ be the true state.

Claim 3 F (θ) ⊂ SPE(Γ, θ).

Consider the following strategy-profile:

• m0
i = (a, θ, ., ., .) for all i ∈ I

• m1
i = (1, ., .) for all i ∈ I and for all Stage 0 histories.

The outcome is a. We first need to check that these strategies induce Nash equilibrium

in Stage 1. Suppose Stage 1 has been reached because j(a, θ, φ) deviated in Stage 0 and

announced m0
j = (b, φ, ., ., .). On the path specified by these strategies, the outcome is

x(a, θ, φ). The only deviation which can change the outcome is by k(a, θ, φ) who can obtain

y(a, θ, φ). But x(a, θ, φ)Rk(a,θ,φ)y(a, θ, φ) by assumption, so that this agent will not deviate.

Now, in Stage 0, the only agent who deviation “matters” is agent j(a, θ, φ). By deviating,

this agent will obtain x(a, θ, φ). Since aRj(a,θ,φ)x(a, θ, φ) so that this agent has no incentive

to deviate. This establishes the Claim.
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Claim 4 SPE(Γ, θ) ⊂ F (θ).

Observe first that as a consequence of A.1 and A.2 all candidate equilibria must be of the

following form:

1. m0
i = (a, φ, ., ., .) for all i ∈ I. in Stage 0. In Stage 1 following an arbitrary history

either A or B below must hold.

A. m1
i = (1, ., .) for all i ∈ I

B. m1
i = (0, ., .) for all i ∈ I.

Note that if messages in any stage are non-unanimous, at least two agents can trigger the

integer game. Since this game has no equilibrium because of our assumptions, such message

profiles cannot be part of an equilibrium.

In the candidate equilibrium, the outcome is a. If a ∈ F (θ), there is nothing to

prove; assume therefore that a /∈ F (θ), i.e. a ∈ F (φ) − F (θ). Consider a deviation by

agent j = j(a, φ, θ) who announce m0
j = (b, θ, ., .) where b ∈ F (θ) and sends the game to

Stage 1. Suppose that A applies in the continuation game. The outcome is x(a, φ, θ). If

agent k = k(a, φ, θ) deviates by announcing m1
k = (0, ., .), the outcome is y(a, φ, θ). Since

y(a, φ, θ)Pk(a,φ,θ)(θ)x(a, φ, θ) by assumption, k will indeed deviate. Suppose then that B ap-

plies in Stage 2. The outcome is then c1j . Since a ∈ F (φ) and F is interior, there exists c1j
such that c1jPj(θ)a. Clearly j can obtain c1j by his Stage 0 deviation. Therefore, if the can-

didate equilibrium strategies are indeed an equilibrium, it must be the case that a ∈ F (θ).

This proves the Claim. �

Observation 2 The assumption of efficiency in the result above is not essential (see Moore

and Repullo (1988)). It only ensures that two-stage mechanisms suffice. Abreu and Sen

(1990) prove a more general result which also applies to voting environments. In fact, they

establish the counterpart of MM for subgame perfect implementation. This condition is

significantly weaker than MM but there are still important sccs that fail to satisfy it.

8.9 Discussion

There is a large body of literature which establishes that the scope for implementation in-

creases very dramatically if either (i) the solution concept is “refined” from Nash to subgame-

perfect, iterated elimination of dominated strategies, elimination of weakly dominated strate-

gies, trembling-hand perfect equilibrium and so on and (ii) randomization is allowed in the

mechanism and the notion of implementation is weakened to concepts like “virtual imple-

mentation” etc.
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9 Incomplete Information

In the incomplete information model, each agent receives private information but cannot

deduce the state of the world from the information she receives. In other words, an agent

does not know the information received by other agents. The mechanism designer does not

observe the information received by any agent. Consider the following well-known examples.

9.1 Examples

9.1.1 Voting

Assume that there are N voters and assume for convenience that N is odd. Voters have

to collectively select one of the two proposals a or b. Each voter i either believes that a is

better than b or b is better than a. Importantly, these preference ordering is known only to

i. Voters therefore need to reveal their preferences by voting.

Consider the majority voting rule: all voters vote either a or b and the proposal which

gets the highest aggregate number of votes is selected. Voters realize that they are playing a

game. They can vote either a or b (their strategy sets) and the outcome and payoff depends

not only on how they vote but also on how everyone else votes. How will they vote? Note

that voting according to their true preferences is a weakly dominant strategy. Their vote

does not matter unless the other voters are exactly divided in their opinion on a and b. In

this case a voter gets to choose the proposal she wants. She will clearly hurt herself by

misrepresenting her preferences.

What if there are three proposals or candidates a, b and c? Consider a generalization of

the rule proposed above. Each voter votes for her best proposal. Select the proposal which

is best for the largest number number of voters. If no such proposal exists, select a (which

can be thought of as a status quo proposal).

What behaviour does this rule induce? Is truth-telling a dominant strategy once again?

No, as the following example for three players demonstrates.

1 2 3

c b a

b a b

a c c

Table 9: Voter Preferences

Now suppose voter 1’s true preference is c better than b than a while she believes that

voters 2 and 3 are going to vote for b and a respectively. Then voting truthfully will yield a

while lying and voting for b will get b which is better than a according to her true preferences.
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Are there voting rules which will induce voters to reveal their true preferences? Note

that if voters do not vote truthfully, the actual outcome could be very far from the desired

one.

9.1.2 Bilateral Trading

There are two agents, a seller S and a buyer B. The seller has a single object which the

buyer is potentially interested in buying. The seller and buyer have valuations vs and vb
which are known only to themselves. Assume that they are independently and identically

distributed random variables. Assume further that they are uniformly distributed on [0, 1].

Consider the following trading rule proposed by Chatterjee and Samuelson . Seller and

buyer announce “bids” xs and xb. Trade takes place only if xb > xs. If trade occurs, it does

so at price xb+xs
2

. Agents have quasi-linear utility, i.e. if no trade occurs both agents get 0;

if it occurs, then payoffs for the buyer and seller are vb − xb+xs
2

and xb+xs
2
− vs respectively.

This is a game of incomplete information. A linear Bayes-Nash equilibrium of the game

exists where xb = 2
3
vb + 1

12
and xs = 2

3
vs + 1

4
. Therefore trade takes place only if vb− vs > 1

4
.

However efficiency would require trade to take place whenever vb > vs. There are realizations

of vb, vs where there is no trade in equilibrium where it would be efficient to have it.

Are there other trading rules where agents participate voluntarily and equilibrium out-

comes are always efficient?

9.2 A General Model

As before, the set of agents is I = {1, . . . , N}, the set of feasible alternatives or outcomes

or allocations is A. Each agent i has some private information θi ∈ Θi. The parameter θi
is often referred to as agent i’s type. Agent i has a payoff function vi : Θi × A → <. Thus

every realization of θi determines a payoff function for i. 2 A profile θ ≡ (θ1, . . . , θN) is an N

tuple which describes the state of the world. The notation (θ
′
i, θ−i) will refer to the profile

where the ith component of the profile θ is replaced by θ
′
i.

Definition 34 A Social Choice Function (scf) is a mapping f : Θ1 ×Θ2 × ...×ΘN → A.

As before, a scf represents the collective goals of the agents and the objectives of a

Principal/Designer.

Definition 35 A SCF f is strategy-proof if

2A more general model is one where the payoff function for agent i is vi : Θ1 × . . .×ΘN ×A→ <, i.e an

agent’s payoff depends on the types of all agents. This is the model of common or interdependent valuations

and has many interesting applications.
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vi(f(θ), θi) ≥ vi(f(θ
′
i, θ−i), θi)

holds for all θi, θ
′
i, θ−i and i ∈ I.

If a scf is strategy-proof, then truth-telling is a dominant strategy for each agent. Strategy-

proofness is dominant-strategy incentive-compatibility.

An alternative (and weaker) notion of incentive compatibility is Bayes-Nash incentive-

compatibility. Here truth-telling gives a higher expected utility than lying for each agent

when these expectations are computed with respect to beliefs regarding the types of other

agents and assuming that other agents are telling the truth.

Assume that µi : Θ1 × ... × ΘN → [0, 1] denotes the beliefs of agent i over the possible

types of other agents, i.e µ(θ) ≥ 0 and
∫
θ
dµi(θ) = 1. Let µi(.|θi) denote agent i’s beliefs

over the types of other agents conditional on her type being θi.

Definition 36 A scf f is Bayesian incentive-compatible (BIC) if∫
θ−i

vi(f(θ), θi)dµi(θ−i|θi) ≥
∫
θ−i

vi(f(θ′i, θ−i), θi)dµi(θ−i|θi)

for all θi, i ∈ I.

A scf which is strategy-proof is BIC with respect to all priors. One goal of the theory

is to identify scfs which are strategy-proof or BIC. Another one is to identify the “best” or

optimal scf within the class of incentive-compatible scfs. For instance, we might wish to

design an auction which maximizes expected revenue to the seller and so on.

Two fundamental issues are:

• The choice of a solution concept, i.e. strategy-proofness vs BIC. As we have remarked

earlier, the former is a more robust notion (we can be more confident that agents will

play weakly dominant strategies when they exist). However the difficulty is that it the

class of scfs which satisfy it are severely restricted and is smaller than the class of scfs

that satisfy BIC.

• The domain of preferences. Specifically, what is the structure of the set A, the sets

Θi and the nature of the function vi? As subsequent examples will show, these are

determined by the particular choice of model. For instance, a critical choice is whether

or not monetary compensation is allowed (voting vs. exchange).

Observation 3 A question which arises naturally is the following: why are we interested

in truth-telling? Why don’t we consider a general mechanism where people send messages

from some artificially constructed set? Perhaps the mechanism could be constructed so

that the equilibrium (either dominant strategies or Bayes-Nash) outcomes at any profile are
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exactly the“optimal”ones for that profile? There is no sensible notion of truth-telling in such

mechanisms. The answer is that there is no loss of generality in restricting attention to direct

mechanisms (where agents directly reveal their types and the scf itself is the mechanism)

and requiring truth-telling to be an equilibrium. This simple fact/observation is known as

The Revelation Principle.

9.3 The Complete Domain

In this section voting models will be considered. These are models where monetary compen-

sation is not permitted. The goal will be to present a well-known result which characterizes

the class of strategy-proof scfs.

The setA = {a, b, c, ...} is a set ofm proposals/candidates/alternatives and I = {1, 2, . . . , N}
is a set of voters. Voter i’s type, θi is his ranking of the elements of the set A. This ranking

will be more conveniently written as Pi. For convenience, we assume that Pi is a linear order

i.e. it is complete, reflexive, transitive and anti-symmetric. Hence, for all a, b ∈ A, aPib is

interpreted as “a is strictly preferred to b under Pi”.

Let P be the set of all linear orderings over A (there are m! such orders). A preference

profile P = (P1, ..., PN) ∈ PN is an n -list of orderings, one for each voter. A scf or a voting

rule f is a mapping f : PN → A.

The strategy-proofness property introduced in the previous section is restated below for

this environment.

Definition 37 The scf f is manipulable if there exists a voter i, a profile P ∈ PN and an

ordering P ′i such that

f(P ′i , P−i)Pif(Pi, P−i)

Definition 38 The SCF f is strategy-proof if it is not manipulable.

One class of voting rule which is always strategy-proof is the constant SCF which selects

the same alternative at all profiles. In order to rule out this possibility, it will be assumed

that SCFs under consideration satisfy the property of unanimity.

For all voters i and Pi ∈ P, let τ(Pi) denote the maximal element in A according to Pi.

Definition 39 The SCF f satisfies unanimity if f(P ) = a whenever τ(Pi) = a for all

i ∈ I.

Definition 40 The voting rule f is dictatorial if there exists i ∈ I such that for all P ∈ PN ,

f(P ) = τ(Pi).
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Theorem 7 (Gibbard (1973), Satterthwaite (1975)) Assume m ≥ 3. If f satisfies

unanimity then it is strategy-proof if and only if it is dictatorial.

Proof : Sufficiency is obvious and we only prove necessity.

STEP 1: We prove the result in the case of N = 2. Let I = {1, 2} and assume f : P2 → A

satisfies unanimity and strategy-proofness.

Claim 5 Let P = (P1, P2) be such that τ(P1) 6= τ(P2). Then f(P1, P2) ∈ {τ(P1), τ(P2)}.

Proof : Suppose not i.e. suppose that there exists Pi, P2 and a, b, c such that τ(P1) = a 6=

b = τ(P2) and f(P1, P2) = c 6= a, b. Let P ′1 =

ab
...

 and P ′2=

ba
...

.

If f(P ′1, P2) = a then voter 1 manipulates at (P1, P2) by voting P ′1 because

a = f(P ′1, P2)P1f(P1, P2) = c. If on the other hand, f(P ′1, P2) = x where bP ′ix, then voter 1

manipulates at (P ′1, P2) by voting P̄1 where τ(P̄1) = b. Then f(P̄1, P2) = b (by unanimity)

and b = f(P̄1, P2)P
′
1f(P ′1, P2) = x. Hence f(P ′1, P2) = b.

Now suppose f(P ′1, P
′
2) = x 6= b, i.e. bP ′2x. Then 2 will manipulate by voting P2 because

b = f(P ′1, P2)P
′
2f(P ′1, P

′
2) = x. Hence f(P ′1, P

′
2) = b.

By a symmetric argument, f(P1, P
′
2) = f(P ′1, P

′
2) = a. However this contradicts our

earlier conclusion that f(P ′1, P
′
2) = b. �

Claim 6 Let P, P̄ ∈ P2 be such that τ(P1) = a 6= b = τ(P2) and τ(P̄1) = c 6= d = τ(P̄2).

Then [f(P ) = τ(P1)]→ [f(P̄ ) = τ(P̄1)] and [f(P ) = τ(P2)[→ [f(P̄ ) = τ(P̄2)].

Proof : Let P1 =

(
a
...

)
and P2 =

(
b
...

)
. Assume, without loss of generality that f(P1, P2) =

a = τ(P1). Note that for all P ′1 such that τ(P ′1) = a, we must have f(P ′1, P2) = a. Hence we

can assume that c is the second ranked outcome at P1, i.e. we can assume that P1 =

ac
...

.

Let P̄1 =

ca
...

. By Claim 1, f(P̄1, P2) ∈ {b, c}. Suppose f(P̄1, P2) = b. Then 1 manipulates

at (P̄1, P2) by voting P1 because a = f(P1, P2)P̄1f(P̄1, P2) = b. Hence f(P̄1, P2) = c.

Observe that for any P ′2 ∈ P such that τ(P ′2) = b we must have f(P̄1, P
′
2) = c. If this

is not true, then Claim 1 would imply f(P̄1, P
′
2) = b and 2 would manipulate at (P̄1, P2)
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by voting P ′2. We can therefore assume without loss of generality that the second ranked

alternative in P2 is d. Now Claim 1 implies that f(P̄1, P̄2) ∈ {c, d}. If f(P̄1, P̄2) = d, then 2

would manipulate at (P̄1, P2) via P̄2. Hence f(P̄1, P̄2) = c. �

Claims ?? and ?? establish that f is dictatorial.

STEP 2: We now show that the Theorem holds for general N . In particular, we show that

the following two statements are equivalent.

(a) f : P2 → A is strategy-proof and satisfies unanimity ⇒ f is dictatorial

(b) f : PN → A is strategy-proof and satisfies unanimity ⇒ f is dictatorial, N ≥ 2.

(b) ⇒ (a) is trivial. We now show that (a) ⇒(b). Let f : PN → A be a non-manipulable

scf satisfying unanimity. Pick i, j ∈ I and construct a scf g : P2 → A as follows: for all

Pi, Pj ∈ P, g(Pi, Pj) = f(Pi, Pj, Pj . . . , Pj).

Since f satisfies unanimity, it follows immediately that g satisfies this property. We

claim that g is strategy-proof. If i can manipulate g at (Pi, Pj), then i can manipulate

f at (Pi, Pj, ..., Pj) which contradicts the assumption that f is strategy-proof. Suppose j

can manipulate g, i.e. there exists Pi, Pj, P̄j ∈ P such that b = g(Pi, P̄j)Pjg(Pi, Pj) = a.

Now consider the sequence of outcomes obtained when individuals other than i progressively

switch preferences from Pj to P̄j. Let f(Pi, P̄j, Pj, ..., Pj) = a1. If a and a1 are distinct,

then aPja1 since f is non-manipulable. Let f(Pi, P̄j, P̄j, Pj, ..., Pj) = a2. Again, since f is

non-manipulable, a1Pja2 whenever a1 and a2 are distinct . Since Pj is transitive, aPja2.

Continuing in this manner to the end of the sequence, we obtain aPjb which contradicts our

initial assumption.

Since g is strategy-proof and satisfies unanimity, statement (a) applies, so that either i or

j is a dictator. Let O−i(Pi) = {a ∈ A|a = f(Pi, P−i) for some P−i ∈ PN−1}. We claim that

O−i(Pi) is either a singleton or the set A. Suppose i is the dictator in the scf g. Let Pi ∈ P
with r1(Pi) = a. Since g satisfies unanimity, it follows that g(Pi, Pj) = a where r1(Pj) = a.

Therefore a ∈ O−i(Pi). Suppose there exists b 6= a such that b ∈ O−i(Pi), i.e. there exists

P−i ∈ PN−1 such that f(Pi, P−i) = b. Let P̄j ∈ P be such that r1(P̄j) = b. Observe that

f(Pi, P̄j, . . . , P̄j) = b (progressively switch preferences of individuals j other than i from Pj
to P̄j and note that the outcome at each stage must remain b; otherwise an individual who

can shift the outcome from b will manipulate). Therefore, g(Pi, P̄j) = b. This contradicts

the assumption that i is the dictator. Therefore, O−i(Pi) is a singleton. Suppose j is the

dictator. Then A = {a ∈ A|g(Pi, Pj) = a for some Pj ∈ P} ⊆ O−i(Pi), so that O−i(Pi) = A.

We now complete the proof by induction on N . Observe that statements (a) and (b)

are identical when N = 2. Suppose it is true for all societies of size less than or equal to

N − 1. Consider the case where there are N individuals. Pick i ∈ I. From the earlier

argument, either O−i(Pi) is a singleton or the set A. Suppose the latter case holds. Fix
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Pi ∈ P and define a scf g : PN−1 → A as follows : g(P−i) = f(Pi, P−i) for all P−i ∈ PN−1.
Since O−i(Pi) = A, g satisfies unanimity because it is strategy-proof and its range is A.

Applying the induction hypothesis, it follows that there exists an individual j 6= i who is a

dictator. We need to show that the identity of this dictator does not depend on Pi. Suppose

that there exists Pi, P̄i ∈ P such that the associated dictators are j and k respectively. Pick

a, b ∈ A such that aPib and a 6= b. Pick Pj, Pk ∈ P such that r1(Pj) = b and r1(Pk) = a.

Let P−i be the N − 1 profile where j has the ordering Pj and k has the ordering Pk. Then

f(Pi, P−i) = b and f(P̄i, P−i) = a and i manipulates at (Pi, P−i). Therefore f is dictatorial.

Suppose then that O−i(Pi) is a singleton. We claim that O−i(Pi) must be a singleton for

all Pi ∈ P. Suppose not, i.e. there exists P̄i ∈ P such that O−i(P̄i) = A. From our earlier

argument, there exists an individual j 6= i who is a dictator. But this would imply that

O−i(P̄i) is a singleton. Therefore, it must be the case that O−i(Pi) is a singleton for all

Pi ∈ P. But this implies that individual i is a dictator. �

Observation 4 There is a large class of scfs, called committee rules which are strategy-proof

in the case where |A| = 2.

9.4 Maskin Monotonicity and Strategy-Proofness

There is a close connection between scfs satisfying Maskin Monotonicity and strategy-proof

scfs as the Proposition below shows.

Proposition 10 (Muller and Satterthwaite (1977)) Let D ⊂ P. If a scf f : DN → A

is strategy-proof, it satisfies MM. If a scf f : PN → A satisfies MM, it is strategy-proof.

Proof : Let f : DN → A be a strategy-proof scf. Let P, P̄ ∈ PN and a ∈ A be such that

f(P ) = a and aPib→ aP̄ib for all b 6= a and i ∈ I. Let f(P̄1, P−1) = c. Assume c 6= a. Since

P1 is a strict order, either cP1a or aP1c must hold. Suppose the former is true. Then agent

1 manipulates f at P via P̄1. Suppose aP1c. Then aP̄1c by hypothesis. In this case, agent

1 manipulates f at (P̄1, P−1) via P1. Hence f(P̄1, P−1) = a. Now progressively switch the

preferences of agents 2 through N from P2 . . . PN to P̄2 . . . P̄N . At each stage, the argument

above can be applied to show that the outcome remains fixed at a. Hence f(P̄ ) = a and f

satisfies MM.

Suppose that f : PN → A satisfies MM but is not strategy-proof. Thus, there exists

i ∈ I, P ∈ PN and P̄i ∈ P such that f(P̄i, P−i)Pif(P ). Let f(P ) = a and f(P̄i, P−i) = b. Let

P ′i ∈ P be an ordering where b is ranked first and a is ranked second. Note that bP̄ix→ bP ′ix

for all x ∈ A. Since f(P̄i, P−i) = b and f satisfies MM, we must have f(P ′i , P−i) = b. Also

observe that aPix → aP ′ix for all x ∈ A (since the only alternative ranked above a in P ′i is
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b which was ranked above a in Pi). Since f(P ) = a, MM implies that f(P ′i , P−i) = a. This

contradicts our earlier conclusion. �

Corollary 3 Assume |A| ≥ 3. If a scf f : PN → A satisfies MM and unanimity, it must

be dictatorial.

Proof : By Proposition ??, f must be strategy-proof. The conclusion now follows from

Theorem ??. �

9.5 Restricted Domains: Single-Peaked Domains

A natural way of evading the negative conclusions of the Gibbard-Satterthwaite Theorem

is to assume that admissible preferences are subject to certain restrictions. One of the

most natural domain restrictions is that of single-peaked preferences. These domains were

introduced by Black (1948) and Inada (1964) and form the cornerstone of the modern theory

of political economy.

We assume that there is an exogenous strict (or linear) order < on the set A. If a < b,

we say that a is to the left of b or equivalently, b is to the right of a. Suppose a < b. We let

[a, b] = {x : a < x < b} ∪ {a, b} i.e. [a, b] denotes all the alternatives which lie “between” a

and b including a and b.

Definition 41 The ordering Pi is single-peaked if

1. For all a, b ∈ A, [b < a < τ(Pi)]⇒ [aPib].

2. For all a, b ∈ A, [τ(Pi) < a < b]⇒ [aPib].

We let DSP denote the set of all single-peaked preferences. Clearly DSP ⊂ P. It is worth

emphasizing that the order < is fixed for the domain DSP .

For expositional convenience, we have considered the case where A is finite and single-

peaked preferences are linear orders. There are no conceptual or technical difficulties in

extending these ideas to the case where, for instance A = [0, 1] and single-peaked preferences

admit indifference. The set A could be the proportion of the national budget to the spent

on primary education. If a voter’s peak is 0.25, then she would prefer an expenditure of 0.20

to 0.16; she would also prefer 0.40 to 0.75. Note however that no restrictions are placed on

the comparison between 0.40 and 0.20.

Example 4 Let A = {a, b, c} and assume a < b < c. Table ?? shows all single-peaked

preferences in this case.
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a b b c

b a c b

c c a a

Table 10: Single-Peaked Preferences

Observation 5 In general, #DSP = 2m−1. Recall that |A| = m.

Let B ⊂ A and assume |B| = 2k + 1 for some positive integer k. We say that b ∈ B is

the median of B if (i) |{x ∈ B : x ≤ b}| ≥ k + 1 and (ii) |{x ∈ B : b ≤ x}| ≥ k + 1. In other

words, there are at least k + 1 alternatives including b which lie to the left of b and k + 1

alternatives including b which lie to the right of b.

We denote the median of B by med(B).

A scf is anonymous if its outcome at any profile is unchanged if the names of the agents

are permuted.

The following is a characterization of strategy-proof, anonymous and efficient scfs defined

over the domain of single-peaked preferences.

Theorem 8 (Moulin (1980)) The following two statements are equivalent.

1. The scf f : [DSP ]N → A is strategy-proof, efficient and anonymous.

2. There exists a set B ⊂ A with |B| = N − 1 such that for all P ∈ [DSP ]N , f(P ) =

med{{τ(P1), . . . , τ(PN)} ∪B}.

Proof : We will prove the result only for the case N = 2. We start by showing 1⇒ 2.

We begin with a preliminary result which states that the outcome of a strategy-proof scf

can only depend on the peaks of agent 1 and 2’s preferences.

Claim 7 Let f be a strategy-proof scf satisfying unanimity. Let P , P̄ be profiles such that

τ(P1) = τ(P̄1) and τ(P2) = τ(P̄2). Then f(P ) = f(P̄ ).

Proof : Let P be a profile and P̄1 be a single-peaked preference such that τ(P1) = τ(P̄1) = a.

Suppose f(P ) = x 6= y = f(P̄1, P2). Let τ(P2) = b and assume without loss of generality

that a < b. Suppose that x and y both lie to the left of a. Assume without loss of generality

that x < y. Since x < y < a, voter 1 will manipulate at P via P̄1. By a similar argument,

a cannot lie to the left of both x and y. Therefore x and y must lie on different sides of

a. Assume without loss of generality x < a. Since a < b, voter 2 will manipulate at P via

an ordering which has a as its peak. By unanimity, this will yield a which he prefers to x.

Hence f(P ) = f(P̄1, P2). An identical argument for a change in voter 2’s preferences yields

f(P̄1, P2) = f(P̄ ). �
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Now assume that f is strategy-proof, anonymous and efficient. Let a and b be the left-

most and right-most alternative in A respectively. Let P ′ be the profile where τ(P ′1) = a and

τ(P ′2) = b. Let f(P ′) = x. We will show that for all profiles P , f(P ) = med{τ(P1), τ(P2), x},
i.e. the set B in the statement of the Theorem is {x}. There are three cases to consider.

Case 1: x is distinct from both a and b. Let P be a profile where τ(P1) ∈ [a, x] and

τ(P2) ∈ [x, b]. We claim that f(P ) = x. Suppose first that f(P1, P
′
2) = y 6= x. If x < y, then

τ(P1) < x < y implies that voter 1 manipulates at P via P ′1. If y < x, then a, y < x implies

that voter 1 manipulates at (P ′1, P2) via P1. Therefore f(P1, P
′
2) = x. By replicating these

arguments for voter 2, we can conclude that f(P ) = x.

Let P be a profile where τ(P1) < τ(P2) < x. We claim that f(P ) = τ(P2). By efficiency

f(P ) ∈ [τ(P1), τ(P2)]. Suppose f(P ) = y < τ(P2). Applying Claim ??, we can assume

without loss of generality that P2 is an ordering where all alternatives to the right of τ(P2)

are preferred to all alternatives to the left of τ(P2). Therefore voter 2 will manipulate via an

ordering whose peak is to the right of x. By the arguments in the previous paragraph, the

outcome of such a profile is x which is better than y according to P2.

Finally suppose that P is a profile where x < τ(P1) < τ(P2). The arguments in the

previous paragraph can be adapted in a straightforward manner to yield the conclusion that

f(P ) = τ(P1).

Applying anonymity, it follows that whenever voters have peaks on either side of x, the

outcome is x; whenever both voters have peaks to the left of x, the outcome is the right-most

peak of the two peaks and whenever both voters have peaks to the right of x, the outcome

is the left-most of the two peaks. Clearly, in all cases the outcome is the median between

the two peaks and x.

Case 2: We have x = a. Pick profile P where τ(P1) < τ(P2). Observe that f(P ′1, P2) = x;

otherwise voter 2 manipulates at P ′ via P2. We claim that f(P ) = τ(P1). Suppose that this

is not the case. Efficiency implies that f(P ) must lie to the right of τ(P1). Applying Claim

??, we can assume without loss of generality that all alternatives to the left of τ(P1) are

preferred to all alternatives to its right according to P1. But then voter 1 will manipulate at

P via P ′1. Therefore f(P ) = τ(P1).

Applying anonymity, it follows that when voters have peaks to the right of x, the outcome

is the left-most of the two peaks. Once again, the outcome is the median of the two peaks

and x.

Case 3: We have x = b. Using the symmetric analogue of the arguments used in Case 2, we

can conclude that when both voters have peaks to the left of x, the outcome is the right-most

of the two peaks, i.e. the median of the two peaks and x.

Cases 1, 2 and 3 exhaust all possibilities. Hence statement 2 holds.

We now show that 2⇒ 1.
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Note that the scf is efficient (because f(P ) ∈ [τ(P1, τ(P2)] for all profiles P ) and anony-

mous. We only show that that the scf is strategy-proof. Let a and b be the left-most and

right-most alternatives in A. Suppose B = {x} and x 6= a, b. Consider a profile where the

voters have peaks on either side of x. The outcome is then x. In this situation, a voter can

only change the outcome to y where x lies in the interval between y and her peak. This

is clearly worse than x because of single-peakedness. Similar arguments apply when both

peaks are on the “same side” as x and when x is one of the “extreme alternatives” a and b.

�

Observation 6 The set B is known as the set of “phantom voters”, fictitious voters whose

peaks are fixed and independent of the profile. Note that the median voter rule with an

arbitrary number of phantom voters, is strategy-proof. However adding more than N − 1

phantoms makes the rule inefficient. There are other ways to characterize strategy-proof scfs

in single-peaked domains and to extend the notion of single-peakedness to more than one

dimension (see Barberà, Gul and Stachetti (1994)).

9.6 Restricted Domains: Random Social Choice Functions

Randomization has been used as a method of resolving conflicts of interest since antiquity.

From the point of view of mechanism design theory, allowing for randomization expands the

set of incentive-compatible social choice functions because domain restrictions are inherent

in the preference ranking of lotteries that satisfy the expected utility hypothesis.

Let L(A) denote the set of lotteries over the elements of the set A. If λ ∈ L(A), then λa
will denote the probability that λ puts on a ∈ A. Clearly λa ≥ 0 and

∑
a∈A λa = 1.

Definition 42 Let D ⊂ P. A Random Social Choice Function (RSCF) is a map ϕ : DN →
L(A).

In models where the outcome of voting is a probability distribution over outcomes, there

are several ways to define strategy-proofness. Here we follow the approach of Gibbard (1977).

Definition 43 A utility function u : A → < represents the ordering Pi over A if for all

a, b ∈ A,

[aPib]⇔ [u(a) > u(b)]

Definition 44 A RSCF ϕ : DN → L(A) is strategy-proof if, for all i ∈ I, for all P ∈ DN ,

for all P̄i ∈ D and all utility functions u representing Pi, we have∑
a∈A u(a)ϕa(Pi, P−i) ≥

∑
a∈A u(a)ϕa(P̄i, P−i).
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A RSCF is strategy-proof if at every profile no voter can obtain a higher expected utility

by deviating from her true preference ordering than she would if she announced her true

preference ordering. Here, expected utility is computed with respect an arbitrary utility

representation of her true preferences. It is well-known that this is equivalent to requiring

that the probability distribution from truth-telling stochastically dominates the probability

distribution from misrepresentation in terms of a voter’s true preferences. This is stated

formally below.

For any i ∈ I, Pi ∈ D and a ∈ A, we let B(a, Pi) = {b ∈ A : bPia} ∪ {a}, i.e. B(a, Pi)

denotes the set of alternatives that are weakly preferred to a according to the ordering Pi.

Definition 45 A RSCF ϕ : DN → L(A) is strategy-proof if for all i ∈ I, for all P ∈ DN ,

for all P̄i ∈ D and all a ∈ A, we have∑
b∈B(a,Pi)

ϕb(Pi, P−i) ≥
∑

b∈B(a,Pi)
ϕb(P̄i, P−i).

We also introduce the a notion of unanimity for RSCFs. This requires an alternative

which is first-ranked by all voters in any profile to be selected with probability one in that

profile.

Definition 46 A RSCF ϕ : DN → L(A) satisfies unanimity if for all P ∈ DN and a ∈ A,

[a = τ(Pi, A) for all i ∈ I]⇒ [ϕa(P ) = 1].

Definition 47 The RSCF ϕ : DN → L(A) is a random dictatorship if there exist non-

negative real numbers βi, i ∈ I with
∑

i∈I βi = 1 such that for all P ∈ D and a ∈ A,

ϕa(P ) =
∑
{i:τ(Pi)=a} βi

In a random dictatorship, each voter i gets weight βi where the sum of these βi’s is one.

At any profile, the probability assigned to an alternative a is simply the sum of the weights of

the voters whose maximal element is a. A random dictatorship is clearly strategy-proof for

any domain; by manipulation, a voter can only transfer weight from her most-preferred to a

less-preferred alternative. A fundamental result in Gibbard (1977) states that the converse

is also true for the complete domain P. 3

Theorem 9 Assume |A| ≥ 3. A RSCF ϕ : PN → L(A) is strategy-proof and satisfies

unanimity if and only if it is a random dictatorship.

3Gibbard’s result is actually more general than Theorem ?? below because it does not assume unanimity.

However since unanimity will be a maintained hypothesis throughout the paper, we state only the version

of the result with unanimity.
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Proof : The proof of sufficiency is straightforward. We prove necessity in the case of I =

{1, 2}. The arguments are an extension of those used to prove the Gibbard-Satterthwaite

Theorem in the N = 2 case.

In what follows assume ϕ : P2 → L(A) satisfies unanimity and strategy-proofness.

Claim 8 Let P = (P1, P2) be such that τ(P1) 6= τ(P2). Then [ϕa(P1, P2) > 0] ⇒ [a ∈
{τ(P1), τ(P2)}].

Proof : Suppose not i.e. suppose that there exists P1, P2 and a, b ∈ A such that τ(P1) =

a 6= b = τ(P2) and ϕa(P1, P2) + ϕb(P1, P2) < 1. Let α = ϕa(P1, P2) and β = ϕb(P1, P2). Let

P ′1 =

ab
...

 and P ′2=

ba
...

.

Strategy-proofness implies ϕa(P
′
1, P2) = α. Also ϕa(P

′
1, P2) + ϕb(P

′
1, P2) = 1; otherwise

voter 1 will manipulate via P2, thereby obtaining probability one on b by unanimity. Hence

ϕb(P
′
1, P2) = 1 − α. Strategy-proofness also implies ϕb(P

′
1, P

′
2) = ϕb(P

′
1, P2) = 1 − α and

ϕa(P
′
1, P

′
2) = α.

By a symmetric argument, ϕb(P
′
1, P

′
2) = ϕb(P1, P

′
2) = β and ϕa(P

′
1, P

′
2) = 1−β. Compar-

ing the probabilities on a and b given by ϕ at the profile (P ′1, P
′
2), we conclude that α+β = 1

contradicting our earlier conclusion. �

Claim 9 Let P, P̄ ∈ P2 be such that τ(P1) = a 6= b = τ(P2) and τ(P̄1) = c 6= d = τ(P̄2).

Then [ϕa(P ) = ϕc(P̄ )] and [ϕb(P ) = ϕd(P̄ )].

Proof : Let P1 =

(
a
...

)
and P2 =

(
b
...

)
.

Let P̂ be an arbitrary profile where τ(P̂1) = a and τ(P̂2) = b. Strategy-proofness implies

that ϕa(P̂1, P2) = ϕa(P1, P2). Claim ?? implies ϕb(P̂1, P2) = ϕb(P1, P2). Now changing voter

2’s ordering from P2 to P̂2 and applying the same arguments, it follows that ϕa(P̂1, P̂2) =

ϕa(P1, P2) and ϕb(P̂1, P̂2) = ϕb(P1, P2).

The argument in the previous paragraph implies that we can assume without loss with-

out loss of generality that c is the second ranked outcome at P1, i.e. we can assume

that P1 =

ac
...

. Let P̄1 =

ca
...

. Strategy-proofness implies ϕa(P̄1, P2) + ϕc(P̄1, P2) =

ϕa(P1, P2) + ϕc(P1, P2) = 1. By Claim ??, ϕc(P1, P2) = ϕa(P̄1, P2) = 0. Hence ϕa(P1, P2) =

ϕc(P̄1, P2) while ϕb(P1, P2) = ϕb(P̄1, P2). Now switching voter 2’s preferences from P2 to
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P̄2 and applying the same argument as above, we conclude ϕc(P̄1, P2) = ϕc(P̄1, P̄2) while

ϕb(P̄1, P2) = ϕb(P̄1, P̄2). The claim follows immediately. �

The Claims above establish that ϕ is a random dictatorship. �

Observation 7 The general result can be established for general N as in the proof of the

Gibbard-Satterthwaite Theorem.

9.7 Restricted Domains: Quasi-Linear Domains

These are models where monetary compensation is feasible. Moreover money enters the

utility function in an additively separable way.

Once again assume that A is the set of alternatives. Agent i’s type is θi ∈ Θ determines

her valuation for every a ∈ A according to the utility function ui : Θ× A→ <, i.e. ui(a, θi)

is the valuation of alternative a when her type is θi. The agent may also receives a monetary

payment xi ∈ <. The overall utility of the agent is given by vi(a, xi; θi) = ui(a, θi) + xi. We

re-define the earlier notions in this environment.

Definition 48 A scf is a mapping f : ΘN → A.

Definition 49 A transfer scheme is a collection of mappings x ≡ (x1, . . . , xN) where xi :

ΘN → < for all i ∈ I.

Definition 50 A pair (f, x) where f is a scf and x is a transfer scheme, is strategy-proof

if

u(f(θi, θ−i), θi) + xi(θi, θ−i) ≥ u(f(θ
′
i, θ−i), θi) + xi(θ

′
i, θ−i).

for all θi, θ
′
i ∈ Θ, for all θ−i ∈ ΘN−1 and for all i ∈ I.

Let f be a scf. We say that f is implementable if there exists a transfer scheme x such

that the pair (p, x) is strategy-proof. This notion of implementability should not be confused

with the same term defined earlier in the context of complete information.

QUESTION: What are the scfs which are implementable?

Below we provide an example of an important implementable scf.

Example 5 The following is the efficient scf f e. For all θ ∈ ΘN

f e(θ) = arg maxa∈A
∑

i∈I ui(a, θi).
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We claim that f e is implementable. Let xi(θ) =
∑

j 6=i uj(f
e(θ), θj) + hi(θ−i) where hi is

an arbitrary function hi : ΘN−1 → <. We show that (f e, x) is strategy-proof.

Observe that

ui(f
e(θi, θ−i), θi) + xi(θi, θ−i) = ui(f

e(θi, θ−i), θi) +
∑
j 6=i

uj(f
e(θi, θ−i), θj) + hi(θ−i)

=
∑
i∈I

ui(f
e(θi, θ−i), θi) + hi(θ−i)

≥
∑
i∈I

ui(f
e(θ

′

i, θ−i), θi) + hi(θ−i)

= ui(f
e(θ

′

i, θ−i), θi) +
∑
j 6=i

uj(f
e(θ

′

i, θ−i), θj) + hi(θ−i)

= ui(f
e(θ

′

i, θ−i), θi) + xi(θ
′

i, θ−i)

Therefore (f e, x) is strategy-proof. The transfer scheme is known as the Vickrey-Clarke-

Groves (VCG) scheme. If Θ is “rich enough”, this scheme is the unique scheme with the

property that (f e, x) is strategy-proof. This is a special case of a class of results called

Revenue Equivalence Theorems.

Very general characterizations of implementability in general domains exist in terms of

“monotonicity properties”. Below are explicit characterizations in special domains.

9.7.1 The Complete Domain

The domain Θ is unrestricted if, for all α ∈ <, a ∈ A, and i ∈ I, there exists θi ∈ Θ such

that ui(a, θi) = α.

Theorem 10 (Roberts (1979)) Assume |A| ≥ 3. Let Θ be an unrestricted domain. The

scf f : ΘN → A is implementable if and only if there exist non-negative real numbers

k1, . . . , kN and real numbers γ(a) for all a ∈ A such that for all θ ∈ Θ,

f(θ) = arg maxa∈A
∑

i∈I{kiui(a, θi) + γ(a)}

Moreover the associated transfers are of the form xi(θ) = 1
ki

∑
j 6=i{kjuj(a, θj) + γ(a)} +

hi(θ−i).
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9.7.2 An Auction Model

In this model there is a single object with one seller and n buyers or bidders. The set of

alternatives A = {e0, ..., en} where ei is the allocation where the object is given to bidder i,

i = 1, . . . , n and e0 is the allocation where the object is unsold and remains with the seller.

We let xi denote the payment by bidder i.

Bidder i’s valuation for the object (her type) is θi which is a non-negative real number.

We assume for convenience that θi ∈ [0, 1]. The payoff of bidder i, of type θi for allocation

ei and payment xi is

vi(ej, xi, θi) =

{
θi − xi if ej = ei
−xi o.w.

An auction is a pair (p, x) where p : [0, 1]n → ∆n is a probability distribution over

{e1, ...en} and x : [0, 1]n → <n is the vector of payments by bidders. If θ ≡ (θ1, ..., θn) is the

vector of announced valuations, then pi(θ), i = {1, .., n} is the probability that agent i gets

the object. Clearly pi(θ) ≥ 0 and
∑

i p(θ) = 1. Furthermore, xi(θ) is the payment made by

i. The p component of an auction will be called an allocation rule and the x component, a

transfer scheme/rule.

Fix an auction (p, x). The utility of bidder i (whose true valuation is θi, who bids θ′i
given that others bids θ−i) is given by

vi((θ
′
i, θ−i), θi) = pi(θ

′
i, θ−i)θi − xi(θ′i, θ−i).

In accordance with our earlier definition, an auction (p, x) is strategy-proof if vi((θ), θi) ≥
vi((θ

′
i), θ−i), θi) holds for all θi, θ

′
i, θ−i and i.

The following result characterizes strategy-proof auctions

Theorem 11 (Myerson (1981)) 1. If (p, x)is strategy-proof, then pi(θi, θ−i) is weakly

increasing in θi for all θ−i.

2. Suppose pi(θi, θ−i) is weakly increasing in θi for all θ−i. Then there exists a transfer

rule x such that (p, x) is strategy-proof. Moreover x must be as follows:

xi(θi, θ−i) = pi(θi, θ−i)θi −
θi∫
0

pi(si, θ−i)dsi + hi(θ−i)

where hi is an arbitrary function of θ−i.

Proof : We first establish statement 1. Fix an arbitrary θ
i
. Since (p, x) is strategy-proof,

the following inequalities must hold

43



1. pi(θi, θ−i)θi − xi(θi, θ−i) ≥ pi(θ
′
i, θ−i)θi − xi(θ′i, θ−i)

2. pi(θ
′
i, θ−i)θ

′
i − xi(θ′i, t−i) ≥ pi(θi, θ−i)θ

′
i − xi(θi, θ−i)

Adding the two inequalities we obtain:

[pi(θi, θ−i)− pi(θ′i, θ−i)][θi − θ′i] ≥ 0

This implies that if θi > θ′i then pi(θi, θ−i) ≥ pi(θ
′
i, θ−i) i.e. pi(θi, θ−i) is weakly increasing

in θi.

We now establish the second part of the Theorem. Let pi(θi, θ−i) be weakly increasing in

θi. Let x be the following transfer function:

xi(θi, θ−i) = pi(θi, θ−i)θi −
θi∫
0

pi(si, θ−i)dsi + hi(θ−i).

We claim that (p, x) is strategy-proof. Note that

vi((θi, θ−i), θi) = pi(θi, θ−i)θi − xi(θi, θ−i)

=

θi∫
0

pi(si, θ−i)dsi + hi(θ−i)

Also,

vi((θ
′
i, θ−i), θi) = pi(θ

′
i, θ−i)θi − xi(θ′i, θ−i)

= pi(θ
′
i, θ−i)θi − pi(θ′i, θ−i)θ′i +

θ′i∫
0

pi(si, θ−i)dsi + hi(θ−i)

= pi(θ
′
i, θ−i)(θi − θ′i) +

θ′i∫
0

pi(si, θ−i)dsi + hi(θ−i)

Let ∆ = vi((θi, θ−i), θi)− vi((θ′i, θ−i), θi). There are two cases to consider.

Case 1: θi > θ′i. Then,
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∆ =

θi∫
θ′i

pi(si, θ−i)dsi − pi(θ′i, θ−i)(θi − θ′i)

≥ 0

where the inequality follows from the fact that pi(θi, θ−i) is weakly increasing in θi.

Case 2: θ′i > θi. Then

∆ = pi(θ
′
i, θ−i)(θ

′
i − θi)−

θ′i∫
θi

pi(si, θ−i)dsi

≥ 0

where the last inequality again follows from the fact that pi(θi, θ−i) is weakly increasing in

θi.

Hence (p, x) is strategy-proof.

Finally, we show that if (p, x) is strategy-proof and p is increasing, then x must be of the

form described in Part 2 of the statement of the Theorem.

vi((θi, θ−i), θi) = pi(θi, θ−i)θi − xi(θi, θ−i)
≥ pi(θ

′
i, θ−i)θi − xi(θ′i, θ−i)

= pi(θ
′
i, θ−i)θ

′
i − xi(θ′i, θ−i) + (θi − θ′i)pi(θ′i, θ−i)

= vi((θ
′
i, θ−i), θ

′
i) + (θi − θ′i)pi(θ′i, θ−i)

Let vi(θi) = vi((θi, θ−i), θi) and vi(θ
′
i) = vi((θ

′
i, θ−i), θ

′
i). We suppress the dependence of

vi on θ−i for notational convenience. In other words, vi(θi) is bidder i’s truth-telling utility

when she is of type θi (when others announce θ−i.) The last inequality reduces to:

vi(θi)− vi(θ
′
i) ≥ (θi − θ′i)pi(θ′i, θ−i)

In the case where θi > θ′i, we have

vi(θi)−vi(θ′i)
θi−θ′i

≥ pi(θ
′
i, θ−i)

By considering the symmetric counterpart of the case considered above where θ′i does not

gain by bidding θi, we have:
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vi(θi)−vi(θ′i)
θi−θ′i

≤ pi(θi, θ−i)

Hence,

pi(θi, θ−i) ≥ vi(θi)−vi(θ′i)
θi−θ′i

≥ pi(θ
′
i, θ−i)

Since pi(θi, θ−i) is (weakly) increasing in θi (for any given θ−i), it is continuous almost ev-

erywhere. Considering sequences θi → θ′i, we have pi(θi, θ−i)→ pi(θ
′
i, θ−i) almost everywhere.

Observe that at points of continuity θ′i, limθi→θ′i
vi(θ

′
i)−vi(θi)
θ′i−θi

exists and equals pi(θ
′
i, θ−i), i.e.

∂vi(θi)
∂θi

= pi(θi, θ−i) almost everywhere.

Since pi(θi, θ−i) is increasing in θi, it is Riemann integrable. Applying the Fundamental

Theorem of Calculus, we have,

vi((θi, θ−i), θi) = vi((0, θ−i), 0) +
θi∫
0

pi(si, θ−i)dsi

Thus xi(θi, θ−i) = pi(θi, θ−i)θi −
θi∫
0

pi(si, θ−i)dsi + hi(θ−i) where hi(θ−i) ≡ vi((0, θ−i), 0).

�

Observation 8 Myerson actually proved the result for BIC auctions with the assumption

that valuations are distributed independently. However the result as well as its proof can

be straightforwardly adapted from the statement and proof of Theorem 2 (More accurately,

Theorem 2 is an adaptation of Myerson’s result). The main change required is that the θ−i’s

have to be “integrated out”. For instance, instead of requiring pi(θi, θ−i) to be increasing in

θi for all θ−i, BIC requires p̄i(θi) to be increasing where p̄i(θi) =
∫
θ−i

pi(θi, θ−i)dF−i(θ−i) and

F−i is the joint distribution function for θ−i.

Mechanism design in the environment considered above has an important decomposition

property. In order to check whether an auction is strategy-proof, it suffices to check whether

the allocation rule satisfies a increasingness or monotonicity property. The transfer rule is

then uniquely determined by the allocation rule for every type of bidder i (given θ−i) upto a

constant which depends only θ−i. This constant can be interpreted as the truth-telling utility

obtained by bidder i whose valuation is 0, again given that the other bidders have valuation

θ−i. This unique determination of the transfer rule once the allocation rule is fixed, is

known widely as The Revenue Equivalence Principle. This principle and the decomposition

property holds quite generally in environments where agents have quasi-linear utility, i.e.

models where agents have utility functions of the form vi(d, xi, θi) = ui(d, θi) + xi where

d ∈ D is a decision chosen from some arbitrary set D and xi is the transfer received by agent

i.
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Observation 9 A special case of the auction (p∗, x∗) above is the one where hi(θ−i) = 0

for all θ−i and i. This auction is individually rational, i.e. bidders who do not get the object

have a payoff of 0. This is the class of Vickrey auctions.
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