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Previous analyses of area yield crop insurance have used a linear additive model (LAM) to express
the relationship between individual and area yield. However, the theoretical foundations of the LAM
are unknown. This shortcoming is addressed by establishing two conditions linking microvariables
and LAM parameters. The conditions relate to the interaction of risks in individual technologies and
the extent of aggregation. If systemic and individual risks are additive in individual yields, and if the
law of large numbers hold, then the LAM obtains. This article also shows how departures from these
conditions affect the results derived from a LAM analysis.
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A classic issue in agricultural economics is the
design of schemes that would offer insurance
against risks in agriculture. The experience
with conventional crop insurance has been dis-
appointing, as insurers have struggled to ob-
tain reliable actuarial data on individual yields
(Skees, Black, and Barnett). The primary at-
traction of area-yield insurance schemes is that
insurers do not have to contend with the in-
formational problems of moral hazard and ad-
verse selection (Halcrow). These problems can
be dismissed because indemnities and premi-
ums are based not on a producer’s individual
yield but rather on the aggregate yield of a sur-
rounding geographical area. However, the key
question is: How adequate are aggregate yield
instruments for reducing the risks faced by
producers?

To address this question, previous stud-
ies have expressed individual yields as a lin-
ear stochastic function of area yield (Mahul,
Miranda, Vercammen). The approach has
been to use the form of a linear regression
model where the dependent variable is the
yield of an individual producer, the only in-
dependent variable is area yield and the ad-
ditive random error term measures omitted
individual-specific factors uncorrelated with
area yield. Thus, the model decomposes vari-
ations in individual yield in to variations in
area yield that represent systemic risk and
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variations in the error term that represent
individual-specific or nonsystemic risk. The
key parameter of the model is the so-called
beta coefficient, which is the slope coefficient
in the relation. It has been shown that the beta
determines the extent of risk reduction as well
as the form of the optimal insurance. As the
model combines linearity and additivity (of
the error term to area yield), it can be called
the linear additive model (LAM). The litera-
ture assumes the LAM and does not derive it.
In principle, the LAM can be useful in any kind
of risk analysis where it is important to distin-
guish between systemic and nonsystemic risk,
and thus, it is important to better understand
its underlying conceptual fundamentals.

This article investigates the theoretical foun-
dations of the LAM. On surface, the LAM
bears a striking similarity to the capital asset
pricing model (CAPM) of finance. The CAPM
postulates returns on individual assets to be a
linear stochastic function of the returns on the
market portfolio. The CAPM beta—the slope
coefficient in the model—measures the sen-
sitivity of asset returns to the returns on the
market portfolio. Variations in asset returns
are the sum of variations in systemic risk (as
measured by the variation in the returns to the
market portfolio), and variations in individual-
specific risk (as denoted by the random term
in the CAPM).

The theoretical basis of the CAPM is well
known. It lies in mean variance utility func-
tions, optimizing investor behavior, two-fund
separation results, and the efficiency of a mar-
ket portfolio (Merton). However, there is no
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meaningful way of transferring these argu-
ments to the context of area-yield crop insur-
ance. Clearly, the LAM of area-yield crop in-
surance is the consequence of aggregation of
individual producer technologies and is not the
outcome of optimization. CAPM type argu-
ments are, therefore, inapplicable.

This article derives the precise conditions
under which the LAM is valid. The conditions
are two fold, applying to individual technolo-
gies and on the extent of aggregation. We show
that if systemic and individual risks are addi-
tive in individual yields, and if the aggregation
is such that the law of large numbers holds, then
the LAM obtains. These are sufficient condi-
tions. The additivity property of systemic and
individual risks is a necessary condition. Inter-
estingly, the LAM is otherwise independent of
assumptions about the functional form of the
production function. Moreover, the LAM does
not require assumptions about the functional
form of the density function of the random
variables.

These results are important for two reasons.
First, they extend the applicability of LAM to
new questions. For instance, what are the un-
derlying factors determining the magnitude of
the individual betas and the additive distur-
bance term of the LAM? These factors can
include producer actions as well as features
of insurance design. In this article, we use
this understanding to analyze how the level
of aggregation matters to risk reduction and
insurance demand. There are other potential
uses as well. The LAM can be used to ana-
lyze the “nexus between the producer’s insur-
ance choice and his farm-level production deci-
sions,” which otherwise would not be possible
(Chambers and Quiggin). Second, our results
shed light on the circumstances in which the
LAM is not valid. To develop these extensions
we begin with a discussion of the basic model.

The Basic Model

The LAM is of the following form:

yi = �i + �i (y − �) + εi(1)

where yi is producer i’s yield, �i is the un-
conditional mean of yi, that is, E(yi), y is area
yield, �i is the slope parameter satisfying �i =
Cov(yi, y)/Var(y), � is the unconditional mean
of y and εi is a mean zero random variable
uncorrelated with area yield. Equation (1) de-
composes individual yield variation into a sys-

temic component �i(y − �) perfectly corre-
lated with area yield (since Cov(�i(y − �), y)2/
�2

iVar(y)2 = 1) and a nonsystemic or indi-
vidual-specific component εi uncorrelated with
area yield.

Suppose the indemnity schedule is I(y) =
max (yc − y, 0) where yc is a yield trigger fixed
exogenously. Then Miranda showed that the
extent of variance reduction is proportional to
�i (and other exogenous parameters that do
not vary across producers). It follows that the
more highly correlated a producer’s yield is to
the area yield, the greater is the risk reduction.

Mahul considered the choice of an optimal
contract I(y). If insurance is actuarially fair
then the optimal contract is characterized by
I(y) = �i(ym − y), where ym, the yield trigger,
is the maximum possible value of y.1 Hence
the slope of the optimal indemnity schedule
is –�i. An aspect of this result, not noted by
Mahul but relevant for us, is that the optimal
indemnity schedule is independent of the non-
systemic risk and its moments (such as Var(εi)).

Another implication is that optimal area-
yield insurance completely eliminates the sys-
temic risk. To see this, note that a producer’s
revenue with insurance (denoted �) is

� = yi + I (y) − P(2)

where P is the premium. When a producer
chooses the optimal area-yield insurance, (2)
becomes

� = �i + �i (y − �) + εi

+ �i (ym − y) − P

(3)

where we have used (1). But when insurance
is actuarially fair, P = �i(ym − �). Substituting
in (3), we see that the producer bears only the
nonsystemic risk, that is,

� = �i + εi .(4)

Thus optimal area-yield insurance fully insures
against the systemic risk under actuarially fair
premiums. Since the optimal insurance is in-
dependent of the riskiness of the nonsystemic
risk εi, we have the result that the optimal area-
yield insurance delivers full insurance against
the insured (systemic) risk, whatever be the
riskiness of the uninsured (nonsystemic) risk.

1 For the LAM in (1), Vercammen considers the optimal design
of an area-yield crop insurance contract when the yield trigger is
constrained, for institutional reasons, to be below the maximum
possible value of area yield.
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Conventional individual-yield crop insur-
ance offers insurance against both systemic
and nonsystemic risks; however, because of
moral hazard, such insurance comes with a de-
ductible. By contrast, optimal area-yield crop
insurance does not contain a deductible but
insures only against systemic risk. If the de-
ductible in the individual-yield insurance is
large enough, area-yield insurance would re-
duce risk more effectively than individual-
yield insurance. Miranda demonstrates this
possibility empirically.

The LAM is tractable and delivers clear pre-
dictions about the design of optimal insurance
and its effectiveness in reducing producer risk.
However, several fundamental questions re-
main. Although the properties of optimal in-
surance depend on the LAM betas, the LAM
itself says nothing about how the betas are de-
termined. In terms of their individual char-
acteristics, why might some producers have
higher betas than others? An even more basic
question is: Why should individual yields be
related to area yields linearly as in the LAM?

Chambers and Quiggin have criticized the
LAM because it models yield as a stochastic
variable not subject to control by the producer.
As they correctly point out, this makes the
LAM inappropriate for investigating producer
response to area-yield insurance. However, we
will show that if the LAM is derived from the
aggregation of individual technologies, then
its parameters can be seen to be functions of
individual choice variables. The criticism of
Chambers and Quiggin will then no longer
apply.

A Structural Model of Systemic
and Nonsystemic Risks

In this section, we derive the LAM from a
description of individual production technolo-
gies. As these are the primitives, the specifica-
tion of production environments constitutes a
structural model.

Consider a region R where there are n pro-
ducers. Producer i’s yield yi, is given by

yi = �i �i(5)

where �i is producer i’s mean yield and �i is a
unit mean random variable capturing the risks
of farming. Equation (5) is a standard speci-
fication of stochastic technologies where risks
are multiplicative to mean yields. The mean
yield �i is a function of inputs controlled by

the producer. However, we purposely leave
the functional form of this relationship unspec-
ified. � i is a linear combination of two indepen-
dent shocks and is given by

�i = �ei + ��(6)

where ei is a shock specific to i and � is a
shock common to all producers in region R.
We, therefore, refer to ei as the nonsystemic
or individual risk and � as the systemic or
aggregate risk. The individual and aggregate
risks satisfy the following properties: E(�) = 1,
E(ei) = 1, Cov(ei �) = 0 for all i, and Cov(eiej) =
0 for all i �= j. To ensure the composite risk
� i has unit mean, we impose the restriction
(� + �) = 1. Individual yields are, therefore,

yi = �i (�� + �ei ).(7)

We also assume that individual risks are in-
dependent of mean yields, that is, E(ei|�i) =
E(ei).

This completes the description of the struc-
tural model. In this model, the composite risk
is multiplicative to mean yields and its com-
ponents are additive. We, therefore, call it a
model with multiplicative risks and additive
components (MRAC). Our goal is to discover
whether the MRAC model can be represented
as a LAM. If so, how do the parameters of the
LAM (�i and Var(εi)) depend on the micropa-
rameters of the structural model? The answers
are not obvious.

The area yield for the region R is

y =
∑

i

wi yi

=
[

��

(∑
i

wi �i

)
+ �

∑
i

(wi �i ei )

]

where wi denotes the area share of the ith
producer. Let � denote the mean area yield
(i.e., average of the mean yields of producers).
Then, � = ∑

i wi �i and

y = ��� + �
∑

i

(�iwi ei ).(8)

Now decompose
∑

i (�iwi ei ) as∑
i

(�iwi ei ) =
∑

i

wi (�i − �)(ei − ē)

+ �ē

(9)

where ē = ∑
i wi ei is the area average of in-

dividual risks. Note that the first term on the
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right-hand side of (9) is the (weighted) sample
covariance between mean yields and individ-
ual risk. If the region contains a large number
of producers, and if the law of large numbers
applies, the sample covariance will approach
(in probability) the population covariance (as-
sumed to be zero). Similarly, ē in large samples
will be close to E(ei).

When wi = (1/n), it is straightforward to use
the law of large numbers to obtain large sam-
ple results. In the case of weighted averages,
however, a restriction on the weights is neces-
sary. Essentially, we need to assume that the
average yield is not dominated by the yield of
any single producer. This requirement is auto-
matically satisfied by the unweighted sum but
needs to be explicitly assumed in the case of
weighted sums.2 Assuming this condition to be
satisfied, we use large sample approximations
to obtain∑

i

(�iwi ei ) = Cov(�i , ei ) + �E(ei )

= �.

(10)

Substituting in (8), area yield is

y = [�� + �]�.(11)

Thus, area yield is random, only because of ag-
gregate systemic shocks as individual risks can-
cel out in the aggregate. Since area yield is a
monotonic function of �, the inverse function
exists and is given by

� = [y − ��]/��.

Substituting for � in (7), we obtain producer
yield as a function of area yield, that is,

yi = (�i/�)(y − ��) + �i �ei or

yi = �i + (�i/�)(y − �) + �i �(ei − 1)

(12)

which is identical to the LAM in (1) if we de-
note (�i/�) = �i and �i�(ei − 1) = εi. Hence
we have the following result.

PROPOSITION 1. In the MRAC model de-
scribed by equations (5)–(7), the relationship
between individual yield and area yield follows
a LAM. The LAM parameters are related to the
structural parameters in the following manner:
(a) �i = (�i/�) and (b) εi = �i�(ei − 1).

2 Consider
∑

i ai xi where xi is i.i.d. with mean � and
∑

i ai = 1.
Then E(

∑
i ai xi ) = �. By Chebychev’s inequality, given any 	 > 0,

Prob[| ∑i ai xi − �| > 	] ≤ (Var(xi )/	2)
∑

i a2
i , the limit of which

tends to zero as long as for every n, there exists a bound c such that
ai ≤ c and c(n) → 0 for large n.

From part (a), we see that for any individ-
ual producer the � parameter is the ratio of
a producer’s mean yield to the mean of area
yield. It follows immediately that

∑
i wi �i = 1.

Miranda noted this result earlier. From
part (b), we see that the error term in the
linear projection of individual yield on area
yield is heteroscedastic. In particular, Var(εi) =
�2

i �2
2
e , which varies across producers even if

the nonsystemic risk in the structural model is
homoscedastic.

In an empirical analysis of 102 cotton farms
in Kentucky, Miranda observed that the dis-
tribution of the empirical betas possesses a
regular, bell shape centered on one. We now
know the conditions under which this result
obtains. Proposition 1 says that this property
is inherited from the distribution of average
yields. Since the distribution of average yields
depends on the dispersion of soil and climatic
conditions in the region, Proposition 1 pro-
vides the formal basis for Miranda’s conjec-
ture that “. . . the more homogenous are the
soil and climatic conditions faced by produc-
ers in a given area, the more closely the �is
will cluster around one.” (p. 236). To this, we
can also add that the dispersion of betas will
depend on the heterogeneity in the other fac-
tors that determine yield, such as management
practices, farming skills and capital assets. In
the extreme when all farmers have the same
mean yield, they will also have betas identically
equal to 1. As mean yield depends on input ap-
plication and technology, production decisions
affect the beta parameter and the disturbance
term of the LAM. Proposition 1 thus provides
the basis for using the LAM to investigate pro-
ducer behavior in the presence of area-yield
insurance.3

Recall that the structural model leaves un-
specified (a) the functional form of the rela-
tionship between input application and mean
yield and (b) the probability density of the
systemic and nonsystemic risks. Interestingly,
the LAM is surprisingly general, as its param-
eters are, therefore, independent of assump-
tions about them.

Systemic Risks, Nonsystemic
Risks, and Aggregation

A design problem is the selection of the area
that should be used as the basis for computing

3 This issue was brought to the fore by Chambers and Quiggin
who examined it within a state-contingent model.
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area yields. To maximize correlation of pro-
ducer yield with area yield, it has been sug-
gested that “the area or zone boundaries for
an area yield contract should be selected so as
to group together the largest possible number
of farms with similar soils and climate” (Skees,
Black, and Barnett). Can this recommendation
be evaluated using the LAM, or do we need to
turn to an underlying structural model?

Suppose producer yields can be averaged at
two levels of aggregation.4 For convenience,
call the smaller aggregation a cluster and the
larger aggregation a county. Under the LAM,
producer yields are related to cluster yields in
the following manner:

yick = �ick + �1
ick(yck − �ck) + ε1

ick(13)

where yick and �ick are the individual yield and
its expected value of producer i in cluster c of
county k, yck and �ck are the area yield and its
expected value of cluster c in county k, �1

ick is
the slope coefficient and ε1

ick is a shock specific
to producer i in cluster c of county k. Simi-
larly, by applying the LAM to aggregation at
the county level we obtain

yick = �ick + �2
ick(yk − �k) + ε2

ick(14)

where yk and �k are the area yield and its ex-
pected value of county k, �2

ick is the slope coef-
ficient and ε2

ick is a shock specific to producer i
in cluster c of county k. Note that the slope co-
efficient, as well as the individual-specific risk
are shown to vary with the level of aggregation.

From (4), we know that when area-yield in-
surance is optimal, the producer bears only the
nonsystemic risk. Thus, in the case of cluster-
yield insurance, the variability of producer’s
profit is Var(ε1

ick) while it is Var(ε2
ick) in the case

of county-yield insurance. When is variability
lower? The LAM cannot answer this question
because it does not show how the nonsystemic
risk is determined. For this, we have to turn to
the underlying structural model.

Consider a variant of the MRAC model of
the previous section. Yield of producer i in
cluster c of county k is given by

yick = �ick�ick where

�ick = �1eick + �2�1ck + �3�2k

(15)

where eick is a shock specific to i, �1ck is a shock
specific to all producers in cluster c of county k,

4 Extension to many levels is straightforward.

and �2k is a shock common to all producers in
county k. In other words, eick is the individual
risk, �1ck is the cluster-specific risk and �2k is the
county-specific risk. The risks have unit means
and constant variances, and are stochastically
independent. Also assume

∑
�i = 1. This en-

sures the mean of yick is �ick. The individual
risk eick is distributed independently of the in-
dividual mean yield �ick.

The average yield of cluster c in county k can
be calculated as∑

i∈c

wick yick

= �1

∑
i∈c

wick�ickeick

+ (�2�1ck + �3�2k)
∑
i∈c

wick�ick

where wick is the share of the ith producer in
the area of cluster c. Denote cluster c’s yield
as yck and its mean as �ck. By arguments sim-
ilar to that in the preceding section, substitute∑

i wick�ickeick by its large sample approxima-
tion �ck. Hence

yck = [�1 + �2�1ck + �3�2k]�ck .(15)

Thus, cluster yields are random because of
cluster-specific risk and county-specific risk.
Area-yield insurance schemes at the cluster
level would, therefore, offer protection against
both these risks. Write �k = (�2�1ck + �3�2k).
�k denotes the systemic risk at the cluster level.
Hence, for the cluster-yield insurance scheme,
we can write the equations of the structural
model as

yick = �ick�ick = �ick(�1eick + �k) and(16)

yck = (�1 + �k)�ck .(17)

By Proposition 1, the relationship between in-
dividual and cluster yields follows a LAM as
in (13). Furthermore, the beta of an individual
producer can be computed as �1

ick = �ick/�ck.
By the same proposition, the disturbance term
in the LAM model is ε1

ick = �1�ick(eick − 1).
Hence, for a producer with cluster-yield in-
surance, the variance of profits is Var(ε1

ick) =
(�1�ick)2Var(eick). The reduction in variance
due to cluster-yield insurance is, therefore,
�2

ickVar(� ick) − Var(ε1
ick) = Var(�k).

Consider next area-yield insurance schemes
where the indemnity is contingent on county
yield rather than cluster yield. The average
yield of county k can be calculated by using
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(15) to average across clusters within the
county. Hence∑

c

wck yck = �1

∑
c

wck�ck

+ �2

∑
c

wck�1ck�ck

+ �3�2k

∑
c

wck�ck

where wck is the share of cluster c in area of
county k. Denote yk to be county yield and
�k to be its mean. Because �1ck is a cluster-
specific risk, averaging across clusters should
lead this risk to be approximately equal to
its expected value. Using this approximation
and arguments similar to that in equations (8)–
(10),

∑
c wck�1ck�ck = �k . Substituting this,

yk = (�1 + �2 + �3�2k)�k .

Denoting �1 + �2 as �, and �1ei + �2�1ck as
vick, the structural equations for the county-
yield insurance scheme are

yick = �ick(vick + �3�2k) and(18)

yk = (� + �3�2k)�k .(19)

Now, compare (16) and (18). At the county
level, the systemic risk is �2k while it is �k at
the cluster level. The nonsystemic individual-
specific risk changes too. At the county level,
what is measured as the nonsystemic risk is
�1eick + �2�1ck, while it is �1eick at the clus-
ter level. Interestingly, higher aggregation re-
duces systemic risk and increases nonsystemic
individual-specific risk. In the extreme, aver-
ages at the level of nation or group of nations
may be so stable that the systemic risk com-
ponent of a producer’s yield might be close to
zero. In such a case, all producer risk would be
nonsystemic individual-specific risk.

Applying Proposition 1, the relation be-
tween individual and county yields can be
represented as a LAM as in (14). Further-
more, �2

ick = �ick/�k and the disturbance
term is ε2

ick = �ick(vick − �). It follows that
for a producer with optimal county-yield
insurance, the variability in profits would be
Var(ε2

ick) = �2
ickVar(vick) = (�1�ick)2Var(eick) +

(�2�ick)2Var(�1ck). Consequently, the re-
duction in variance due to county-yield
insurance schemes is Var(� i) − Var(ε2

ick) =
�2

i �2
3Var(�2k).

Compared with the reduction achieved by
cluster-yield insurance, we see that the cluster-

yield insurance achieves an additional variance
reduction of Var(�ick�2�1ck). This happens be-
cause, while �1ck is a systemic risk at the clus-
ter level, it becomes a nonsystemic risk at the
county level and is, therefore, not insured by
the county-yield insurance scheme.5 It is now
clear that the division of producer risk into sys-
temic and nonsystemic risks is dependent on
the level of aggregation. The higher the level
of aggregation, the greater are individual risks,
and the smaller are systemic risks. Correspond-
ingly, the risk reduction impacts of area-yield
insurance would also be smaller.

Skees, Black, and Barnett are right in em-
phasizing that farms with similar soils and cli-
mate should be grouped together. In terms of
the structural model, such a grouping would
face risks that do not cancel out in the ag-
gregate, and hence qualify as systemic risks.
However, what our analysis has pointed out
is that more risks are likely to survive aggre-
gation (and hence be regarded as systemic)
when the farmer groups are small. Hence, for
area-yield insurance to have the maximum im-
pact on risk reduction, the area boundaries
for an area-yield contract should be selected
so as to group together the smallest (and not
the largest) number of farms with similar soils
and climate. However, we now face the prob-
lem that large sample approximations will fail
in small aggregations. The implications of this
failure are investigated in a later section where
we show that, fortunately, a modified linear
model emerges. More importantly, none of the
results on optimal insurance are affected.

A General Structural Model

The earlier sections presented a structural
model that led to the LAM used in evalua-
tions of area-yield insurance. But there might
be other structural models as well, which im-
ply a LAM. What are they? Conversely, what
are instances of structural models that do not
imply a LAM?

Some examples of popular specifications
other than the MRAC model are the
following:

(a) Model of additive risks with additive
components (ARAC): yi = �i + ei + �.

(b) The Just-Pope model with additive com-
ponents (JPAC): yi = �i + 
i (� + ei).

5 It is easy to show that cluster yields are more correlated with
producer yields than county yields.
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(c) Model of multiplicative risks with mul-
tiplicative components (MRMC): yi =
�iei�.

Do any or all of these models imply the
LAM? To answer this, we characterize the en-
tire class of structural models that imply the
LAM. Suppose a general structural model of
the form

yi = f (zi , ei , �)

where, as before, ei and � are the random real-
izations of individual risk and aggregate shock
and f is a function that maps the individual
risk, the aggregate shock and a vector of pa-
rameters z into realized yields. In the MRAC
model, zi consisted of a single parameter �i,
the ith producer’s mean yield. Suppressing zi,
we can write the model as

yi = fi (ei , �)(20)

where the function f i is now specific to pro-
ducer i.

If the relationship between individual yield
and area yield is linear as in a LAM, then what
restrictions must the function f i satisfy?

PROPOSITION 2. If the relationship between
individual and area yields is described by a
LAM as in (1), the structural model (20) nec-
essarily satisfies the following. (a) For all i,
yi = f i(ei, �) = hi(ei) + gi(�), where hi and gi are
functions that map nonsystemic shocks and
systemic shocks, respectively, into individual
yields. (b) For all i, there exists a function k(�)
and a parameter �i such that gi(�) = �ik(�) +
ci, where ci is a constant of integration.

Proof : The structural model (20) satisfies

(∂yi/∂ei ) = (∂yi/∂εi )(∂εi/∂ei ).

But from (1), ∂yi/∂εi = 1. Hence

(∂yi/∂ei ) = (∂εi/∂ei ).

Recall that the LAM splits the variation in in-
dividual yields into variation in area yield y and
an individual-specific risk εi. By assumption, y
and εi are orthogonal. It follows that area yield
y is a function of � alone, while εi is a function
of ei alone. Hence(

∂2 yi
/
∂ei∂�

) = (
∂2εi

/
∂ei∂�

) = 0

that is, the cross-partial derivatives of (20) are
zero. Since this can be true only if (20) is ad-

ditive in the two risks, we have the result in
part (a).

We now turn to the proof of part (b) of
Proposition 2. Define the parameter 	i =
∂yi/∂�. 	i measures the sensitivity of pro-
ducer i’s yield to aggregate shocks. Also de-
fine 	 as the sensitivity of area yield to aggre-
gate shocks, that is, 	 = ∂y/∂�. Since ∂y/∂� =∑

wi (∂yi/∂�), we have 	 = ∑n
i=1 wi 	i . Now

	i = ∂yi/∂�

= (∂yi/∂y)(∂y/∂�) = 	(∂yi/∂y).

(21)

Hence, for all i

∂yi/∂y = 	i

	
.(22)

Fix a producer j and define, for all i, �i =
(∂yi/∂y)/(∂yj/∂y). Clearly �j is 1. Using (22)
we obtain 	i = �i	j. Using part (a) of Proposi-
tion 4, this can be written as

∂gi/∂� = �i (∂g j/∂�).(23)

�i does not vary with the aggregate shock �.
This can be seen from the LAM in equation (1),
where for all i, ∂yi/∂y is a parameter that is in-
dependent of the realization of �. Integrating
both sides of (22) with respect to �, we there-
fore find that, for all i, the structural model
satisfies gi(�) = �igj(�) + ci where ci is a con-
stant of integration that varies with i. Since j is
arbitrarily chosen, we define k(�) to be gj(�).
This proves part (b). �

Proposition 2 specifies the class of structural
models implied by the LAM. Notice that the
LAM does not restrict the way in which risks
affect production. However, the LAM does re-
quire that either the components of risk or
their effects on production be additive. As a
result, the model of MRMC does not satisfy
the necessary conditions identified in Proposi-
tion 2. We have the important result that the
LAM is inappropriate in this case. However,
the ARAC and JPAC structural models meet
the conditions of Proposition 1 and are, there-
fore, not inconsistent with a LAM. The next re-
sult considers the converse relationship: does
every member of the class identified in Propo-
sition 2 imply the LAM? The answer is yes,
provided the aggregation is large enough.

PROPOSITION 3. The structural model in (20)
implies a LAM if (a) the area-weighted average
of individual risks can be replaced by its large
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sample equivalent of population average and if
(b) the structural model satisfies

yi = fi (�, ei ) = ai + bi k(�) + hi (ei )(24)

where k(�) and hi(ei) are monotone functions,
ai and bi are parameters that possibly vary
with i.

Proof : From (24), mean producer yield is

�i = ai + bi E[k(�)] + E[hi (ei )].(25)

Adding and subtracting �i to the right-hand
side of (24), and using (25), we get

yi = �i + bi [k(�) − Ek(�)]

+ [hi (ei ) − E[hi (ei )]].

(26)

Now using (24), area yield is

y = a + bk(�) +
∑

wi hi (ei )(27)

where a = ∑
wi ai and b = ∑

wi bi . Using
the weak law of large numbers,

∑
i wi hi (ei )

can be approximated in large samples by∑
i wi E[hi (ei )].6 Hence

y(�) = a + bk(�) +
∑

wi E[hi (ei )].(28)

Mean area yield is, therefore,

� = a + bEk(�) +
∑

wi E[hi (ei )].(29)

From (28) and (29), y − � = b[k(�) − Ek(�)].
Substituting in (26) and defining, (bi/b) =
�i and (hi(ei) − Ehi(ei)) = εi, we get

yi = �i + �i (y − �) + εi

where εi is a mean zero random variable un-
correlated with area yield. �

The above proof also derives the relation-
ship of the structural parameters to the pa-
rameters of the LAM model. As it is useful
to identify this result separately, we have the
next proposition.

PROPOSITION 4. In the general structural
model that is equivalent to the LAM, the pa-
rameters satisfy (a) bi/b = �i and (b) hi(ei) −
Ehi(ei) = εi.

6 In the MRAC model, hi(ei) = �iei. Hence in large samples,∑
wi hi converges in probability to

∑
wi E(hi ) = ∑

wi �i E(ei ) =∑
wi �i = �, given the assumption E(ei) = 1 for all i.

Two implications of Proposition 4 are wor-
thy of special mention. First, bi measures the
sensitivity of producer i’s yield to aggregate
shocks while b is the sensitivity of area yield
to aggregate shocks. Part (a) of Proposition 4,
therefore, states that �i, the sensitivity of pro-
ducer i’s yield to area yield, is that producer’s
sensitivity to aggregate shocks relative to the
sensitivity of area yield to aggregate shocks.
Second, recall that when area-yield insurance
is optimal, the producer bears only the risk
εi. From part (b) of Proposition 4, it can be
seen, therefore, that, with optimal area-yield
insurance, the variability of producer profits is
Var(hi(ei)).

Given Proposition 4, it is easy to compute
the betas for special cases of the general struc-
tural model. We consider a few specifications
that were mentioned at the beginning of this
section.

(i) MRAC: yi = �i(�� + �ei).

This is the multiplicative specification consid-
ered earlier. It is additive in the interaction of
systemic and nonsystemic shocks. Fix any j and
define k(�) = �j��. Define bi = (�i/�j) and
hi(ei) = �i�ei. Then individual yields can be
written as yi = bik(�) + hi(ei), which is a spe-
cial case of the structural model (24). Here, b
= �/�j. Applying Proposition 3, we compute
�i as �i/�.

(ii) ARAC: yi = �i + ei + �.

In this specification, risks are additive to
mean yield. It clearly satisfies (24). Here k(�) =
�, bi = 1 and so b = 1. Hence �i = 1 for all i.
Note this result obtains even though producers
are heterogeneous in mean yields. We can now
see that what is important for heterogeneity in
betas is heterogeneity in the way the aggregate
shock affects mean yields.

(iii) JPAC: yi = �i + 
i (� + ei).

This is the specification of a stochastic produc-
tion function due to Just and Pope. This is also
a special case of (24) where k(�) = �, bi =

i, and, therefore, b = 
 where 
 = ∑

i wi 
i .
Therefore �i = 
i/
.

Small Aggregations

The results following Proposition 1 point to the
fact that a LAM is a consequence of additive
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interaction of systemic and nonsystemic risks.
However, while such structure of risks is nec-
essary, it is not sufficient to ensure a LAM with
conventional properties. Some structure is also
required on the extent of aggregation. For this
reason, Proposition 4 assumed it was valid
to use large sample approximations. What if
this assumption was seriously violated? What
would be the relation between individual yield
and area yield in small aggregations?

Suppose the structural model satisfies (24).
The question is interesting only for this case
because we already know that a LAM does
not obtain otherwise. Given (24), equations
(25)–(27) are immediate consequences and
their derivation does not involve large sample
approximations.

Using (27), mean area yield is

� = a + bEk(�) +
∑

wi E[hi (ei )].(30)

From (27) and (30), we can solve for [k(�) −
Ek(�)] as

k(�) − Ek(�) = (y − �)/b − A/b

where A = ∑
wi hi (ei ) − ∑

wi E[hi (ei )]. If the
aggregation is large, the difference A could
be approximated as zero by Chebychev’s law
of large numbers. But otherwise, it is a non-
zero random variable. Substituting for [k(�) −
Ek(�)] in (27),

yi = �i − �i A + �i (y − �) + εi

where we have used the definitions (bi/b) = �i
and (hi(ei) − Ehi(ei)) = εi. Separating out the
quantity A into its stochastic and nonstochastic
components and rearranging terms, we obtain

yi =
(

�i + �i

∑
wi E(hi (ei ))

+ �i (y − �) +
(

εi −
∑

wi hi (ei )
))

.

Letting �i = (�i + �i
∑

wi E(hi (ei )) and vi =
(εi − ∑

wi hi (ei ))), we get

yi = �i + �i (y − �) + vi .(31)

Surprisingly, a linear relation between pro-
ducer yield and area yield obtains once again.
However, in other respects, the properties of
(31) are different from (1). First, the intercept
term is no longer the mean producer yield.
Second, the error term is no longer uncorre-
lated across producers even when individual
risks are uncorrelated. This happens because

of the common random component
∑

wi hi (ei )
in each of the vi s.

∑
wi hi (ei ) is nothing but

the area average of individual risks. In small
aggregations, this is no longer equal to the
population average but is a random quantity.
As the area average y is also a function of∑

wi hi (ei ), the error term vi is correlated with
y. The important implication of this result is
that, if the betas are estimated by an ordinary
least squares regression, they are inconsistent.
In particular, since vi is negatively correlated
with y,

plim
(
�̂OLS

i

) = �i−�i Cov(y, vi )/Var(yi )

> �i .

Even though (31) does not have the proper-
ties of a conventional LAM, it is easy to show
that the results of earlier work will continue
to hold. In particular, the slope of the opti-
mal indemnity schedule will be −�i and such
insurance will eliminate the systemic risk com-
ponent of a producer’s risk.

Multiplicative Components

As noted earlier, a structural model with multi-
plicative components cannot be represented as
a LAM. But does that make a difference to the
results of Miranda and Mahul? Suppose, for a
given level of aggregation, individual yields are
described by

yi = �i �i and �i = ei �(32)

where the variables continue to have the same
meaning and properties as before. Such a spec-
ification is natural whenever the yield impacts
of one risk depend on the realization of the
other risk as well. For instance, even with a
positive systemic shock due to timely rainfall,
the impact on an individual producer’s yield
might be negligible because of a local risk, such
as pest or fungal infestation. Conversely, very
adverse aggregate shocks could nullify a good
outcome in terms of local risks. Unfortunately,
in an additive structure, the impact of rainfall
is invariant to local risks and vice versa.7

To see how the multiplicative structure
makes a difference, we compare it with the
MRAC model. The results of Miranda and
Mahul apply to the MRAC model and, there-
fore, we know that the slope of the optimal

7 For an analysis of multiplicative structures arising from the
interaction of price and quantity risks, see Ramaswami and Roe.
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indemnity schedule is −�i = (�i/�) and that it
is invariant to the nonsystemic risk and its mo-
ments. Furthermore, with the optimal amount
of insurance, all systemic risk is eliminated. To
see whether these results extend to the MRMC
model, it is necessary to directly analyze the
structural form (32) as the LAM is unavailable.

The area yield associated with (32) is y =
�

∑
i �i ei . By using large sample approxima-

tions, we can express area yield as

y = ��.(33)

Substituting in (32),

yi = (�i/�)yei = �i yei(34)

where we have denoted (�i/�) by �i. Notice
that, when the nonsystemic risk is absent and
is equal to its expected value 1, (34) is identical
to a LAM (without nonsystemic risk and with
zero intercept). From the results that apply to
a LAM, we therefore have that, the insurance
schedule satisfies I′(y) = −�i whenever there
is no nonsystemic risk. Now suppose ei is a ran-
dom variable that takes values other than one
with nonzero probability. We can write pro-
ducer i’s revenue with insurance as

�i = yi + I (y) − P = �i yei + I (y) − P.

An actuarially fair optimal insurance contract
maximizes expected utility of producer i sub-
ject to the break-even constraint of the insur-
ers. Hence it solves

Max
I (y)

∫
ei

∫
y

U(�i ) dG(y) dF(ei )

subject to P =
∫

y
I (y) dG(y)

(35)

where U is an increasing, concave and thrice
differentiable utility function, F is the cumula-
tive density of the nonsystemic shock, and G is
the cumulative density of area yield derived
from the probability distribution of the sys-
temic shock � (from (33)). Note that since area
yield is a function of � alone, it is distributed
independently of the nonsystemic risk.

Let � be the Lagrange multiplier associated
with the break-even constraint. Then the opti-
mal function I(y) satisfies for every y

∫
ei

U ′(�i ) f (y) dG(ei ) = � f (y)(36)

where f (y) = dF(y)/dy. Clearly (36) can also
be written as

E[U ′(�i )|y] = �

that is, the optimal insurance equalizes the ex-
pected marginal utility in every state of area
yield, y. Differentiating the first order condi-
tion with respect to y,

E[U ′(�i )(�ei + I ′(y))] = 0

from which we can solve for the slope of the
indemnity schedule as

I ′(y) = −�i

[
1 + Cov(U ′′(�), ei )

EU ′′(�)

]
.(37)

EU′′ < 0 and so the sign of Cov(U ′′(�),ei )
EU ′′(�) is oppo-

site to the sign of the covariance term. Since
∂(U ′′(�i)/∂ei) = U ′′′(�i)�iy, the covariance
term is positive, equal to zero or negative as
U ′′′ is positive, zero or negative. A risk-averse
agent with a positive third derivative of util-
ity function has been referred to as prudent
(Kimball). It is easy to show that an agent with
nonincreasing risk aversion must be prudent.
U ′′′ is zero for an agent with a quadratic util-
ity function. Since constant or decreasing risk
aversion is a reasonable restriction on risk-
averse behavior, we concentrate below on the
case when U ′′′ > 0.

PROPOSITION 5. If systemic and nonsystemic
risks interact multiplicatively, the optimal insur-
ance for a prudent producer satisfies −I′(y) <
�i.

The proof is immediate from (37). Recall,
that when nonsystemic risk is absent, −I′(y) =
�i. This can also be seen directly from (37).
Thus, we obtain the important result that in the
presence of an uninsured nonsystemic risk, it is
optimal for a producer to choose a lower level
of coverage as compared to the case where
nonsystemic risk is absent. This is unlike the
additive case where the demand for insurance
against the systemic risk is unaffected by non-
systemic risk.

To analyze local changes in risk, consider a
one-term expansion of U ′′ as

U ′′(�) = U ′′(E(�))

+ (� − E(�))U ′′′(E(�)) or

U ′′(�) = U ′′(E(�))

+ �i y(ei − 1)U ′′′(E(�)).
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Substituting in (37),

I ′(y) = −�i

[
1 + �i yVar(ei )

U ′′′(E(�))
U ′′(E(�))

]
.(38)

The greater is the riskiness of the nonsystemic
risk, the smaller is the optimal coverage for a
prudent producer. The demand for area-yield
insurance depends, therefore, on the uninsured
nonsystemic risks faced by an individual pro-
ducer. As seen earlier, the classification of risks
as either systemic or nonsystemic changes with
the area size used for computing area yields.
In a multiplicative model, therefore, the de-
mand for area-yield insurance will depend on
the level of aggregation at which area yields
are determined. Since higher aggregations in-
crease nonsystemic risk, they thus reduce the
demand for area-yield insurance.

To see this, denote I1 and I2 as the optimal in-
surance contracts at the cluster and county lev-
els of aggregation. Suppose also that the mean
yields of all producers are equal. Then �i = 1,
irrespective of the level of aggregation. In an
additive model, the optimal coverage would
satisfy −I′

1(yck) = −I′
2(yk) = 1, where yck and

yk are cluster and county yields.
In a multiplicative model, individual yields,

cluster yields, and county yields are given by
yick = �ickeick�1ck�2k, yck = �ck�1ck�2k, and yk =
�k �2k. Hence the nonsystemic risk for cluster
insurance is eick�1ck, but is only eick for a county-
yield insurance. The variance of nonsystemic
risk is, therefore, greater with county-yield in-
surance. From Proposition 5 and (38), it fol-
lows that the optimal coverage for a prudent
producer satisfies 1 > −I′

1(yck) > I′
2(yk).

Conclusions

The LAM decomposes individual producer
yield into a systemic component due to area
yield variation and to an independent addi-
tive producer-specific component. While pre-
vious work has established its convenience for
analyzing area-yield insurance, its theoretical
justification has been neglected. In spite of
its likeness to the CAPM model of finance,
the LAM cannot be validated in a similar
manner.

This article has derived the LAM from ag-
gregation of microproduction functions. The
basis for LAM rests on two conditions. First,
the aggregation must be large enough that all
individual risk is eliminated in the area ag-
gregate. Second, in the individual production

functions, the systemic and nonsystemic indi-
vidual risk components must be additive.

Knowledge of the underlying “structural”
model enables analysis of the factors that de-
termine the parameters of the LAM model.
This was used to examine the relation between
producer risk and the level of aggregation.
Other uses are possible, such as the analysis
of the relation between area-yield insurance
and production decisions.

To design insurance schemes, an analysis
based on the law of large numbers can be mis-
leading. We find that dropping the large num-
bers restriction alone does not alter the lin-
ear relationship between individual and area
yield. Neither does it affect the central results
that have been obtained using the LAM. The
major outcome is that the decomposition now
consists of two correlated risk components. As
a result, it is not valid to estimate the beta pa-
rameter by ordinary least squares.

The consequences are more serious if the as-
sumption of additive components is dropped.
Then a LAM representation does not exist.
Further, previous results obtained in the liter-
ature are not likely to be valid. This was shown
for the important case of multiplicative com-
ponents. In such a setup, area-yield insurance
does not eliminate all systemic risk. Moreover,
the demand for insurance is not independent of
the nonsystemic risk. The greater the nonsys-
temic risk, the lower the demand for insurance.
As a result, the demand for area-yield insur-
ance varies with the level of aggregation unlike
the case in the additive components model.

[Received March 2002;
accepted May 2003.]
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