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This paper examines the consequences of agricultural insurance for expected supply. 
The effect of insurance is shown to decompose into a "risk reduction" effect as well as 
a "moral hazard" effect. The direction and magnitude of these effects depend on the 

parameters of the insurance contract, producer's risk preferences, and the underlying 
technology. Two models are considered for this purpose. In the first model, widely 
employed in the literature, a producer controls only one input. The second model uses a 
dual approach to extend the results to the case where a producer controls multiple 
inputs. 
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A long standing issue in the analysis of agri- 
cultural insurance is supply response. Because 
an insurance program alters the probability dis- 
tribution of farm income, the question is whether 
and in what manner producers adjust supply in 
response to this change. The answer is of inter- 
est to policy makers in developed and develop- 
ing countries, although for different reasons. In 
reviewing the history of crop insurance in the 
U.S., Kramer writes "Research on price and in- 
come stabilization programs has indicated that 
these programs have had supply response ef- 
fects. As the crop insurance program becomes 
a truly national program, similar effects may be- 
come evident from crop insurance, complicating 
the supply control objective of commodity pro- 
grams" (p. 200). Developing country policy 
makers, on the other hand, place high priority 
on expanding agricultural supplies. For them, a 
positive supply response is not a complication 
but a strong argument for publicly financed crop 
insurance programs which remove or minimize 
the influence of risk on farm-level decision 

making.' In the words of Hazell, Pomareda, and 
Valdes, "Empirical evaluation of the social costs 
and returns of publicly subsidized crop insur- 
ance requires measurement of the effect of risk 
reduction on supply responses. ... It is this risk 
response effect that leads to the major social gain 
from crop insurance" (p. 8). The study of sup- 
ply response is therefore important for an eval- 
uation of agricultural insurance programs and 
consequently for the design of insurance itself. 

In the short run, supplies are altered by changes 
in levels of variable inputs (input choice) and in 
the allocations of fixed inputs (e.g., land) be- 
tween competing agricultural activities (activity 
choice). Crop insurance could affect both these 
choices. It is well known that insurance affects 
the incentives for input use. However, the di- 
rection of impact has been analyzed for a lim- 
ited case only. Previous work has observed that 
risk averse input decisions coincide with risk- 
neutral decisions if insurance is complete (i.e., 
eliminates all risk), actuarially fair and contin- 
gent on input use. In this case, the effect of 
insurance is straightforward. Compared to the 
no-insurance world, the use of risk increasing 
inputs increases while that of risk decreasing in- 
puts falls, leading to an increase in expected Bharat Ramaswami is with the Indian Statistical Institute, New Delhi, 
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income (Ahsan, Ali, and Kurian; Nelson and 
Loehman). This case assumes that insurance 
payments are contingent on output realizations 
as well as input choices, which for reasons ex- 
plained below, is a limiting assumption. How- 
ever, if the assumption is maintained, its im- 
plication for activity choice is that complete 
specialization would occur in the higher value 
riskier activity (e.g., Ahsan, Ali, and Kurian). 
Such an outcome is confirmed in Hazell, Bas- 
soco, and Arcia who simulate the effect of crop 
insurance on cropping patterns in a sectoral model 
for Mexico. They find that an insurance pro- 
gram that is actuarially fair and complete leads 
to higher expected production levels and a shift 
towards riskier crops. 

The desirability of complete insurance, how- 
ever, depends (among other things) on whether 
insurance agencies are able to monitor farm level 
input use. If input use is not monitored, a pro- 
ducer who is completely insured will have little 
incentive to apply any inputs at all. Then, it is 
not at all obvious that insurance would induce 
greater specialization in the riskier crop. The 
situation where the insurer is unable to monitor 
input choices of insured farmers is one of moral 
hazard. It is recognized as a major problem in 
the practice and design of agricultural insurance 
(Chambers, Nelson and Loehman, Ray). The 
widespread use of deductibles and the lack of 
complete insurance in real world situations is, 
in part, due to moral hazard considerations. A 
realistic understanding of the effects of agricul- 
tural insurance must take moral hazard into ac- 
count. This demands that empirical work on 
supply response be based on models of input use 
under moral hazard. 

A numerical model of input and activity choice 
under moral hazard has been constructed by 
Kaylen, Loehman, and Preckel. The model is 
simulated for a hypothetical example with par- 
ticular specifications of utility functions, pro- 
duction functions as well as insurance pro- 
grams. While such models are necessary for 
delivering quantitative predictions, it is equally 
important that the qualitative predictions of these 
models be robust to small changes in numerical 
specifications. In other words, are there any the- 
oretical predictions of the effects of the crop in- 
surance? In this paper I employ two models to 
examine the supply response induced by insur- 
ance through changes in variable input use. 

The first model considers the case where a 
producer controls a single input. Such situations 
of production uncertainty have been widely con- 
sidered in the literature. The principal insight is 

that technology matters in determining the im- 
pact of uncertainty (MacMinn and Holtmann, 
Pope and Kramer, Ramaswami). In particular, 
the property of technology that is relevant is 
whether an input is risk increasing or risk de- 
creasing. The risk character of an input has been 
useful in comparative statics analyses. For in- 
stance, researchers have used the restrictions on 
technology implied by a risk increasing or risk 
decreasing input to predict the impact of public 
policies on the use of environmentally hazard- 
ous inputs like pesticides and herbicides (Antle, 
Leathers, and Quiggin; Olson and Eidman). The 
role of insurance has however, not been ex- 
amined. Because the above studies document risk 
to be an important consideration in the appli- 
cation of pesticides and herbicides, the impact 
of insurance may be significant. Consequently, 
the results of the paper have a bearing on this 
issue. 

The second model considers supply response 
when a producer can respond with changes in 
more than one input. The literature on produc- 
tion decisions under production uncertainty is 
generally confined to the one input case and has 
little to say about the effects of uncertainty on 
the choice of input mix and the resultant impli- 
cations for average supply or its variance. The 
difficulty is two-fold. First, changes in input mix 
depend on input substitutability and the distri- 
bution of risk increasing and risk decreasing in- 
puts and calls for such knowledge of the pro- 
duction function.2 Even then, comparative statics 
are harder because the use of all inputs is si- 
multaneously determined. 

Second, the implications for expected supply 
and other parameters of the output distribution 
is not straightforward or immediate as this would 
be in a single input model. For these reasons, 
the second model employs a dual approach to 
directly model a producer's choice of output 
distribution. In the usual primal problem, a pro- 
ducer chooses a vector of inputs to maximize 
expected utility of profits. However, if the first 
two moments completely characterize the prob- 
ability distribution of output (Just and Pope), then 
the producer's problem can be equivalently posed 
in terms of choosing a mean and a standard de- 
viation. I show how the equivalence can be uti- 
lized to derive comparative statics about the 
producer's choice of output distribution no mat- 
ter how many inputs form the input vector. 

2 I owe this point to an anonymous Journal referee. 
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Model: General Assumptions 

Farmers are assumed to be risk averse and max- 
imize expected utility of profits where the utility 
function U is increasing, concave and thrice dif- 
ferentiable. A stochastic technology is described 
by a twice continuously differentiable produc- 
tion function q(x, 0) where q is output, x is a 
vector of inputs and 0 is a random production 
shock such that qO > 0. 

An insurance contract consists of an indem- 
nity schedule I(q) and a premium P. Neither the 
indemnity nor the premium is contingent on a 
particular choice of input vector. Given a con- 
tract {I(q), P} a producer chooses input appli- 
cation x(I, P). When no insurance is purchased 
or is available, x(O, 0) denotes the producer's 
optimal input level. The initial situation is as- 
sumed to be one of no insurance. This is com- 
pared with a final situation where an insurance 
contract {I, P} is available. The question is, how 
does the purchase of insurance alter expected 
output? The answer involves a comparison of 
Eq(x(I, P)) and Eq(x(O, 0)). 

The comparison is carried out for the set of 
insurance contracts satisfying the following con- 
ditions:3 

(i) Feasibility: Given the optimal input re- 
sponses of farmers, insurance is actuarially fair, 
i.e., P = E[I{q[x(I, P), O]}]. Contracts satis- 
fying this condition are feasible. The premium 
on a feasible contract is equal to the expected 
level of indemnity. 

(ii) Differentiability: The indemnity schedule 
is differentiable everywhere except possibly at 
a finite number of points. This condition is usu- 
ally met by real world contracts.4 

(iii) Monotonicity: The indemnity schedule is 
monotonic decreasing in output (or monotonic 
increasing in loss), i.e., I'(q) O0. Strict mono- 
tonicity is not required. In other words, insur- 
ance payments are larger (or at least, not smaller) 
for larger losses. This assumption is also con- 
sistent with real-world insurance practice. 

Under mild regularity conditions, the set of 

contracts satisfying the above conditions is non- 
empty.5 

Insurance and Supply Response: A Single- 
Input Model 

Here a single input x enters the production func- 
tion described by q(x, 0). An input is either risk 
increasing or risk decreasing. If risk increasing, 
the marginal product qx(', 

0) is monotonic, in- 
creasing in 0 for all positive x. If risk decreas- 
ing, qx(', 

0) is monotonic, decreasing in 0 for 
all positive x. The terminology derives from the 
fact that higher levels of input use lead to higher 
or lower output risk depending on whether 

qx0 is positive or negative. As noted later, the op- 
timal application of a risk increasing (decreas- 
ing) input under risk averse preferences is al- 
ways less (more) than the risk-neutral level of 
input use. In an agricultural context, fertilizers 
are often risk increasing in their impact on out- 
put risk (e.g., Just and Pope) while pesticides 
and herbicides are risk decreasing (e.g., Antle, 
Olson and Eidman). A more general interpre- 
tation, pursued in Lewis and Nickerson, is to 
regard x as expenditures on self-insurance. Then 
such expenditures are risky if qo > 0, but are 
risk-reducing if qx0 < 0. Many examples of such 
expenditures are provided in Lewis and Nick- 
erson. 

Let ir(x, I, P) be the producer income as a 
function of input level and the insurance con- 
tract. Then IT(x, I, P) = q(x, 0) - wx + I(q) 
- P, where w is the input price and 7r, q, w, I 
and P are all normalized with respect to a cer- 
tain output price. The analysis easily extends to 
the stochastic price case by regarding q as rev- 
enue rather than output. Naturally, the interpre- 
tation of the model is affected,6 but not the re- 
sults.7 

3 Alternatively, the form of the insurance contract could have 
been endogenously derived (Mirrlees, Holmstrom, Chambers 1989). 
However, as noted by Hart and Holmstrom, optimal contracts im- 
pose little structure on the form of the insurance contract. For in- 
stance, the literature is not able to deduce that optimal insurance 
contracts are increasing in the magnitude of loss. 

4 Consider a U.S. Federal crop insurance contract where 

I(q) = r(q* - q) if q q*, r > O0 
= 0 otherwise. 

I is differentiable everywhere except at q* 

5 Pick a bounded indemnity schedule 
I(') 

which is differentiable 
and monotone decreasing. The feasible premium consistent with 
I(q) is the fixed point of the equation: P = EI(q(x(I, P), 0)). Let 
g(y) = EI(q(x(I, y), 0)). g is continuous in y. Let I, and 12 be the 
lower and upper bounds of the indemnity schedule. If y E [I, 1,], 
g(y) E [I,, 12]. Then by Brouwer's fixed point theorem, there exists 
a P E [1,, 12] satisfying P = g(P). 

6 First, if R(x, 0) is the gross revenue as a function of input level 
and a random shock, input x is risk-increasing (or risk-decreasing) 
if R, is increasing (or decreasing) in 0 for all x. Second, the in- 
surance program insures revenue and not output. 

7 As this paper considers comparative statics with respect to ar- 
bitrary insurance contracts, the model is unaffected by results which 
show the sensitivity of optimal insurance schemes to output price 
risk (Ramaswami and Roe). 
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Complete Insurance 

Given an insurance contract, the optimal choice 
of x is dictated by 

(1) 
maxx r(x, I, P) = EU[q(x, 0) - wx + v(x, 0)] 

subject to x ? >0 
where v is the payoff from insurance, i.e., v(x, 
0) = I[q(x, 0)] - P and r is the expected utility 
of the producer. With insurance, the change in 
expected utility as a result of a marginal change 
in input use is 

(2) rqx(x, I, P) = EU'[iT(x, I, P)] 
- {[1 + 

I'(q)]qx(x, 0) - w}. 

An insurance contract is complete if I'(q) = 
- 1 for all q, i.e., if insurance fully compensates 
an incremental loss. For such a contract, 

71x(X, I, P) = -wEU'(7T(x, v)) < 0 

for all x ? 0. Thus complete insurance provides 
no incentives for positive levels of input use. 

The rest of the paper assumes that the optimal 
level of input use is positive. This means in- 
surance is incomplete, i.e., I'(q) 

- 
-1, where 

the weak inequality is strict at some q. 

No-Insurance Case 

In the initial situation, I(q) = P = 0 for all q, 
and the incremental change in expected utility 
due to input use is 

(3) 
71x(x, 0, 0) = EU'(QT(x, 0, 0))(qx(x, 0) - w). 

Because cov(U', qx) 
= 

EU'qx 
- 

EU'Eqx, (3) can 
be rewritten as 

(4) qx(x, 0, 0) = EU'(7T(x, 0, 0))(Eqx(x, 0) 
- w) + cov(U'(Tr(x, 0, 0)), qx(x, 0)). 

Dividing by EU'(rT(x, 0, O)Eqx(x, 0), qx can be 
expressed, with its sign preserved as a number 
independent of the units in which output and 
utility are measured. 

77g(X, 
O, O)/EU'(wT(x, O, O))Eqx(x, 0) 

= (Eqx(x, 0) - w)/Eqx(x, 0) 
+ cov(U'(Ir(x, 0, 0)), 

qx(x, 0))/[EU'(wT(x, O, O))Eqx(x, 0)] 
The above can be expressed compactly with the 
following notation. Let 

s(x) = (Eqx(x, 0) - 
w)/Eqx(x, 0) 

oMu(x, I, P) = var(U'(IT(x, I, P)) 

/EU'(OT(x, I, P)) 

Mp(x) 
= 

/var(qx(x, 0))/Eqx(x, 
0) and 

p(x, I, P) 
-cov(U'(ir(x, I, P)), qx(x, 0)) 

\ivar(qx(x, 0)) Vvar(U'(T(x, I, 
P)) 

s is the fraction of expected marginal product 
that the producer receives as income after sub- 
tracting input costs. 

oMu 
and OM are the coef- 

ficients of variation of marginal utility and mar- 
ginal product respectively and p is the (negative) 
correlation between marginal utility and mar- 
ginal product. Using these definitions, 

(5) qx(x, 0, 0)/ EU'(ir(x, O))Eqx(x, 0) 
= s(x) - p(x, 0, O)cMU(x, 0, O)oM(x) 

(5) expresses the effect of input use on ex- 
pected utility as the difference between a mean 
effect (the first term) and a risk effect (the sec- 
ond term). By the first order conditions that 
characterize the optimum, the two effects are just 
equal. At the risk-neutral level of input use, the 
expected marginal product is equal to input cost. 
This means s(x) is zero and hence so is the risk 
effect. Thus, whether risk pverse farmers use 
more or less input than the risk-neutral level de- 
pends on whether the risk effect is negative or 
positive. 

The sign of the risk effect is determined by 
p, which is the negative of the correlation be- 
tween marginal utility and marginal product. For 
concave utility functions, marginal utility is 
monotonic decreasing in 0. On the other hand, 
the marginal product is either monotonic in- 
creasing or decreasing in 0. It follows that the 
risk effect is positive if the input is risk increas- 
ing and negative if the input is risk decreasing. 
Consequently, risk averse level of input use is 
greater (smaller) than the risk-neutral level of 
input use if the input is risk decreasing (increas- 
ing). This result has been noted earlier in 
MacMinn and Holtmann and in Pope and Kra- 
mer. 

Risk Reduction and Moral Hazard Effects 

A decomposition similar to (5) for rx (x, I, P) 
reveals 



918 November 1993 Amer. J. Agr. Econ. 

(6) qx(x, I, P)/EU'(Tr(x, I, P))Eqx(x, 0) 
= s(x) - [p(x, I, P)o-MU(x, I, P)o-MP(x)] 

- [-EU'(IT(x, I, 
P))vx(x, 

0) 
/[EU'(iT(x, I, P))Eqx(x, 0)]]. 

Compared to (5), there is an additional moral 
hazard effect represented by the third term in 
(6). When a producer buys insurance, a change 
in input levels, besides affecting output, also af- 
fects indemnities. Because an increase in output 
reduces indemnities, the marginal return to an 
additional unit of input application is the mar- 
ginal product of that additional unit less the re- 
sulting loss in indemnities; i.e., it is qx(1 + I'(q)) 
that is less than qx. The resulting change in ex- 
pected utility from the loss in indemnities is 
EU'(Or(x, I, P))qxl'(q)), which is the numerator 
of the third term in (6). 

To simplify notation, let xi = x(I, P) and xo 
= x(O, 0). To compare xo with xi, assume that 
,q(x, 0, 0) is concave in x.8 Then xi M xo as rx(xi, 
0, 0) 

- 
0 and so checking the latter condition 

is sufficient. Because EU'(Tr(xi, 0, 0)) and Eqx(x,, 
0) are both positive, rx(xi, 0, 0) is of the same 
sign as rx(xi , O)/EU'(T(xi 0, O, ))Eqx(x, 0). 
From (4), 

(7) rx(xi, 0, 0)/ 
EU'(-r(x;, 0, O))Eqx(xi, 0) 

= 
S(Xi) - OUM(Xi, 0, O)OMP(Xi)P(Xi, 0, 0) 

But from the first order condition, xi solves 

s(xi) = oMau(X, I, P)OrMp(X)p(xi, I, P) 
+ [- EU'(iT(xi, I, P))vx(xi, 0)/ 

[EU'(T(xj, I, P))Eqx(xi, 0)]]. 

Substituting for s(xi) in (7), 

(8) rx(xg, O, 
O)/EU'(-r(x,, 

O, O))Eqx(x,, 0) 
= [OuM(x, I, 

P)p(xi, 
I, P) 

- 
UrMU(X0, 

0, O)p(X , 0, 0)] 
MP(Xi) + [- EU'(IT(xi, I, P))vx(xi, 0)/ 

[EU'(wT(x,, I, P))Eqx(xg, 0)]]. 

The first expression in square brackets above is 
the difference between the risk effect with in- 
surance and the risk effect without insurance, 
both evaluated at x,. Because of the following 
result, the difference between risk effects is called 
the risk reduction effect. 

PROPOSITION 1: For all constant and decreas- 
ing risk averse utility functions and for a fea- 
sible insurance contract {I, P}, (i) O < aMu(xi, 
I, 

P)p(xi, 
I, P)ap(xi) < 

Mu(xi, 
O, O)p(xi, O, 

O)OM(xi) if the input is risk-increasing. (ii) 0 > 

O'Mu(xi, 
I, P)p(xi, I, P)rMp(xi) > 

OMu(Xi, O, O)p(xi, 
0, O)uMp(Xi) if the input is risk-decreasing. 

Proposition 1 is proved in an appendix. As 
intuition might suggest, proposition 1 asserts that 
actuarially fair insurance reduces the absolute 
value of the risk effect of input use. By itself, 
this leads a producer to adjust input application 
in the direction of risk-neutral levels, i.e., to in- 
crease input use if risk increasing and to de- 
crease input use if risk decreasing. 

However, the sign of rl(x0, 0, 0) also depends 
on the sign of the moral hazard effect which is 
always positive since Pv = I'(q)qx < 0 for all x 
and 0. As remarked earlier, insurance reduces 
the marginal return from an additional unit of 
input application which, therefore, reduces in- 
put use irrespective of whether it is risk reduc- 
ing or risk increasing. 

Because the moral hazard and the risk reduc- 
tion effects are in the same direction for a risk 
decreasing input but of opposite directions for a 
risk increasing input, crop insurance has differ- 
ent impacts in the two cases. When an input is 
risk decreasing, both the risk reduction and moral 
hazard effects are positive which makes qj(xi, 
0, 0) > 0. When an input is risk increasing, the 
risk reduction effect is negative but the moral 
hazard effect is positive, which makes the sign 
of x(xi, 0, 0) indeterminate. The next result is 
therefore immediate. 

PROPOSITION 2: With all constant and de- 
creasirig risk averse utility functions, the impact 
of actuarially fair crop insurance on input use 
is (i) to reduce it if the input is risk decreasing 
and (ii) indeterminate if the input is risk in- 
creasing. 

The implications for supply response are 
straightforward. If the input is risk decreasing, 
insurance affects its use in a manner that de- 
creases expected output and increases the risk- 
iness of output. However, if it is risk increasing, 
(expected) agricultural supply and its riskiness 
may increase or decrease depending on the rel- 
ative strengths of the moral hazard and risk re- 
duction effects. 

A Numerical Simulation 

Because the theoretical analysis is inconclusive 
in the case of a risk increasing input, a simu- 
lation experiment is undertaken to obtain in- 
sights. Consider a specialization to linear insur- 

8 Because thx(x, 0, 0) = EU'(Qn(x, 0, O)(qx(x, 0) - w)2 + EU'(ir(x, 
0, O))q,(x, 0), concavity of the production function together with 
risk aversion is sufficient for concavity of expected utility in x. 
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ance schedules, constant risk averse utility 
functions, and normally distributed output risk, 
i.e., U(y) = - exp(-Ay), q(x, 0) = p(x) + 
o(x)0 and I'(q) = -r, where A is the constant 
coefficient of absolute risk aversion, 0 is nor- 
mally distributed with zero mean and unit vari- 
ance, and 0 <: r < 1. x is risk increasing, i.e., 
qxo = x> 0. 

The optimal input choice is found by solving9 

(9) 
(1 - r)Ax(xi) - w - (1 - 

r)2Au(xi)ox(xi) 
= 0. 

Note that xi is independent of P Hence we can 
write xi = x(r) to denote the functional depen- 
dence on r. Similarly xo = x(O). 

The decomposition into risk reduction and 
moral hazard effects can be derived as 

(10) 

rhx(x(r), 
0, O)/EU'(-r(x(r), O, O))Eqx(x(r), 0) 
= (r2 - 2r)Ao(x(r))ox(x(r))/1,(x(r)) 

+ r 

from which, we derive 

(11) x(r) - x(O) as r r* 

where r* = 2 - Ax(x(r))/Ar(x(r))a,(x(r)) 
that is, insurance increases input use if insur- 
ance is "limited"; otherwise input use declines 
relative to the zero insurance level. r* is the crit- 
ical value of insurance such that, if r is less than 
r*, input use increases but if r is greater than 
r*, input use declines. The result is consistent 
with intuition as one would expect the moral 
hazard effect to be relatively stronger at larger 
levels of insurance. 

The critical value r* is a function of mean and 
variance responses to input use and of risk aver- 
sion. Let a = /xx/I, 13 = xx/uT, s = t/pI, R 
= pA and p = Rs2/2. a and P are the elasticities 
of output mean and variance with respect to in- 
put application. s is the coefficient of variation 
of output and R is the coefficient of relative risk 
aversion evaluated at the mean level of output. 
p is a second order approximation to the relative 
risk premium, i.e., the fraction of mean income 
that the producer is willing to pay as risk pre- 
mium (Newbery and Stiglitz, p. 73). Then 

(12) x(r) 4 x(O) as 
r- 

r* = 2 - a/(2pp). 

The critical level of insurance is higher for larger 
values of variance elasticity and risk premium 
and for smaller values of the mean elasticity. 

Note that if the mean elasticity is much larger 
than the product of variance elasticity and rel- 
ative risk premium, r* could be negative. This 
means insurance would always decrease input 
use. For instance if p = 0.5, r* is negative 
whenever the mean elasticity is greater than twice 
the variance elasticity. 

Figures 1 and 2 plot the outcome of a nu- 
merical experiment. It is assumed that pi(x) = 
xa and or(x) = xY. The optimal value of x is plot- 
ted against 20 values of r between 0 and 1. The 
calculations use equation (9) and assumed val- 
ues of w = 0.05, and A = 0.2. In figure 1, the 
elasticities, a and 3, are the ones estimated by 
Just and Pope for a data set on the output re- 
sponse of corn to nitrogen application. Here the 
mean elasticity is nearly three times the variance 
elasticity. Consequently, insurance decreases 

Co 
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Figure 1. The effect of insurance on the use 
of a risk-increasing input (13 = 0.1269) 

S 
.3532, = .7064 

c. D 

0 o 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Insurance 

Figure 2. The effect of insurance on the use 
of a risk-increasing input (f. = 0.7064) 

9 The derivation of equations (9) and (10) is available from the 
author. 
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input use at all levels of r. Figure 2 is calculated 
using the same mean elasticity as in figure 1 but 
the variance elasticity is twice the mean elastic- 
ity. As a result, the risk reduction effect is 
stronger than the moral hazard effect for levels 
of insurance up to r* = 0.7. Input use is first 
increasing and then decreasing in r. 

Thus, the numerical simulation suggests that 
the risk reduction effect is stronger (and the im- 
pact of insurance on expected supply positive) 
if insurance is limited, if the producer is highly 
risk averse, and if the impact of input use on 
output variability is much larger relative to its 
impact on expected output. 

Insurance and Supply Response: 
A Multiple-Action Model 

For reasons mentioned earlier, a straightforward 
extension of the single-input case to multiple in- 
puts is not fruitful. In this section, I consider a 
dual approach to the problem in which a pro- 
ducer directly chooses the parameters of the out- 
put distribution. Suppose a production function 
is of the form q(x, 0) = gt(x) + o(x)0, where 
0 is a zero mean and unit variance random shock, 
and x a vector of n inputs. Such production 
functions, first proposed by Just and Pope, have 
been widely used in theoretical and empirical 
work. Just and Pope showed functions of this 
type to be less restrictive than the popular al- 

EU(q(k, 0) + I(q(k, 0)) - P - wi) = EU(tt(i) + o()0? + I()t(A) + o(ri)0) - P - w ) 
= EU(2 + 60 + I(42 + 6) - P - wi) 

- 
EU(2? + 60 + I(P + 60) - P - C(P, 6)) 

= EU(Q(4, &; 0) + I(Q(, ; 0)) - P - C(^, &)) 
? EU(Q(p*, o*, 0) + I(Q(,0*, or*; 

0)) - P - C(,*, o*)) 
= EU(q(x*, 0) + I(q(x*, 0) - P - wx*) 

ternative of specifying a multiplicative produc- 
tion shock.1o The primal approach consists of 
solving the following program. 

(13) maxx, EU(g4(x) + o(x)0 + I(gt(x) 
+ o(x)0) - P - wx), i = 1,..., n 

where w is a vector of n input prices. 
Consider an alternative problem to be solved 

in two stages. In the first stage, define a cost 
function C(Qp, a) by 

(14) C(p, a) = mini wx, i = 1, ..., n 

subject to x E V(Ap, a) 

where V(pt, a) = {x: t(x) ? !t, x) < or}. Be- 
cause C(Q, a) is like a multi-output cost func- 
tion, it is well defined and differentiable if the 
set V is nonempty, closed, and convex (Cham- 
bers 1988, ch 7). It is also clear, from standard 
elementary arguments, that C, > 0 and C, < 0. 

In the second stage, a producer chooses A and 
a to solve 

(15) 
max,•,, 

r(t, o, I, P) = EU(Q(pt, o; 0) 
+ I(Q(, aor)) - P - C(Q , a)) 

where Q(A ,oa; 0) = A + ?O. Clearly, Q(t, oa; 
0) = q(x, 0) whenever x E V(pt, a). 

The two-stage problem in (14) and (15) can 
be considered as a dual to the problem in (13). 
In the dual of the certainty case, a producer 
chooses output subject to a cost of choosing of 
that output. Here in the uncertainty case, a pro- 
ducer chooses an output distribution subject to 
the costs of choosing that distribution. It re- 
mains to be shown that the primal and dual for- 
mulations solve the same problem. To see this, 
it is enough to show that the maximized ex- 
pected utility from (15) is not less than the ex- 
pected utility associated with any arbitrary input 
vector k. Let ^ = t(i)k) and 60 = o(•). Also let 
A *, o*, and x* be the solution to (15) and (14). 
Then 

Hence the solution from the two stage maximi- 
zation is identical to the solution from (13). 

Let g(I, P) and (0O, 0) be the mean outputs 
when producers optimally choose inputs in the 
presence and absence of insurance respectively. 
The question again is how purchase of insurance 
alters mean supply. Solving (15), the mean out- 
puts with and without insurance can be directly 
compared. The comparative statics are carried 
out by assuming F(A4, a, 0, 0) to satisfy the suf- 
ficient conditions for concavity, namely, #, < 
0, 4q, < 0 and If,,f - > 0. In order to 
ensure strictly positive solutions, it is also as- 
sumed that lim,,0 Co(/, o) = 0 and lim0o C(/i, 
o)= 

10 The dual approach is also available for the multiplicative case. 
Suppose q = g(x)O. The dual in this case considers the choice of 
A alone and the problem reduces to the selection of one variable, 
which can then be handled by slight modification of the single input 
case considered earlier (see, for example, Eeckhoudt and Hansen). 
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No-Insurance Case 

In the initial situation, I(q) = P = 0 for all q 
and the marginal changes in expected utility are 
given by 

(16) 
q•i,(/, 

or, ,0) 
= 

EU'(ir(/p, o, 0, 0))(1 - C,(/, a)) 

(17) qi,(f4, o, 0, 0) 
= 

EU'(Trr(/, o, 0, 0))(0 - Co(t/, o)) 

where wi(u, o, 0, 0) = Q(,p, o; 0) - C(,p, oa). 
Rewriting the above equations, 

(18) iqf,(po, u, 0, 0)/EU'(Trr(u, o, 0, 0)) 
= 1 - q,(u), a) and 

(19) qiju, o( , O, 0)/EU'(rr(,p, a, 0, 0)) 
= - 4(A, a) + 

cov(U'(rr(,u, o, 0, 0)), 
0)/EU'(ir(/u, o, 0, 0)) 

For a risk-neutral producer, 

(20) ,(i , o, 0, 0) = 
- C,(,p, a)[EU'(ir(,p, o, 0, 0))] > 0 for all or. 

Hence for a given u, a risk-neutral producer 

(24) f,(,L, a, I,P)/EU'(rr(,p, a, I, P)) = 1 - C,(p, a) 
+ EU'(Trr(Q, a, I, P))I'(q)/EU'(ir(,p, a, I, P)) 

(25) i,(, u, I, P)/EU'(ir(pu, a, I, P)) = - C, (u, a) 
+ cov(U'(ir(,p, a, I, P)) (1 + I'(Q)), 0)/EU'(rT(,u, 

a, I, P)) 

chooses the maximum possible or. Let om(/L) 
= 

max o-(x) subject to u(x) = u. Substituting in 
(16), a risk-neutral producer's choice of mean 
output, 

g,n, 
satisfies 

(21) 
Ii(Vp,,, jm(/(Ln), 0, 

0)/EU'(T(/J,n, 
,,m(o, n), 0, 0)) 

= (1 - 
C,(/,n, 

.m(/n,,)) 
= 0 

Let 
O'a() 

be a function which describes a risk 
averse producer's choice of or for a given u. 

o'a(p) solves 

(22) fi,(/L, a(/), 0, 0) = 

EU'(Irr(/, ua(/.L), 0, 0))(0 - C,(/L, Oa(/g.))) 
= 0. 

Because qif < 0, (20) and (22) imply O'a(g) 
< 

Om(/L) for all u. Substituting O'a() 
in the first 

order condition for g, a risk averse producer's 
optimal choice of mean output, g0, solves 

(23) 
I1,(/Lo, ua(L0o), 0, 0)/EU'(T(/Lo, a(rQ), 0, 0)) 

= 1 - C ,(/LO, Oa(ULO)) 

A sufficient condition for determining the rela- 
tion between 0o and p, is stated below. 

PROPOSITION 3: The expected output of a risk 
averse producer is greater than (equal to, less 
than) the expected output of a risk-neutral pro- 
ducer if C,. > (=, <) 0. 

PROOF: Define (g) = ,(u, a(g), 0, 0). Then 
0'(g) = 

,i + Ig+ O'a'(/Lg). 
But applying the im- 

plicit function theorem to (22), Oa',() = - (I',i 
/1i,,). Substituting, 0'(g/) 

= (4,Ii ,i 
- - 2)/ 

qi,, < 0 by our assumptions on 4. Since 4P is 
decreasing in g and 

(p0o) 
= 0, g0 ~< n as 

(•4(n) 

- 
0. Now 

44(1ni)/EU'(OT(gn, Oa('4n), 0, 0)) = 1 
- C, (/,n, a(/,n)). Using (21), 

0(nn)/EU'(Qr(gLn, Ua(/gn), 0, 0)) = 
CQ(/n, m,(gn)) 

- 

C,(/Ln, 
Oa(Qn)). 

But 
'm(/g) 

> Oa(/j) for all g. Hence, 
0(nn)/ 

EU'(Tr(/,n, Oa(/Ln), 0, 0)) 0 if C,, - 0. Be- 
cause expected marginal utility is strictly posi- 
tive, (pn) 0 if C,,- 0. 

Risk Reduction and Moral Hazard Effects 

With insurance, the equations analogous to (18) 
and (19) are 

where 

1T(,/, a, I, P) = Q(/L, a; 0) 
+ I(Q(gp, 

ur; 
0)) - P - C(Qp, a). 

Let 
o'i(p) 

be an insured producer's optimal choice 
of a as a function of u. It satisfies 

(26) 
-Co,(g, oai(g)) + cov(U,'(7r(Q, Uoi(g), I, P))(1 

+ I'(Q)), 0)/EU'(r(tp, oi(p), I, P)) = 0 

Denote ui u p(I, P). ui solves 

(27) 1 - C,(,ui, oi(,i)) + EU'(Tr(,ui, oi(/i), 
I, P))I'(Q)/EU'(r(pui, oi(,i), I, P)) = 0. 

Comparing the first order conditions for b/ with 
and without insurance, that is, equations (23) 
and (27), note that with o held constant, insur- 
ance decreases expected output because of the 
third term in (27), which is nothing but the moral 
hazard effect. However, insurance changes the 
choice of o and this also matters in determining 
the final impact of insurance. 
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From the proof of Proposition 3, we know (P 
is decreasing in u and 

0(p.o) 
= 0. Then, p~i 

,ro as 
(•.•i) 

0. Now 0(,ji)/EU'(1T(;,li, 'a(,i), 0, 0)) = 1 - C, (Li,, a(Wui)). Using (27), 

(28) 
•(,i)/EU'(iT(uik, iOa(/Li), 

0, 0)) = C 
(Li),i, oPi()Li)) 

- 
CL' (,i, o(.(Ii)) 

- 
EU'(iTr(Q i, Qri(tui),IP))I'(q)/EU'(iTr(piio-i(t).,lP)). 

The last term, which is the moral hazard effect, 
is positive and by itself (i.e., ignoring the first 
two terms) reduces mean output. The difference 
between the first two terms is the risk reduction 
effect. The sign and magnitude of the risk re- 
duction effect depends on the difference be- 
tween 

o'(,ui) 
and Oa(,pi) and on the sign of the 

cross derivative C,,, 
PROPOSITION 4: For all constant and decreas- 

ing risk averse utility functions and for convex 
insurance schedules, 

oi(,u) 
> Oa(j) for all tL and 

(29) C,(/, o0(7i)) - C,(;, Oa(Ui)) 
> 0 ifC, > 0 and 

(30) C,((i/, Oi(Li)) 
- C ( 0i, 0a(•Li)) < 0 ifCl < 0. 

Proposition 4 is proved in the appendix. Its 
implication is that insurance decreases expected 
output if C,, 

> 0. On the other hand, if C1, < 
0, the moral hazard and risk reduction effects 
run in opposite directions and the net effect is 
indeterminate. Note that the class of convex in- 
surance schemes includes real-world insurance 
schedules which are piecewise linear. 

Concluding Remarks 

I have decomposed the impact of crop insurance 
on variable input use into a moral hazard and a 
risk reduction effect. The principal insight is that 
insurance changes the marginal costs of input 
use in two ways. First, insurance reduces risk 
and therefore reduces the wedge between ex- 
pected marginal product and input price due to 
risk aversion. This is the risk reduction effect 
which leads risk averse decisions toward risk- 
neutral levels. Mean output increases or de- 
creases depending on the underlying technol- 
ogy. Second, insurance reduces the marginal 
productivity of all inputs, as an increase in out- 
put is always accompanied by a decrease in ex- 
pected insurance indemnities. This is the moral 
hazard effect which reduces the use of all inputs 
and decreases mean output. In earlier work 

(Ahsan, Ali and Kurian, Nelson and Loehman), 
the moral hazard effect is absent because insur- 
ance indemnities are contingent on input levels. 

If the risk reduction effect is the sole impact, 
mean output adjusts in the direction of risk-neutral 
levels. In the presence of moral hazard, how- 
ever, this need not necessarily happen. The nu- 
merical simulation suggests that the risk reduc- 
tion effect dominates moral hazard only if risk 
aversion is high and if the impact of input use 
on output risk is large relative to its impact on 
expected output. 

Future work could extend these results to al- 
low activity choice. It is often suggested that 
crop insurance leads to cultivation of riskier 
crops, adoption of riskier production tech- 
niques, and use of marginal, high-risk farm lands 
(see for example, Todd, Gardner, and Kramer). 
In other words, crop insurance could increase 
expected supply by promoting specialization in 
the riskier activities. Such argument can be ex- 
amined in the dual formulation proposed here 
by interpreting x as a vector of all producer de- 
cisions (including activity and input choices) and 
q as aggregate revenue from all activities. Re- 
sults obtained here suggest that insurance may 
not always increase expected supply. This would 
not be surprising, since it seems reasonable to 
suppose that moral hazard in input choice might 
limit the specialization achievable by insurance. 
Risk averse farmers would specialize in the risk- 
ier activity only if they were to be offered suf- 
ficient insurance. But that may reduce input use 
in the riskier activity due to the moral hazard 
effect. If input use decreases, expected returns 
from the riskier activity also decrease, which 
limits specialization in the riskier activity. 

These findings point to a trade-off in the de- 
sign of insurance. In many developing coun- 
tries, agricultural insurance programs are ex- 
pected to increase agricultural production by 
inducing the use of riskier inputs and technol- 
ogies. The implicit belief is that insurance pro- 
grams have strong risk-reduction effects. How- 
ever, this is true only in the absence of moral 
hazard. In the real world, insurers find it in- 
feasible to monitor all production activities of 
farmers. A badly designed insurance program 
could have moral hazard effects which com- 
pletely erode the incentives to produce higher 
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output due to risk reduction. One way to control 
moral hazard is to limit the amount of insurance 
through higher deductibles or lower price elec- 
tions. Unfortunately, lower amounts of insur- 
ance also have correspondingly weaker risk 
reduction effects. Similarly, while insurance 
schemes contingent on area rather than individ- 
ual yield can reduce and even eliminate moral 
hazard, their risk reduction effects on individual 
producers are also smaller. The challenge, 
therefore, is to design and administer insurance 
programs which reduce moral hazard while pre- 
serving risk reduction effects. In evaluating al- 
ternative insurance schemes, simulation exer- 
cises could be used to assess the trade-off between 
risk reduction and moral hazard effects. 

[Received January 1992; final revision 
received February 1993.] 
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Appendix 

Proof of Proposition I 

Substituting for caMu, aM and p, 

(A1) oa,(xi, I, P)p(x,, I, P)oa,(x,) 
= -cov(U'(rT(xj, I, P)), q,(x,, 0))/ 

[EU'(T(xj,l,P))Eu(xi, 
0)]. 

The sign of (Al) is opposite to the sign of cov(U'(rr(x,, I, 
P)), qx(x,, 0)). U' is decreasing in 0 since dU'/dqO = U'(rr(x, 
I, P))(1 + I'(q))qo < 0 given the assumptions q0 > 0, I'(q) 
> -1 and U' < 0. On the other hand q, is monotonic in- 

creasing or decreasing in 0 depending on the technology. 
Thus ,Mu(x,, I, P)p(x,, I, P)oMp(x,) is positive if the input 
is risk increasing and negative if the input is risk decreas- 

ing. This proves the first inequality in (i) and (ii). 
Next, consider the relationship between OM(x,, I, P)p(x, 

I, P)aoM(xi) and oaM(x,, 0, O)p(x,, 0, O)ap(xi). Let D = 

cMU(xi, 0, O)p(x,, 0, 0)aMp(x) - oUM(Xi, I, P)p(x,, I, P)oM(x,). 
The proof consists in showing D to be positive (or negative) 
if x is risk-increasing (or risk-decreasing). Substituting for 

OMU, PMp 
and p, 

D = 

-cov(U'(r(x;, 0, O)),q_(x;, 0))/EU'(rr(xi, O, O)E,,(x,, 0) 

+ cov(U'(ir(x,, I, P)), q_(x(, 0))/EU'(ir(x,, I, P))E,(x,, 0). 

Let rr(x,, I, P) = irr and rr(xi, 0, 0) = iro. Multiplying 
throughout by Eq,, 

D[E,(xi, 0)] = cov(U'(ir), q,(x,, 0))/EU'(i,;) 
- cov(U'(Tro), qx(xi, 0))/EU'(iro) 

= (EU'(Tr,)q(x,, 0) - EU'(Tr)Eq(x,, 
0))/EU'(t1i) - (EU'(Tro)q1(x,, 0) - EU'(iTo)E,(x,, 0))/ 

EU'(1ro) = EU'(i)q,(x,, 0) 
/EU'(rO,) - EU'(7To)qx(x,, 0)/EU'(iro) 

= E{U'(iT)/EU'(T,) - U'(Tro)/EU'(Qro)}q,(xx, 0) 
= E(G(x,, 0)qj(x,, 0)) 

where G = U'(iri)/EU'(Ti,) - U'(iT)/EU'(iT). But EG(x,, 0) 
= 0. So 

(A2) D[Eq,(xi, 0)] = cov(G(x,, 0), q(x,(, 0)) 

The following result, proved later, is useful in signing the 
above covariance. 

LEMMA: For all non-increasing risk averse utility func- 
tions, there exists a 0* such that G(xi, 0) > 0 for all 0 > 

0* and G(x,, 0) < 0 for all 0 < 0*. 

(A2) can now be signed using the lemma and the meth- 
ods of Hildreth and Tesfatsion. If F is the cumulative den- 

sity of 0 with support [0,, 0,M], (A2) can be written as 

cov(G((x,, 0), q,(x,, 0)) 

= G(x, 0), 0)(x;, 0)dF(0) + G(x,, 
O)q,(x,, 

0)dF(0). 

Suppose 
qo 

> 0. Then for all 0 < 0*, q,(x,, 0) < q,(x, 
0*). But also for these values for 0, G(x,, 0) < 0 (by lemma). 

Hence 

(A3) 

0 
G(x,, 

0)q,(x•, 

0)dF(0)> 
qx,(xi, 

0*") 
G(x,, 

0)dF(0). 

For all 0 > 0*, q,(x,, 0) > qj(x,, 0*). But also for these 
values for 0, G(x,, 0) > 0 (by lemma). Hence 

(A4) 
OM OM 

G(x,, O)q.(xi, 0)dF(0) 
> 

q,(x(, 0*) G(x,, 0)dF(0) 

Combining (A3) and (A4), 

cov(G(x, 0), q(x, 0)) > q,(x(, 0*") G(x,, 0)dF(0) 

= q,(x(, 0*)EG(x,, 0) = 0. 

This proves the second inequality in (i). The second in- 

equality in (ii) is proved similarly as well. 

Turning to the proof of the lemma, note that 

G(x,, 0) - 0 as U'(7Tr)/U'(Tro) - 
EU'(Tr)/EU'( ro). 

Let T(O) 
= 

U'(i'T)/U'('o). 
Now T, = i7T0 + (x,, 0) where 

v = I(q) - P. Since {I, P} is a feasible contract, P = EI(q(x, 
0)) or Ev(x,, 0) = 0. Further, as I is decreasing in 0, v is 
also decreasing in 0. Thus there exists an unique 0 such 
that I(q(x,, 0)) - P or v(x,, 0) > 0 for all 0 0 0. From the 

monotonicity of U' it follows that 

(A5) T(0) > 1 for all 0 > 0 and 

T(0) - 1 for all 0 
- 

0. 

Let C = 
EU'(iT)/EU'(Tro). 

Because Ev(x,, 0) = 0 and v 
is decreasing in 0, 7r0o is riskier than i;, by a mean preserving 
spread. But if risk aversion is non-increasing, marginal util- 

ity is convex. It follows (Rothschild and Stiglitz) that EU'(IT,) 
< EU'(iro) and C < 1. Let 0* be such that T(0*) = C. 0* 
exists because G(x,, 0) ' 0 as T(0) ' C and EG(x,, 0) = 

0. Due to (A5) and the fact that C < 1, 0* must be less 
than 0. But T is increasing in 0 in this range. Hence 0* is 

unique. 

U'(Tro)U"(IT,)IT: (0) - 
U'(Tr,)U"(Tro)TrO(0) Now, T'(0) 

=Uo) 

U'(io)U"(iT)qo(1 + I'(q)) - 
U'(ir)U"(iro)qo 

U'(,ro)2 

{U' 
("o)U"(Wi) 

- U' (i,)U"(iTo)}qo 

U'(ITo)2 

U'(iro)U"( iT,)'(q)qo 
U'(7To)2 

(A6) 

T'(0) = 

U(T)J(A(] 
) - 

A(j,)) 
+ j ( 

0) 

] 

where A(IT) is the coefficient of absolute risk aversion eval- 
uated at 7T. The second term in the above expression is pos- 
itive since U" < 0 and I'(q) 

- 
O. The first term is non- 

negative for non-increasing risk averse utility functions 
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whenever iTr > 1ro, i.e., 0 < 0. Thus T is increasing in 0 
for all 0 - -0. 

Because T'(0) > 0 for all 0 < 0, 
T(O) < C for all 0 < 0* and 
T(0) - C for all 0 E [0*, 0]. 

But from (A5), T(0) > 1 > C for all 0 > 0. Hence, 0* 
satisfies 

T(0) < C for all 0 < 0* and 
T(0) - C for all 0 > 0*. 

This proves the lemma. 

PROOF OF PROPOSITION 4: (29) and (30) follow trivially once 
it is shown that 0o(L) > o(pj). For notational simplicity, 
the functional dependence of o, and oa on A will henceforth 
be suppressed. Because I,(AL, o-, 0, 0) = 0 and 

qf,,(I , o, 
0, 0) < 0, oa > oa if fIq(Q, o, 0, 0) < 0. Now 

0,(A(, o;, 
0, 0)/EU'(r(T , 

o', 
0, 0)) = -C(L, o')) + cov(U'(Ir(TQ, o', 

0, 0)), 0)/EU'(rr(, 
o';, 

0, 0)). 
Substituting for C(Q, 

oi) 
(from (26)), 

(A7) 0,(A, o, 0, 0)/EU'(Tr(Q, o;, 0, 0)) = 
-cov(U'(Tr(tL, oi, I, P))(1 

+ I'(q)), 0)/EU'(7r(Ap, o, I, PP)) 
+ cov(U'(ir(p, 

o';, 
0, 0)), 0)/EU'(7r(A, o;, 0, 0)) 

= cov(U'(ir(A, o, 0, 0)), 0)/EU'(Tr(Q, o', 
0, 0)) 

- cov(U'(rr(Ap, o, I, P)), 0)/EU'(7r(tL, o, I, PP)) 
- 

cov(U'(r(iT , o-,I, P))I'(q), 0)/EU'(Tr(Q, o, I, PP)). 

The difference between the first two terms can be shown 
to be negative by the methods used to prove part (i) of prop- 
osition 1. The details are not repeated here. What remains 
to be shown is that the third term is also negative. This 
term is negative if U'(7r(AL, o-, I, P)I'(q) is increasing in 0. 

Consider 0, > 02. Let U', I' and U', I' be the marginal 
utility and slope of the insurance schedule evaluated at 0, 
and 02 respectively. Then we need to show U'I' > U' I. 
Marginal utility U' is decreasing in 0 since aU'/a0 = U'(1 
+ I')o < 0. Consequently, U' < U'. Since I1 < 0, U' I' > 
U'I'. On the other hand, I' > I1 by the convexity of I. But 
U' > 0 and so U'I' > U' I. Combining the inequalities, 
Ul I > u'I'. 
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