Supply Response to Agricultural
Insurance: Risk Reduction and
Moral Hazard Effects
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This paper examines the consequences of agricultural insurance for expected supply.
The effect of insurance is shown to decompose into a “risk reduction” effect as well as
a “moral hazard” effect. The direction and magnitude of these effects depend on the
parameters of the insurance contract, producer’s risk preferences, and the underlying
technology. Two models are considered for this purpose. In the first model, widely
employed in the literature, a producer controls only one input. The second model uses a
dual approach to extend the results to the case where a producer controls multiple

inputs.
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A long standing issue in the analysis of agri-
cultural insurance is supply response. Because
an insurance program alters the probability dis-
tribution of farm income, the question is whether
and in what manner producers adjust supply in
response to this change. The answer is of inter-
est to policy makers in developed and develop-
ing countries, although for different reasons. In
reviewing the history of crop insurance in the
U.S., Kramer writes “Research on price and in-
come stabilization programs has indicated that
these programs have had supply response ef-
fects. As the crop insurance program becomes
a truly national program, similar effects may be-
come evident from crop insurance, complicating
the supply control objective of commodity pro-
grams” (p. 200). Developing country policy
makers, on the other hand, place high priority
on expanding agricultural supplies. For them, a
positive supply response is not a complication
but a strong argument for publicly financed crop
insurance programs which remove or minimize
the influence of risk on farm-level decision
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making.l In the words of Hazell, Pomareda, and
Valdes, “Empirical evaluation of the social costs
and returns of publicly subsidized crop insur-
ance requires measurement of the effect of risk
reduction on supply responses. . . . It is this risk
response effect that leads to the major social gain
from crop insurance” (p. 8). The study of sup-
ply response is therefore important for an eval-
uation of agricultural insurance programs and
consequently for the design of insurance itself.

In the short run, supplies are altered by changes
in levels of variable inputs (input choice) and in
the allocations of fixed inputs (e.g., land) be-
tween competing agricultural activities (activity
choice). Crop insurance could affect both these
choices. It is well known that insurance affects
the incentives for input use. However, the di-
rection of impact has been analyzed for a lim-
ited case only. Previous work has observed that
risk averse input decisions coincide with risk-
neutral decisions if insurance is complete (i.e.,
eliminates all risk), actuarially fair and contin-
gent on input use. In this case, the effect of
insurance is straightforward. Compared to the
no-insurance world, the use of risk increasing
inputs increases while that of risk decreasing in-
puts falls, leading to an increase in expected

! For example, see Hazell, Bassoco, and Arcia for the objectives
of policy makers in Mexico and Panama. See also Lloyd and Maul-
don for excerpts of the report of the Australian Industries Assis-
tance Commission, which discusses the objectives which should
guide government policy concerning agricultural instability.
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income (Ahsan, Ali, and Kurian; Nelson and
Loehman). This case assumes that insurance
payments are contingent on output realizations
as well as input choices, which for reasons ex-
plained below, is a limiting assumption. How-
ever, if the assumption is maintained, its im-
plication for activity choice is that complete
specialization would occur in the higher value
riskier activity (e.g., Ahsan, Ali, and Kurian).
Such an outcome is confirmed in Hazell, Bas-
soco, and Arcia who simulate the effect of crop
insurance on cropping patterns in a sectoral model
for Mexico. They find that an insurance pro-
gram that is actuarially fair and complete leads
to higher expected production levels and a shift
towards riskier crops.

The desirability of complete insurance, how-
ever, depends (among other things) on whether
insurance agencies are able to monitor farm level
input use. If input use is not monitored, a pro-
ducer who is completely insured will have little
incentive to apply any inputs at all. Then, it is
not at all obvious that insurance would induce
greater specialization in the riskier crop. The
situation where the insurer is unable to monitor
input choices of insured farmers is one of moral
hazard. It is recognized as a major problem in
the practice and design of agricultural insurance
(Chambers, Nelson and Loehman, Ray). The
widespread use of deductibles and the lack of
complete insurance in real world situations is,
in part, due to moral hazard considerations. A
realistic understanding of the effects of agricul-
tural insurance must take moral hazard into ac-
count. This demands that empirical work on
supply response be based on models of input use
under moral hazard.

A numerical model of input and activity choice
under moral hazard has been constructed by
Kaylen, Loehman, and Preckel. The model is
simulated for a hypothetical example with par-
ticular specifications of utility functions, pro-
duction functions as well as insurance pro-
grams. While such models are necessary for
delivering quantitative predictions, it is equally
important that the qualitative predictions of these
models be robust to small changes in numerical
specifications. In other words, are there any the-
oretical predictions of the effects of the crop in-
surance? In this paper I employ two models to
examine the supply response induced by insur-
ance through changes in variable input use.

The first model considers the case where a
producer controls a single input. Such situations
of production uncertainty have been widely con-
sidered in the literature. The principal insight is
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that technology matters in determining the im-
pact of uncertainty (MacMinn and Holtmann,
Pope and Kramer, Ramaswami). In particular,
the property of technology that is relevant is
whether an input is risk increasing or risk de-
creasing. The risk character of an input has been
useful in comparative statics analyses. For in-
stance, researchers have used the restrictions on
technology implied by a risk increasing or risk
decreasing input to predict the impact of public
policies on the use of environmentally hazard-
ous inputs like pesticides and herbicides (Antle,
Leathers, and Quiggin; Olson and Eidman). The
role of insurance has however, not been ex-
amined. Because the above studies document risk
to be an important consideration in the appli-
cation of pesticides and herbicides, the impact
of insurance may be significant. Consequently,
the results of the paper have a bearing on this
issue.

The second model considers supply response
when a producer can respond with changes in
more than one input. The literature on produc-
tion decisions under production uncertainty is
generally confined to the one input case and has
little to say about the effects of uncertainty on
the choice of input mix and the resultant impli-
cations for average supply or its variance. The
difficulty is two-fold. First, changes in input mix
depend on input substitutability and the distri-
bution of risk increasing and risk decreasing in-
puts and calls for such knowledge of the pro-
duction function.” Even then, comparative statics
are harder because the use of all inputs is si-
multaneously determined.

Second, the implications for expected supply
and other parameters of the output distribution
is not straightforward or immediate as this would
be in a single input model. For these reasons,
the second model employs a dual approach to
directly model a producer’s choice of output
distribution. In the usual primal problem, a pro-
ducer chooses a vector of inputs to maximize
expected utility of profits. However, if the first
two moments completely characterize the prob-
ability distribution of output (Just and Pope), then
the producer’s problem can be equivalently posed
in terms of choosing a mean and a standard de-
viation. I show how the equivalence can be uti-
lized to derive comparative statics about the
producer’s choice of output distribution no mat-
ter how many inputs form the input vector.

2 I owe this point to an anonymous Journal referee.
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Model: General Assumptions

Farmers are assumed to be risk averse and max-
imize expected utility of profits where the utility
function U is increasing, concave and thrice dif-
ferentiable. A stochastic technology is described
by a twice continuously differentiable produc-
tion function g(x, 0) where g is output, x is a
vector of inputs and 0 is a random production
shock such that go > 0.

An insurance contract consists of an indem-
nity schedule /(g) and a premium P. Neither the
indemnity nor the premium is contingent on a
particular choice of input vector. Given a con-
tract {I(q), P} a producer chooses input appli-
cation x(/, P). When no insurance is purchased
or is available, x(0, 0) denotes the producer’s
optimal input level. The initial situation is as-
sumed to be one of no insurance. This is com-
pared with a final situation where an insurance
contract {/, P} is available. The question is, how
does the purchase of insurance alter expected
output? The answer involves a comparison of
Eq(x(I, P)) and Eq(x(0, 0)).

The comparison is carried out for the set of
insurance contracts satisfying the following con-
ditions:*

(i) Feasibility: Given the optimal input re-
sponses of farmers, insurance is actuarially fair,
i.e., P = E[I{q[x(/, P), 0]}]. Contracts satis-
fying this condition are feasible. The premium
on a feasible contract is equal to the expected
level of indemnity.

(ii) Differentiability: The indemnity schedule
is differentiable everywhere except possibly at
a finite number of points. This condition is usu-
ally met by real world contracts.*

(iif) Monotonicity: The indemnity schedule is
monotonic decreasing in output (or monotonic
increasing in loss), i.e., I'(g) = 0. Strict mono-
tonicity is not required. In other words, insur-
ance payments are larger (or at least, not smaller)
for larger losses. This assumption is also con-
sistent with real-world insurance practice.

Under mild regularity conditions, the set of

* Alternatively, the form of the insurance contract could have
been endogenously derived (Mirrlees, Holmstr =# Chambers 1989).
However, as noted by Hart and Holmstrom, optimal contracts im-
pose little structure on the form of the insurance contract. For in-
stance, the literature is not able to deduce that optimal insurance
contracts are increasing in the magnitude of loss.

4 Consider a U.S. Federal crop insurance contract where

lq)=rg*—qifg=qg*,r>0

= 0 otherwise.

[ is differentiable everywhere except at g*
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contracts satisfying the above conditions is non-
empty.’

Insurance and Supply Response: A Single-
Input Model

Here a single input x enters the production func-
tion described by g(x, 0). An input is either risk
increasing or risk decreasing. If risk increasing,
the marginal product g.(-, 8) is monotonic, in-
creasing in 0 for all positive x. If risk decreas-
ing, g, 0) is monotonic, decreasing in 0 for
all positive x. The terminology derives from the
fact that higher levels of input use lead to higher
or lower output risk depending on whether g,
is positive or negative. As noted later, the op-
timal application of a risk increasing (decreas-
ing) input under risk averse preferences is al-
ways less (more) than the risk-neutral level of
input use. In an agricultural context, fertilizers
are often risk increasing in their impact on out-
put risk (e.g., Just and Pope) while pesticides
and herbicides are risk decreasing (e.g., Antle,
Olson and Eidman). A more general interpre-
tation, pursued in Lewis and Nickerson, is to
regard x as expenditures on self-insurance. Then
such expenditures are risky if g > 0, but are
risk-reducing if g < 0. Many examples of such
expenditures are provided in Lewis and Nick-
erson.

Let 7 (x, I, P) be the producer income as a
function of input level and the insurance con-
tract. Then 7 (x, I, P) = q(x, 0) — wx + I(q)
— P, where w is the input price and m, g, w, I
and P are all normalized with respect to a cer-
tain output price. The analysis easily extends to
the stochastic price case by regarding g as rev-
enue rather than output. Naturally, the interpre-
tation of the model is affected,® but not the re-
sults.’

* Pick a bounded indemnity schedule /(-) which is differentiable
and monotone decreasing. The feasible premium consistent with
I(g) is the fixed point of the equation: P = El(q(x(/, P), 0)). Let
g(y) = El(g(x{, y), 0)). g is continuous in y. Let /, and /, be the
lower and upper bounds of the indemnity schedule. If y € [/,, 1],
g(») € [1,, I]. Then by Brouwer’s fixed point theorem, there exists
a P € [I), I,] satisfying P = g(P).

® First, if R(x, 0) is the gross revenue as a function of input level
and a random shock, input x is risk-increasing (or risk-decreasing)
it R, is increasing (or decreasing) in @ for all x. Second. the in-
surance program insures revenue and not output.

7 As this paper considers comparative statics with respect to ar-
bitrary insurance contracts, the model is unaffected by results which
show the sensitivity of optimal insurance schemes to output price
risk (Ramaswami and Roe).
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Complete Insurance

Given an insurance contract, the optimal choice
of x is dictated by

(€))
max, n(x, I, P) = EU[q(x, ) — wx + v(x, 0)]

subject to x = >0
where v is the payoff from insurance, i.e., v(x,
0) = I[g(x, 0)] — P and 7 is the expected utility
of the producer. With insurance, the change in
expected utility as a result of a marginal change
in input use is

2) mnx,I,P)=EU'[w(x, I, P)]
A1 + I'(@))g.(x, 0) — w}.

An insurance contract is complete if I'(q) =
—1 for all g, i.e., if insurance fully compensates
an incremental loss. For such a contract,

n(x, I, P) = —wEU'(7(x, v)) <0

for all x = 0. Thus complete insurance provides
no incentives for positive levels of input use.

The rest of the paper assumes that the optimal
level of input use is positive. This means in-
surance is incomplete, i.e., I'(q) = —1, where
the weak inequality is strict at some q.

No-Insurance Case

In the initial situation, I(g) = P = O for all ¢,
and the incremental change in expected utility
due to input use is

3)
nx, 0, 0) = EU'(7(x, 0, 0))(g.(x, ) — w).

Because cov(U’, q,) = EU’q, — EU'Eg,, (3) can
be rewritten as

4) n(x,0,0) =EU'(m(x, 0, 0))(Eq,(x, 8)
—w) + cov(U'(m(x, 0, 0)), g(x, 0)).

Dividing by EU'(7(x, 0, 0)Eq.(x, 0), 1, can be
expressed, with its sign preserved as a number
independent of the units in which output and
utility are measured.

n.(x, 0, 0)/EU' (7 (x, 0, 0))Eq,(x, 0)
= (Eq(x, 8) — w)/Eq.(x, 0)
+ cov(U'(m(x, 0, 0)),
q:(x, 8))/[EU'(m(x, 0, 0))Eq,(x, 0)]

The above can be expressed compactly with the
following notation. Let
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S(X) = (qu(x’ 0) - W)/qu(x9 0)

oyux, I, P) = Vvar(U'(w(x, I, P))
JEU'(m(x, I, P))

oup(x) = Vvar(gy(x, 8))/Eq.(x, 8) and

px, 1, P)
_COV(U,(”T(X, 19 P))! qx(x’ 0))

" Vvarg(x, 0) VvarU'(n(x. 1. P))

s is the fraction of expected marginal product
that the producer receives as income after sub-
tracting input costs. gy, and oy, are the coef-
ficients of variation of marginal utility and mar-
ginal product respectively and p is the (negative)
correlation between marginal utility and mar-
ginal product. Using these definitions,

(5 mx,0,0)/ EU'(m(x, 0)Eq.(x, 0)
= s(x) — p(x, 0, 0)ayy(x, 0, 0)Typ(x)

(5) expresses the effect of input use on ex-
pected utility as the difference between a mean
effect (the first term) and a risk effect (the sec-
ond term). By the first order conditions that
characterize the optimum, the two effects are just
equal. At the risk-neutral level of input use, the
expected marginal product is equal to input cost.
This means s(x) is zero and hence so is the risk
effect. Thus, whether risk averse farmers use
more or less input than the risk-neutral level de-
pends on whether the risk effect is negative or
positive.

The sign of the risk effect is determined by
p, which is the negative of the correlation be-
tween marginal utility and marginal product. For
concave utility functions, marginal utility is
monotonic decreasing in . On the other hand,
the marginal product is either monotonic in-
creasing or decreasing in 0. It follows that the
risk effect is positive if the input is risk increas-
ing and negative if the input is risk decreasing.
Consequently, risk averse level of input use is
greater (smaller) than the risk-neutral level of
input use if the input is risk decreasing (increas-
ing). This result has been noted earlier in
MacMinn and Holtmann and in Pope and Kra-
mer.

Risk Reduction and Moral Hazard Effects

A decomposition similar to (5) for n, (x, I, P)
reveals
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(6) mnx, I, P)/EU'(m(x, I, P))Eq,(x, 0)
= 5(x) — [p(x, I, P)oyy(x, I, P)oyp(x)]
— [-EU (7w (x, I, P))vx, 0)
/[EU'(m(x, I, P))Eq.(x, 0)]].

Compared to (5), there is an additional moral
hazard effect represented by the third term in
(6). When a producer buys insurance, a change
in input levels, besides affecting output, also af-
fects indemnities. Because an increase in output
reduces indemnities, the marginal return to an
additional unit of input application is the mar-
ginal product of that additional unit less the re-
sulting loss in indemnities; i.e., it is g,(1 + I'(g))
that is less than g,. The resulting change in ex-
pected utility from the loss in indemnities is
EU'(m(x, I, P))q.I'(g)), which is the numerator
of the third term in (6).

To simplify notation, let x; = x(I, P) and x,
= x(0, 0). To compare x, with x;, assume that
7n(x, 0, 0) is concave in x. Then x; = x, as n,(x;,
0, 0) = 0 and so checking the latter condition
is sufficient. Because EU'(7(x;, 0, 0)) and Eq,(x,,
0) are both positive, 1,(x;, 0, 0) is of the same
sign as n,(x;, 0, 0)/EU'(m(x;, 0, 0))Eq.(x, 0).
From (4),

(7) nx(xi! 09 O)/ EU'(”(xi’ O’ 0))qu(xi9 0)
= s(x,~) - UMU(xi’ 0’ O)UMP(xi)p(xh O’ 0)

But from the first order condition, x; solves

s(x) = oyulx;, I, PYoyp(x)p(x;, I, P)
+ [- EU'(7(x;, 1, P))v(x;, 0)/
[EU'(7(x;, I, P))Eq,(x;, ®)]].

Substituting for s(x;) in (7),

(®)  mx;, 0, 0)/EU' (m(x;, 0, 0))Eq,(x;, 0)
= [omu(xi, 1, P)p(x;, 1, P)
- GMU(xi’ O’ O)p(xi’ 09 0)]
UMP(xi) + [_ EU’(T"(xi’ 1’ P))Vx(xi’ 0)/
[EU'(m(x;, 1, P))Eq,(x;, 0)]].

The first expression in square brackets above is
the difference between the risk effect with in-
surance and the risk effect without insurance,
both evaluated at x;. Because of the following
result, the difference between risk effects is called
the risk reduction effect.

PROPOSITION 1: For all constant and decreas-
ing risk averse utility functions and for a fea-
sible insurance contract {I, P}, (i) 0 < oyy(x;,
I, P)p(x;, 1, P)oyp(x) < oyy(x;, 0, Op(x;, 0,

¥ Because n,(x, 0, 0) = EU'(m(x, 0, 0)(g(x, ) — )’ + EU'(m(x,
0, 0))g.(x, 8), concavity of the production function together with
risk aversion is sufficient for concavity of expected utility in x.
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0)oyp(x;) if the input is risk-increasing. (ii) 0 >
GMU(xi’ [’ P)p(xh I’ P)UMP(xi) > O-Ml/(xi’ O’ 0)p(xi’
0, 0)oyp(x)) if the input is risk-decreasing.

Proposition 1 is proved in an appendix. As
intuition might suggest, proposition 1 asserts that
actuarially fair insurance reduces the absolute
value of the risk effect of input use. By itself,
this leads a producer to adjust input application
in the direction of risk-neutral levels, i.e., to in-
crease input use if risk increasing and to de-
crease input use if risk decreasing.

However, the sign of 7,(x;, 0, 0) also depends
on the sign of the moral hazard effect which is
always positive since v, = I'(g)q, < 0 for all x
and 0. As remarked earlier, insurance reduces
the marginal return from an additional unit of
input application which, therefore, reduces in-
put use irrespective of whether it is risk reduc-
ing or risk increasing.

Because the moral hazard and the risk reduc-
tion effects are in the same direction for a risk
decreasing input but of opposite directions for a
risk increasing input, crop insurance has differ-
ent impacts in the two cases. When an input is
risk decreasing, both the risk reduction and moral
hazard effects are positive which makes 7,(x;,
0, 0) > 0. When an input is risk increasing, the
risk reduction effect is negative but the moral
hazard effect is positive, which makes the sign
of 1,(x;, 0, 0) indeterminate. The next result is
therefore immediate.

PROPOSITION 2: With all constant and de-
creasing risk averse utility functions, the impact
of actuarially fair crop insurance on input use
is (i) to reduce it if the input is risk decreasing
and (ii) indeterminate if the input is risk in-
creasing.

The implications for supply response are
straightforward. If the input is risk decreasing,
insurance affects its use in a manner that de-
creases expected output and increases the risk-
iness of output. However, if it is risk increasing,
(expected) agricultural supply and its riskiness
may increase or decrease depending on the rel-
ative strengths of the moral hazard and risk re-
duction effects.

A Numerical Simulation

Because the theoretical analysis is inconclusive
in the case of a risk increasing input, a simu-
lation experiment is undertaken to obtain in-
sights. Consider a specialization to linear insur-
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ance schedules, constant risk averse utility
functions, and normally distributed output risk,
ie., U(Y) = — exp(—Ay), q(x, 8) = p(x) +
o(x)0 and I'(q) = —r, where A is the constant
coefficient of absolute risk aversion, 0 is nor-
mally distributed with zero mean and unit vari-
ance, and 0 = r < 1. x is risk increasing, i.e.,

g = 0. > 0.
The optimal input choice is found by solving’
)

(1 = Npx) = w = (1 = N’Ao(x)o(x) = 0.

Note that x; is independent of P Hence we can
write x; = x(r) to denote the functional depen-
dence on r. Similarly x, = x(0).

The decomposition into risk reduction and
moral hazard effects can be derived as

(10
n(x(r), 0, 0)/EU' (m (x(r), 0, 0)Eq,(x(r), 8)
= (r* = 2NAT((N)o(x(N) /. x(r) + r

from which, we derive
(1)
where r* = 2 — p(x(r)) /Ao(x(r))o(x(r))

that is, insurance increases input use if insur-
ance is “limited”; otherwise input use declines
relative to the zero insurance level. r* is the crit-
ical value of insurance such that, if r is less than
r*, input use increases but if r is greater than
r*, input use declines. The result is consistent
with intuition as one would expect the moral
hazard effect to be relatively stronger at larger
levels of insurance.

The critical value r* is a function of mean and
variance responses to input use and of risk aver-
sion. Let @ = pux/u, B = ox/o, s = o/u, R
= pA and p = Rs?/2. a and B are the elasticities
of output mean and variance with respect to in-
put application. s is the coefficient of variation
of output and R is the coefficient of relative risk
aversion evaluated at the mean level of output.
p is a second order approximation to the relative
risk premium, i.e., the fraction of mean income
that the producer is willing to pay as risk pre-
mium (Newbery and Stiglitz, p. 73). Then

x(r)Zx(0)asr = r*

(12) x(NZx(O)asr=r*=2— a/(2pB).

The critical level of insurance is higher for larger
values of variance elasticity and risk premium
and for smaller values of the mean elasticity.

° The derivation of equations (9) and (10) is available from the
author.
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Note that if the mean elasticity is much larger
than the product of variance elasticity and rel-
ative risk premium, r* could be negative. This
means insurance would always decrease input
use. For instance if p = 0.5, r* is negative
whenever the mean elasticity is greater than twice
the variance elasticity.

Figures 1 and 2 plot the outcome of a nu-
merical experiment. It is assumed that u(x) =
x* and o(x) = x®. The optimal value of x is plot-
ted against 20 values of r between O and 1. The
calculations use equation (9) and assumed val-
ues of w = 0.05, and A = 0.2. In figure 1, the
elasticities, a and 3, are the ones estimated by
Just and Pope for a data set on the output re-
sponse of corn to nitrogen application. Here the
mean elasticity is nearly three times the variance
elasticity. Consequently, insurance decreases
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Figure 2. The effect of insurance on the use
of a risk-increasing input (8 = 0.7064)
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input use at all levels of r. Figure 2 is calculated
using the same mean elasticity as in figure 1 but
the variance elasticity is twice the mean elastic-
ity. As a result, the risk reduction effect is
stronger than the moral hazard effect for levels
of insurance up to r* = 0.7. Input use is first
increasing and then decreasing in r.

Thus, the numerical simulation suggests that
the risk reduction effect is stronger (and the im-
pact of insurance on expected supply positive)
if insurance is limited, if the producer is highly
risk averse, and if the impact of input use on
output variability is much larger relative to its
impact on expected output.

Insurance and Supply Response:
A Multiple-Action Model

For reasons mentioned earlier, a straightforward
extension of the single-input case to multiple in-
puts is not fruitful. In this section, I consider a
dual approach to the problem in which a pro-
ducer directly chooses the parameters of the out-
put distribution. Suppose a production function
is of the form g(x, 8) = w(x) + o(x)0, where
0 is a zero mean and unit variance random shock,
and x a vector of n inputs. Such production
functions, first proposed by Just and Pope, have
been widely used in theoretical and empirical
work. Just and Pope showed functions of this
type to be less restrictive than the popular al-
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in two stages. In the first stage, define a cost
function C(u, o) by

(14) C(u, o) =min, wx, i=1,...,n

subject to x € V(u, 0)

where V(u, 0) = {x: u(x) = u, o(x) < o}. Be-
cause C(u, o) is like a multi-output cost func-
tion, it is well defined and differentiable if the
set V is nonempty, closed, and convex (Cham-
bers 1988, ch 7). It is also clear, from standard
elementary arguments, that C, > 0 and C, < 0.

In the second stage, a producer chooses u and
o to solve

(15) max,, ¥(u, 0,1, P) = EU(Q(u, 0; 0)
+ (@, 0)) = P — C(u, 0))

where Q(u ,0; 0) = p + 0. Clearly, Q(u, o;
0) = g(x, 0) whenever x € V(u, o).

The two-stage problem in (14) and (15) can
be considered as a dual to the problem in (13).
In the dual of the certainty case, a producer
chooses output subject to a cost of choosing of
that output. Here in the uncertainty case, a pro-
ducer chooses an output distribution subject to
the costs of choosing that distribution. It re-
mains to be shown that the primal and dual for-
mulations solve the same problem. To see this,
it is enough to show that the maximized ex-
pected utility from (15) is not less than the ex-
pected utility associated with any arbitrary input
vector X. Let 4 = w(X) and & = o(X). Also let
p*, o*, and x* be the solution to (15) and (14).
Then

EU(q(%, 0) + I(q(%, )) — P — wX) = EU(u(X) + o(%)0 + I(u(®) + o(X)0) — P — wX)
=EU@ + 60 + I(i + 60) — P — wX)
=EU@ + 60 + I( + 60) — P — C(4, 6))
= EU(Q(#, 6;0) + I(Q(4, 6;0)) — P — C(4, 6)
= EU(Q(u*, o*, 0) + I(Q(u*, o*; 0)) — P — C(p*, 0%))
= EU(q(x*, 0) + I(q(x*, ) — P — wx¥*)

ternative of specifying a multiplicative produc-
tion shock.'® The primal approach consists of
solving the following program.

(13) max, EU(u(x) + o(x)0 + I(u(x)
+o0(x)0) —P—wx),i=1,...,n

where w is a vector of n input prices.
Consider an alternative problem to be solved

' The dual approach is also available for the multiplicative case.
Suppose g = u(x)8. The dual in this case considers the choice of
u alone and the problem reduces to the selection of one variable,
which can then be handled by slight modification of the single input
case considered earlier (see, for example, Eeckhoudt and Hansen).

Hence the solution from the two stage maximi-
zation is identical to the solution from (13).

Let w(/, P) and w(0, 0) be the mean outputs
when producers optimally choose inputs in the
presence and absence of insurance respectively.
The question again is how purchase of insurance
alters mean supply. Solving (15), the mean out-
puts with and without insurance can be directly
compared. The comparative statics are carried
out by assuming y(u, o, 0, 0) to satisfy the suf-
ficient conditions for concavity, namely, ¢, <
0, Yy, < 0 and Y, ¥, — ¥h, > 0. In order to
ensure strictly positive solutions, it is also as-
sumed that lim,,_,, C(u, 0) = 0 and lim,_,, C(u,
o) = ®,
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No-Insurance Case

In the initial situation, I(g) = P = O for all g
and the marginal changes in expected utility are
given by

(16) Y (u, 0,0 ,0)
= EU'(m(p, 0,0, 0))(1 = Cu(p, 0))
A7) Yo(u, 0,0, 0)

= EU'(7(u, 0,0, 0))(® — Co(p, 0))

where m(u, o, 0, 0) = Q(u, 0, 8) — C(u, o).
Rewriting the above equations,

(18)  ¢(u, o, 0, 0)/EU’(m(u, 0, 0, 0))
=1- ¢,(p, o) and
(19)  ¥u(p, 0,0, 0)/EU'(m(u, o, 0, 0))

= —Y,(u, 0) +
cov(U'(m(p, 0, 0, 0)), 0)/EU’(m(u, 0, 0, 0))

For a risk-neutral producer,

(20) Y (u, 0,0,0) =
— Cy(u, O)[EU' (7(u, o, 0, 0))] > O for all 0.

Hence for a given u, a risk-neutral producer

(24)

(25
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A sufficient condition for determining the rela-
tion between u, and u, is stated below.

PROPOSITION 3: The expected output of a risk
averse producer is greater than (equal to, less
than) the expected output of a risk-neutral pro-
ducer if C,, > (=, <) 0.

PROOF: Define ¢(u) = (1, o,(n), 0, 0). Then
¢,(l") = (//y.y. + (//crp. o-a’(l"')- But applymg the im-
plicit function theorem to (22), o, (1) = — (Y,
/Wos). Substituting, &' (1) = (Yo Y, — V2,7
Y., < 0 by our assumptions on ¢. Since ¢ is
decreasing in p and ¢(po) = 0, po = i, as G(u,)
Z 0. Now ¢(u,)/EU’ (m(,, To(i1s), 0, 0)) = 1
— C,, (n 0(1,)). Using (21), (u,)/EU (m(u,,
a'a(l"‘n)a 0, 0) = C;L(#'m a'm(#'n)) - Cu.(/"‘m o-a(/"'n)’)~
But o,(u) > o,u) for all u. Hence, ¢(u,)/
EU’('ﬂ(#'m a-a(#'n)a 07 0)) % 0 if C;w' % 0. Be-
cause expected marginal utility is strictly posi-
tive, ¢(u,) = 0 if C,,= 0.

Risk Reduction and Moral Hazard Effects

With insurance, the equations analogous to (18)
and (19) are

l/’u.(#" g, 19P)/EU,(7T(/J‘9 g, Ia P)) =1- Cp.(l"a 0-)

+ EU'(m(u, o, I, P))I'(q)/EU’ (m(p, 0, 1, P))

l/’a(l"9 ag, 1, P)/EU,("T(#M g, 1’ P)) = - Ca' (l"’ U)

+ cov(U'(m(u, 0, 1, P)) (1 + I'(Q)), 0)/EU’ (m(n, 0, I, P))

chooses the maximum possible o. Let o,,(u) =
max, o(X) subject to u(x) = u. Substituting in
(16), a risk-neutral producer’s choice of mean
output, u,, satisfies

(21
Uty Tr(n)s 0, 0)/EU’ (m(Rp, Ot), O, 0))
= (l - C#(F’m a-m(l"n)) = O

Let o,(1) be a function which describes a risk
averse producer’s choice of o for a given u. o,(w)
solves

(2)  You, 0w, 0, 0) =
EU'(m(u, 0,(w), 0, 0))(0 — Colp, o(m))) = 0.

Because ¢, < 0, (20) and (22) imply o,(n) <
o,,(u) for all p. Substituting o,(u) in the first
order condition for u, a risk averse producer’s
optimal choice of mean output, w,, solves

(23)

Yo, Ta(to), 0, 0)/EU’ (1o, 0,(1), 0, 0))
= 1 - C;L(MO’ Ua(l"'o))

where

m(w, o, 1, P) = Q(u, 0, 0)
+ 1(Q(p, 0;,0)) — P — C(u, 0).

Let o(u) be an insured producer’s optimal choice
of o as a function of w. It satisfies

(26)
—Co(, o)) + cov(U'(m(p, o), I, P))(1
+1'(Q)), 0)/EU (m(p, o), I, P)) = 0

Denote u; = u(l, P). w; solves

27 1= Cu(m, oi(wy)) + EU' (i, o),
1, P)I'(Q)/EU' (m(mi, o), 1, P)) = 0.

Comparing the first order conditions for u with
and without insurance, that is, equations (23)
and (27), note that with ¢ held constant, insur-
ance decreases expected output because of the
third term in (27), which is nothing but the moral
hazard effect. However, insurance changes the
choice of o and this also matters in determining
the final impact of insurance.
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From the proof of Proposition 3, we know ¢
is decreasing in u and ¢(uy) = 0. Then, u;, =

Mo as d(u;) = 0. Now () /EU’ (m(p;, o,(y),
0,0) =1 — C, (, .(u)). Using (27),

(28)
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(Ahsan, Ali and Kurian, Nelson and Loehman),
the moral hazard effect is absent because insur-
ance indemnities are contingent on input levels.

&) /EU' (m(;, 0,(1y), 0, 0)) = Cu(py, o)) — C. (ui, o,(y))

— EU'(m(wi> o), I, PYI' (@) /EU" (m( i, o), 1, P)).

The last term, which is the moral hazard effect,
is positive and by itself (i.e., ignoring the first
two terms) reduces mean output. The difference
between the first two terms is the risk reduction
effect. The sign and magnitude of the risk re-
duction effect depends on the difference be-
tween o(u;) and o,(u;) and on the sign of the
cross derivative C,,,.

PROPOSITION 4: For all constant and decreas-
ing risk averse utility functions and for convex
insurance schedules, o(p) > o () for all u and

(29 Cu(mi, oi(1) — Culs, o,()
>0ifC,, > 0and

(30)  Cu(ui, o) — Culpi, o(1)
<0ifC, <0.

Proposition 4 is proved in the appendix. Its
implication is that insurance decreases expected
output if C,,, > 0. On the other hand, if C,, <
0, the moral hazard and risk reduction effects
run in opposite directions and the net effect is
indeterminate. Note that the class of convex in-
surance schemes includes real-world insurance
schedules which are piecewise linear.

Concluding Remarks

I have decomposed the impact of crop insurance
on variable input use into a moral hazard and a
risk reduction effect. The principal insight is that
insurance changes the marginal costs of input
use in two ways. First, insurance reduces risk
and therefore reduces the wedge between ex-
pected marginal product and input price due to
risk aversion. This is the risk reduction effect
which leads risk averse decisions toward risk-
neutral levels. Mean output increases or de-
creases depending on the underlying technol-
ogy. Second, insurance reduces the marginal
productivity of all inputs, as an increase in out-
put is always accompanied by a decrease in ex-
pected insurance indemnities. This is the moral
hazard effect which reduces the use of all inputs
and decreases mean output. In earlier work

If the risk reduction effect is the sole impact,
mean output adjusts in the direction of risk-neutral
levels. In the presence of moral hazard, how-
ever, this need not necessarily happen. The nu-
merical simulation suggests that the risk reduc-
tion effect dominates moral hazard only if risk
aversion is high and if the impact of input use
on output risk is large relative to its impact on
expected output.

Future work could extend these results to al-
low activity choice. It is often suggested that
crop insurance leads to cultivation of riskier
crops, adoption of riskier production tech-
niques, and use of marginal, high-risk farm lands
(see for example, Todd, Gardner, and Kramer).
In other words, crop insurance could increase
expected supply by promoting specialization in
the riskier activities. Such argument can be ex-
amined in the dual formulation proposed here
by interpreting x as a vector of all producer de-
cisions (including activity and input choices) and
q as aggregate revenue from all activities. Re-
sults obtained here suggest that insurance may
not always increase expected supply. This would
not be surprising, since it seems reasonable to
suppose that moral hazard in input choice might
limit the specialization achievable by insurance.
Risk averse farmers would specialize in the risk-
ier activity only if they were to be offered suf-
ficient insurance. But that may reduce input use
in the riskier activity due to the moral hazard
effect. If input use decreases, expected returns
from the riskier activity also decrease, which
limits specialization in the riskier activity.

These findings point to a trade-off in the de-
sign of insurance. In many developing coun-
tries, agricultural insurance programs are ex-
pected to increase agricultural production by
inducing the use of riskier inputs and technol-
ogies. The implicit belief is that insurance pro-
grams have strong risk-reduction effects. How-
ever, this is true only in the absence of moral
hazard. In the real world, insurers find it in-
feasible to monitor all production activities of
farmers. A badly designed insurance program
could have moral hazard effects which com-
pletely erode the incentives to produce higher
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output due to risk reduction. One way to control
moral hazard is to limit the amount of insurance
through higher deductibles or lower price elec-
tions. Unfortunately, lower amounts of insur-
ance also have correspondingly weaker risk
reduction effects. Similarly, while insurance
schemes contingent on area rather than individ-
ual yield can reduce and even eliminate moral
hazard, their risk reduction effects on individual
producers are also smaller. The challenge,
therefore, is to design and administer insurance
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ed. T. Bewley, Cambridge University Press, 1987.

Holmstrom, B. “Moral Hazard and Observability.” Bell J.
Econ. 10(Spring 1979):74-91.

Just, R. E., and R. D. Pope. “Production Function Esti-
mation and Related Risk Considerations.” Amer. J. Agr.
Econ. 61(May 1979):277-84.

Kaylen, M. S., E. T. Loehman, and P. V. Preckel. “Farm-
level Analysis of Agricultural Insurance: A Mathe-
matical Programming Approach.” Agricultural Sys-
tems 30(1989):235-44.

Kramer, R. “Federal Crop Insurance: 1938-1982,” Agri-
cultural History 57(1983):181-200.

programs which reduce moral hazard while pre- = Leathers, H. D., and J. C. Quiggin. “Interactions between

serving risk reduction effects. In evaluating al-
ternative insurance schemes, simulation exer-
cises could be used to assess the trade-off between
risk reduction and moral hazard effects.
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Appendix
Proof of Proposition 1

Substituting for oyy, oue and p,

(AD)  ow(xi, I, P)p(x;, I, P)oyp(x)
= —cov(U'(m(x;, I, P)), q.(x;, 8))/

[EU’(m(x,,1,P)E,(x;, 0)].

The sign of (A1) is opposite to the sign of cov(U’(m(x;, I,
P)), q.(x;, 8)). U’ is decreasing in 0 since dU’ /dq® = U’(m(x,
I, P))(1 + I'(g))qe < O given the assumptions go > 0, I'(q)
= —1 and U’ < 0. On the other hand ¢, is monotonic in-
creasing or decreasing in ® depending on the technology.
Thus oyu(x;, I, P)p(x;, I, P)oys(x;) is positive if the input
is risk increasing and negative if the input is risk decreas-
ing. This proves the first inequality in (i) and (ii).

Next, consider the relationship between oy (x;, I, P)p(x;,
I, P)oyp(x) and oyy(xi, 0, 0)p(x;, 0, 0)ous(x). Let D =
oufxi, 0, 0)p(x;, 0, 0)0up(x) — Tadxs, 1, P)o(x;, I, P)oyp(x)).
The proof consists in showing D to be positive (or negative)
if x is risk-increasing (or risk-decreasing). Substituting for
Opys Onp and p,

D=
—cov(U'(m(x;, 0, 0)),4.(x;, 8))/EU"(7(x;, 0, 0)E,(x;, 0)
+ cov(U'(m(x;, I, P)), q.(x;, 8))/EU'(m(x;, I, P))E,(x;, 0).

Let m(x,, I, P) = m; and m(x;, 0, 0) = m,. Multiplying
throughout by E,,,

DIE (x;, 8] = cov(U'(m), q.(x;, 8))/EU’ ()
— cov(U'(m), g.dx;, 8))/EU’ (1)

= (EU'(m)qx;, 8) — EU'(m)E,(x;, 0))/EU’(m)
— (EU'(m)qux;, 8) — EU'(m)E, . (x;, 8))/
EU'(m) = EU'(m,)q.(x;, 8) /EU'(m)
— EU'(m0)q.(x;, 8)/EU’ ()

= E{U'(m)/EU'(m) — U'(m0) /EU'(mo)}q.(x;, 8)

= E(G(x;, ﬂ)qx(—xh 0))

where G = U'(m)/EU'(w;) — U'(w)/EU’ (). But EG(x;, 0)
=0. So

(A2) DIE,(x;, 8)] = cov(G(x;, 8), g.(x;, 8))

The following result, proved later, is useful in signing the
above covariance.

LEMMA: For all non-increasing risk averse utility func-
tions, there exists a 6% such that G(x;, 0) > 0O for all 8 >
0* and G(x;, 0) < O for all 6 < 0*.

(A2) can now be signed using the lemma and the meth-
ods of Hildreth and Tesfatsion. If F is the cumulative den-
sity of @ with support [0,,, 0,], (A2) can be written as

cov(G(x;, ), g.(x;, 9))
or

L)%
= f G(x;, 0)g.(x;, 0)dF(0) + f G(x;, 0)g.(x;, 8)dF(0).
o*

Om

Suppose g, > 0. Then for all 8 < 0*, g.(x;, 8) < q.(x;,
0*). But also for these values for 0, G(x;, 8) < 0 (by lemma).
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Hence
(A3)
0= o
f G(x;, 0)q.(x;, 8)dF(8) > g.(x;, 6) f G(x;, 0)dF(0).
Om 0
For all 8 > 0*, g.(x;, ) > g.(x;, 0%). But also for these
values for 0, G(x;, ) > 0 (by lemma). Hence
(A4)
M

0, oM
f G(x;, 0)q.(x;, O)AF(8) > g,(x;, 8%) f G(x,, 8)dF(8)
ox [
Combining (A3) and (A4),

L%
cov(G(x;, 0), g.(x;, 0)) > g.(x;, 0%) j G(x;, 0)dF(0)
Om
= q.(x;, 0)EG(x;, 8) = 0.

This proves the second inequality in (/). The second in-
equality in (ii) is proved similarly as well.
Turning to the proof of the lemma, note that

G(x;, 8 Z 0as U'(m)/U'(m) Z EU' () /EU' ().

Let T(8) = U'(m)/U'(m). Now m; = m, + v(x;, 8) where
v = I(g) — P. Since {I, P} is a feasible contract, P = El(g(x;,
0)) or Ev(x;, 0) = 0. Further, as / is decreasing in 0, v is
also decreasing in 0. Thus there exists an unique  such
that I(g(x., 8)) Z P or »(x,, 8) > 0 for all § = . From the
monotonicity of U’ it follows that

7(0) > 1 for all > 6 and

T(0) < 1forall® <80.

(A5)

Let C = EU'(m,)/EU'(m,). Because Ev(x;, 8) = 0 and v
is decreasing in 0, m, is riskier than m; by a mean preserving
spread. But if risk aversion is non-increasing, marginal util-
ity is convex. It follows (Rothschild and Stiglitz) that EU'(m,)
< EU'(m,) and C < 1. Let 6* be such that 7(8*) = C. 0*
exists because G(x;, ) = 0 as 7(0) = C and EG(x,, 0) =
0. Due to (A5) and the fact that C < 1, * must be less
than . But T is increasing in @ in this range. Hence 0* is
unique.

U' (m)U" () /(8) — U'(m)U" (o) m5(0)

Now, T'(0) = —
U' (o)
U (m)U'(m)ge(1 + I'(g)) — U'(m)U"(m0)qe
- U'(my’
_ {U' (m)U"(m) — U'(m)U"(1m0)}q0
- U'(Wo)z
U'(m)U"(m)l' (9)ge
U'(my)*
(A6)
o | U (g0 3 U'(m)qeI'(9))
ro= [ U'(mo) ] () = Alm) [ U'(m) ]

where A(7) is the coefficient of absolute risk aversion eval-
uated at 7. The second term in the above expression is pos-
itive since U” < 0 and I'(q) = 0. The first term is non-
negative for non-increasing risk averse utility functions
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whenever 7, > m,, i.e., 0 < . Thus T is increasing in 0
for all 6 < 0.

Because 7'(0) > 0 for all 0 < 6,
7(0) < C for all 0 < 0* and
7(8) = C for all § € [0*, 6].

But from (A5), T(8) > 1 > C for all @ > 6. Hence, 0*
satisfies

T(0) < C for all ® < 0* and
T(0) = C for all > 6*.

This proves the lemma.

PROOF OF PROPOSITION 4: (29) and (30) follow trivially once
it is shown that o(u) > o,(u). For notational simplicity,
the functional dependence of ¢, and o; on u will henceforth
be suppressed. Because ¥,(u, 0,, 0, 0) = 0 and y,,(u, o,
0,0) <0, o, > o, if Y(u, 05, 0, 0) < 0. Now (&, o,
0, 0)/EU’(m(p, 0;, 0, 0)) = —C(m, 0)) + cov(U'(m(u, o;
0, 0)), 8)/EU’'(w(u, a;, 0, 0)).

Substituting for C(u, o;) (from (26)),
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(A7) ¢u(p, 0, 0, 0)/EU' (m(p, 0, 0, 0)) =
—cov(U'(m(u, a;, 1, P))(1
+1'(@), 0)/EU'(m(u, 0, 1, PP))
+ cov(U'(m(u, a3, 0, 0)), 8)/EU' (m(, 73, 0, 0))
= cov(U'(m(, 03, 0, 0)), 8) /EU'(7(u, 07, 0, 0))
= cov(U'(m(u, a;, 1, P)), 8)/EU'(m(, o, I, PP))
= cov(U'(m(u, a,,1, PHI'(q), 8)/EU'(mw (1, o, I, PP)).

The difference between the first two terms can be shown
to be negative by the methods used to prove part (i) of prop-
osition 1. The details are not repeated here. What remains
to be shown is that the third term is also negative. This
term is negative if U'(m(u, 03, I, P)I'(g) is increasing in 0.

Consider 0, > 0,. Let U}, I} and U;, I; be the marginal
utility and slope of the insurance schedule evaluated at 0,
and 0, respectively. Then we need to show UjI; > U;l;.
Marginal utility U’ is decreasing in 6 since dU’ /00 = U’'(1
+ I'Yo < 0. Consequently, U; < U;. Since I, < 0, U; I} >
U L. On the other hand, I; > I; by the convexity of /. But
U; > 0 and so UjI; > U;I;. Combining the inequalities,
ul > Ul.
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