Liquidity Constraint, LPG Stoves and Charcoal Consumption:

Evidence from a Randomised Controlled Trial

Yonas Alem¹ Remidius Ruhinduka¹ Peter Berck² & Randall Bluffstone³

¹University of Gothenburg

²University of California Berkeley

³Portland State University

Indian Statistical Institute, Annual CECFEE Workshop, Nov 2-3, 2015, New Delhi, India

Liq. Const. LPG Stoves and Charcoal Acknowledgements

- Financial Support from the International Growth Center (IGC) based at the London School of Economics (LSE) to run the RCT is gratefully acknowledged!
- Financial Support from the EfD Initiative to finance the field cost of one of the lead authors is also gratefully acknowledged!

Research Questions and Motivations

Research Question:

 Does relaxing urban households' liquidity (financial) constraints induce them to adopt LPG gas stoves and reduce their charcoal consumption?

Motivations:

- Urban households in Sub-Saharan Africa (SSA) rely largely on charcoal to meet their cooking energy needs
 - In urban Tanzania (TZ), the proportion increased from 47% in 2001 to 71% 2007, a period which Tanzania experienced rapid economic growth
 - This is contrary to the predictions of the "Energy Ladder Theory"
- TZ consumes around 1 million tonnes of charcoal every year and half of it is consumed by a single city, Dar es Salaam

Research Questions and Motivations Cont.

Motivations cont.:

- Biomass fuel consumption has serious environmental, health, and climatic consequences
 - Cause for deforestation and forest degradation, especially in SSA (Campbell et al., 2007)
 - Results in loss of irreplaceable biodiversity, and disturbance of ecosystems
 - Indoor air pollution: 3.3% global burden of diseases, 2 million premature deaths (WHO, 2009).
 - Large effect on women and children who collects wood (Lewis and Pattanayak, 2012)
 - Contributes to climate change through enormous release of black carbon (Kandlikar, et al. 2009)

What we do

We:

- Collaborated with TZ's largest micro-finance institution and distributed LPG stoves in a Randomised Controlled Trial (RCT) set up
- Randomly allocated households into a "purchase through a subsidy" and "purchase on credit" treatments
 - The credit treatment included repayment everyday, repayment every week and repayment every month)
- Measure the impact of LPG adoption on charcoal consumption four months after the intervention

What we find

We document:

 High willingness to adopt LPG stoves: about 70% of the treatment households adopted the stoves

Average Treatment Effects on the Treated (ATT)

- Households who adopted the stoves reduced charcoal consumption by 47% four months after the stoves were distributed
- Those who acquired them through a subsidized price reduced charcoal consumption by 54%
- Those who acquired them on credit reduced charcoal consumption by 41%

Our Contributions

- The question "how to reduce biomass fuel use and improve efficiency" is an important one in developing countries
- Several previous studies attempted to identify the factors that promote adoption of ICS, and impact of ICS on fuel consumption, indoor air pollution, and health in a randomised set-up
 - Smith-Sivertsen, 2009: Guatemala
 - Hanna et al. 2015 Orissa, India
 - Miller and Mobarak, 2013: Bangladesh
 - Bensch et al., Burkina Faso
 - Beyene et al. 2014: Ethiopia
- Social networks, designs that meet households expectation (taste), affordability are important determinants of adoption
- ICS reduce fuelwood use, reduce indoor air pollution, improve health, and welfare of women and children

Our Contributions Cont.

- Few studies investigate adoption of modern (high-cost) cooking appliances and their impact
 - Edward and Langpap (2004): high start-up cost is the major factor that hiders transition to clean energy cooking appliances in urban Guatemala
 - Alem et al. (2014): economic status and education are important factors in urban Ethiopia
- Both these studies use observational data
 - Difficult to infer a causal relationship between income and adoption of modern cooking appliances because of endogeneity

Our Contributions Cont.

- We identify the impact of relaxing financial constraints on adoption of high-cost and high-quality LPG stoves and their impact on charcoal consumption using a randomised controlled set-up
- Africa's tropical forest resources have significant carbon sequestration capacity but are at greater risk than those in other countries
- During 2000-2010, 30 million ha of forest (a size equivalent to Finland) was cleared in Africa, 80% of it was for charcoal and fuel wood
- We shed light on the possible environmental benefits of targeting the price of LPGs to save the remaining forest resources of Africa!

Study Area

- Dar es Salaam, the largest city in Tanzania where more than 70% use charcoal, 25% use firewood, less than 3% use LPG and electricitiy
- Two districts Kinondoni and Temeke (separated by another district called Ilala)
- Tanzania recently discovered huge natural gas reserve (30 trillion cubic feet): Large explorations are underway
 - Expected to play significant role in the economy and household energy transition
- However, this transition could be constrained by the high start-up cost of LPG stoves
- Our study therefore comes at an important point

Figure 1: Map of Dar Es Salaam City Council Showing Municipalities

Sample Selection and Design

- The selected distrits of Kinondoni and Tekeme have 34 and 30 wards respectively
- We selected four wards (two from each district), which are the residence of the majority of low-income households in Dar
- We chose 4 sub-wards (also called streets) from each ward = 16 wards in total
- We allocated 722 households into these sub-wards at the baseline
- Eligibility criteria included not owning LPG and Kerosene stoves but used charcoal as the main fuel
- We assigned our treatments at the street-level (to reduce the effect of spill-overs)

Timeline and Implementation

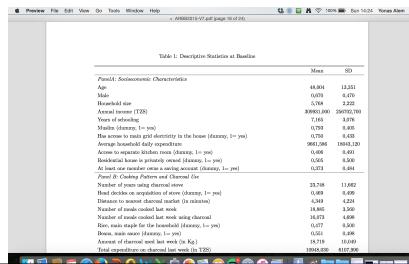
- October-November 2014, we conducted a fact finding (qualitative and quantitative) survey to get background information
 - We acquired useful information on WTP for LPG stoves, awareness, reasons for not owning LPG stoves etc.
- March-April 2015: a comprehensive baseline survey
- May 2015, a small pre-intervention survey and distribution of LPG stoves
- Out of 425 treatment households, only 296 (70% decided to take up the Stove either on credit/subsidy)

Timeline and Implementation

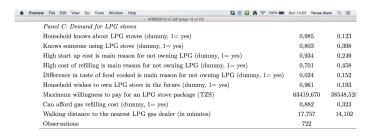
- We implemented our intervention in collaboration with one of Tanzania's biggest micro-finance institutions: Women Advancement Trust, WAT-SACCO
- WAT-SACCO is known and reputable in helping the poor
- Helped us to distribute the LPG stoves to "credit" households
- We took the necessary care to reduce the likelihood of default in payment (asked guarantee letter from ward leaders)
- The intervention was implemented in late May, 2015
- Follow-up survey was conducted in late September, 2015
 - We chose end of Sept. because TZ scheduled the national election end of October

Figure A2.

1). Subjects attending a training session.



II). Picture taken during home visits at follow-up survey.



Baseline Characteristics

Descriptive Statistics

Baseline Characteristics Descriptive Statistics

16

1c.png

Charcoal Use: Baseline and Follow-up Mean Differences

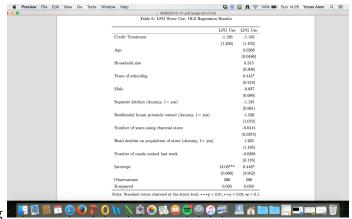
Table 4: Charcoal Consumption at Baseline and Follow-up, Treatment and Control Group

	[Baseline]		[Follow-up]		[Diff.]		
	Mean	SD	Mean	SD	Mean	SD	Obs.
Panel A: Amount of Charcoal in KG.							
Treated	19,24	9,18	13,52	17,33	-5,72	1,14	296
Control	19,40	11,70	19,71	10,02	-0,31	0,87	314
Diff	-0,16	0,85	-6,19 ***	1,14			
Panel B: Value of Charcoal in TZS							
Treated	11112,86	5163,02	8354,46	6541,76	2758,41	483,57	296
Control	11279,09	7455,48	12125,99	7191,85	-846,90	584,59	314
Diff	-166	522	-3772***	558			

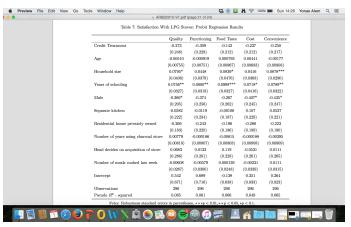
 $Notes: \ ***p < 0.01, **p < 0.05, *p < 0.1.$

Results ATT on Charcoal Consumption

Table 5: Impact of LPG Stoves on Charcoal Consumption


	[1]	[2]	[3]
	[Charcoal/Week - kg (log)]	[Charcoal/Week - kg (log)]	[Charcoal/Week - kg (log)]
Treatment	-0.475***		
	(0.0881)		
Credit Treatment		-0.414***	-0.384***
		(0.0938)	(0.0783)
Subsidy Treatment		-0.541***	-0.527***
		(0.134)	(0.126)
Intercept	2.899***	2.899***	2.784***
	(0.0369)	(0.0369)	(0.248)
Controls	No	No	Yes
Observations	593	593	593
R-squared	0.091	0.094	0.122

 $Notes: \ ***p < 0.01, **p < 0.05, *p < 0.1.$



Results cont. Satisfaction with LPG stoves

6.png

Results Cont.

7.png

Conclusions

- Charcoal, produced to meet urban households' cooking needs has been the most important cause for deforestation and forest degradation in Africa
- One factor that hinders households' transition to clean energy sources is the high start-up cost of modern cooking appliances
- We collaborated with TZ's largest micro-finance and ran an RCT of LPG distribution on credit and subsidy
- We document a large reduction (47.5%) in charcoal use by adopting households
- Those who adopted through a subsidy used the stove more often and reduced larger amount of charcoal (54%) than those who adopted on credit (41%)
 - Possible reason: we conducted the follow-up two months before the repayments have been completed for credit households - they probably did not feel owning the stove

Conclusions

- Millions of ha forest lands of Africa are cleared every year (80%) to meet cooking fuel needs
- Rough computation shows that only our sample of 722 households consume 0.6 ha of forest each week at the baseline (before the intervention)
- Our LPG stove intervention shortly reduced this by half for the treatment group!
- Given Africa's tropical forests documented carbon storage capacity, reducing charcoal consumption and deforestation would provide benefit to the society at large
- Simple policy interventions (e.g., reduceing import duties on LPG stoves) could induce adoption and hence charcoal reduction
- This is the most important message of our study which should be picked up by policymakers, donors and other stakeholders

Conclusions cont.

• Thank you for your attention!