
An Introduction to R
Lattice Graphics

Deepayan Sarkar

Indian Statistical Institute, Delhi

October 2011



R graphics

• R has two largely independent graphics subsystems
• Traditional graphics

• Available in R from the beginning
• Rich collection of tools
• Not very flexible

• Grid graphics
• Relatively recent (2000)
• Low-level tool, highly flexible

• Grid forms the basis of two high-level graphics systems:
• lattice: based on Trellis graphics (Cleveland)
• ggplot2: inspired by “Grammar of Graphics” (Wilkinson)



The lattice package

• Trellis graphics for R (originally developed in S)
• Powerful high-level data visualization system
• Provides common statistical graphics with conditioning

• Emphasis on multivariate data
• Sufficient for typical graphics needs
• Flexible enough to handle most nonstandard requirements

• Traditional user interface:
• Collection of high-level functions: xyplot, dotplot, etc.
• Interface based on formula and data source



High-level functions in lattice

Function Default Display
histogram() Histogram
densityplot() Kernel Density Plot
qqmath() Theoretical Quantile Plot
qq() Two-sample Quantile Plot
stripplot() Stripchart (Comparative 1-D Scatter Plots)
bwplot() Comparative Box-and-Whisker Plots
barchart() Bar Plot
dotplot() Cleveland Dot Plot
xyplot() Scatter Plot
splom() Scatter-Plot Matrix
contourplot() Contour Plot of Surfaces
levelplot() False Color Level Plot of Surfaces
wireframe() Three-dimensional Perspective Plot of Surfaces
cloud() Three-dimensional Scatter Plot
parallel() Parallel Coordinates Plot



The Chem97 dataset

1997 A-level Chemistry examination in Britain
> data(Chem97, package = "mlmRev")
> head(Chem97[c("score", "gender", "gcsescore")])

score gender gcsescore
1 4 F 6.625
2 10 F 7.625
3 10 F 7.250
4 10 F 7.500
5 8 F 6.444
6 10 F 7.750



> histogram(~ gcsescore, data = Chem97)
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> histogram(~ gcsescore | factor(score), data = Chem97)
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> densityplot(~ gcsescore | factor(score), Chem97,
plot.points = FALSE,
groups = gender, auto.key = TRUE)
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Trellis Philosophy: Part I

• Display specified in terms of
• Type of display (histogram, densityplot, etc.)
• Variables with specific roles

• Typical roles for variables
• Primary variables: used for the main graphical display
• Conditioning variables: used to divide into subgroups and

juxtapose (multipanel conditioning)
• Grouping variable: divide into subgroups and superpose

• Primary interface: high-level functions
• Each function corresponds to a display type
• Specification of roles depends on display type

• Usually specified through the formula and the groups
argument



> qqmath(~ gcsescore | factor(score), Chem97,
groups = gender, auto.key = list(columns = 2),
f.value = ppoints(100),
type = c("p", "g"), aspect = "xy")
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> qq(gender ~ gcsescore | factor(score), Chem97,
f.value = ppoints(100), type = c("p", "g"),
aspect = 1)
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> bwplot(factor(score) ~ gcsescore | gender, Chem97)
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> bwplot(gcsescore ~ gender | factor(score), Chem97,
layout = c(6, 1))
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> stripplot(depth ~ factor(mag), data = quakes,
jitter.data = TRUE, alpha = 0.6)
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The VADeaths dataset

• Death rates in Virginia, 1941, among different population
subgroups

> VADeaths

Rural Male Rural Female Urban Male
50-54 11.7 8.7 15.4
55-59 18.1 11.7 24.3
60-64 26.9 20.3 37.0
65-69 41.0 30.9 54.6
70-74 66.0 54.3 71.1

Urban Female
50-54 8.4
55-59 13.6
60-64 19.3
65-69 35.1
70-74 50.0



> barchart(VADeaths, groups = FALSE, layout = c(4, 1))
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> dotplot(VADeaths, groups = FALSE, layout = c(4, 1))
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> dotplot(VADeaths, type = "o",
auto.key = list(points = TRUE, lines = TRUE,

space = "right"))
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> data(Earthquake, package = "nlme")
> xyplot(accel ~ distance, data = Earthquake)
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> xyplot(accel ~ distance, data = Earthquake,
scales = list(log = TRUE),
type = c("p", "g", "smooth"))
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> Depth <- equal.count(quakes$depth, number = 8,
overlap = 0.1)

> summary(Depth)

Intervals:
min max count

1 39.5 63.5 138
2 60.5 102.5 138
3 97.5 175.5 138
4 161.5 249.5 142
5 242.5 460.5 138
6 421.5 543.5 137
7 537.5 590.5 140
8 586.5 680.5 137

Overlap between adjacent intervals:
[1] 16 14 19 15 14 15 15



> xyplot(lat ~ long | Depth, data = quakes)
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> cloud(depth ~ lat * long, data = quakes,
zlim = rev(range(quakes$depth)),
screen = list(z = 105, x = -70),
panel.aspect = 0.75)
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> cloud(depth ~ lat * long, data = quakes,
zlim = rev(range(quakes$depth)),
screen = list(z = 80, x = -70),
panel.aspect = 0.75)
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More high-level functions

• More high-level functions in lattice
• Won’t discuss, but examples in manual page

• Other Trellis high-level functions can be defined in other
packages, e.g.,

• ecdfplot(), mapplot() in the latticeExtra package
• hexbinplot() in the hexbin package



The “trellis” object model

• One important feature of lattice:
• High-level functions do not actually plot anything
• They return an object of class “trellis”
• Display created when such objects are print()-ed or
plot()-ed

• Usually not noticed because of automatic printing rule
• Can be used to arrange multiple plots
• Other uses as well



> dp.uspe <-
dotplot(t(USPersonalExpenditure),

groups = FALSE, layout = c(1, 5),
xlab = "Expenditure (billion dollars)")

> dp.uspe.log <-
dotplot(t(USPersonalExpenditure),

groups = FALSE, layout = c(1, 5),
scales = list(x = list(log = 2)),
xlab = "Expenditure (billion dollars)")

> plot(dp.uspe, split = c(1, 1, 2, 1))
> plot(dp.uspe.log, split = c(2, 1, 2, 1),

newpage = FALSE)
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Trellis Philosophy: Part I

• Display specified in terms of
• Type of display (histogram, densityplot, etc.)
• Variables with specific roles

• Typical roles for variables
• Primary variables: used for the main graphical display
• Conditioning variables: used to divide into subgroups and

juxtapose (multipanel conditioning)
• Grouping variable: divide into subgroups and superpose

• Primary interface: high-level functions
• Each function corresponds to a display type
• Specification of roles depends on display type

• Usually specified through the formula and the groups
argument



Trellis Philosophy: Part II

• Design goals:
• Enable effective graphics by encouraging good graphical

practice (e.g., Cleveland, 1985)
• Remove the burden from the user as much as possible by

building in good defaults into software
• Some obvious examples:

• Use as much of the available space as possible
• Encourage direct comparsion by superposition (grouping)
• Enable comparison when juxtaposing (conditioning):

• use common axes
• add common reference objects (such as grids)

• Inevitable departure from traditional R graphics paradigms



Trellis Philosophy: Part III

• Any serious graphics system must also be flexible
• lattice tries to balance flexibility and ease of use using the

following model:
• A display is made up of various elements
• Coordinated defaults provide meaningful results, but
• Each element can be controlled independently
• The main elements are:

• the primary (panel) display
• axis annotation
• strip annotation (describing the conditioning process)
• legends (typically describing the grouping process)



• The full system would take too long to describe
• Online documentation has details; start with ?Lattice
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