An Introduction to R Lattice Graphics

Deepayan Sarkar

Indian Statistical Institute, Delhi

October 2011

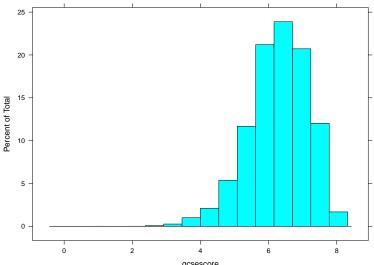
R graphics

- R has two largely independent graphics subsystems
 - Traditional graphics
 - Available in R from the beginning
 - Rich collection of tools
 - Not very flexible
 - Grid graphics
 - Relatively recent (2000)
 - · Low-level tool, highly flexible
- Grid forms the basis of two high-level graphics systems:
 - · lattice: based on Trellis graphics (Cleveland)
 - ggplot2: inspired by "Grammar of Graphics" (Wilkinson)

The lattice package

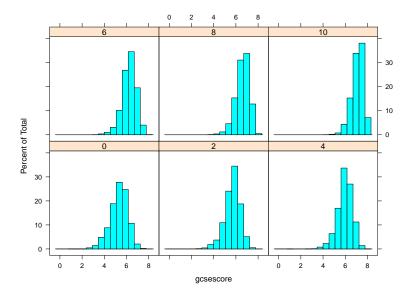
- Trellis graphics for R (originally developed in S)
- Powerful high-level data visualization system
- Provides common statistical graphics with conditioning
 - Emphasis on multivariate data
 - Sufficient for typical graphics needs
 - Flexible enough to handle most nonstandard requirements
- Traditional user interface:
 - Collection of high-level functions: xyplot, dotplot, etc.
 - · Interface based on formula and data source

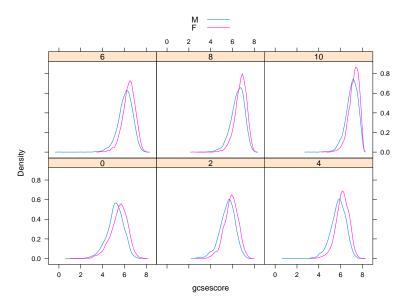
High-level functions in lattice


Function	Default Display
histogram()	Histogram
<pre>densityplot()</pre>	Kernel Density Plot
qqmath()	Theoretical Quantile Plot
qq()	Two-sample Quantile Plot
<pre>stripplot()</pre>	Stripchart (Comparative 1-D Scatter Plots)
bwplot()	Comparative Box-and-Whisker Plots
barchart()	Bar Plot
dotplot()	Cleveland Dot Plot
xyplot()	Scatter Plot
splom()	Scatter-Plot Matrix
contourplot()	Contour Plot of Surfaces
levelplot()	False Color Level Plot of Surfaces
wireframe()	Three-dimensional Perspective Plot of Surfac
cloud()	Three-dimensional Scatter Plot
<pre>parallel()</pre>	Parallel Coordinates Plot

The Chem97 dataset

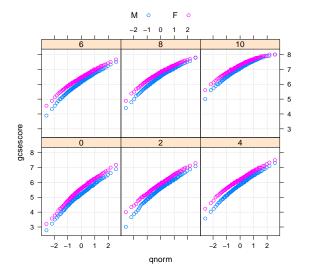
1997 A-level Chemistry examination in Britain

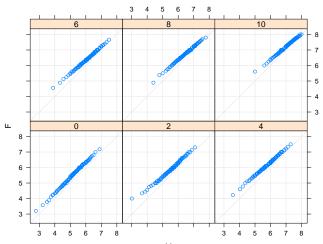

> data(Chem97, package = "mlmRev") > head(Chem97[c("score", "gender", "gcsescore")]) score gender gcsescore F 6.625 1 4 2 10 F 7.625 3 10 F 7.250 4 10 F 7.500 5 8 F 6.444 6 10 F 7.750


> histogram(~ gcsescore, data = Chem97)

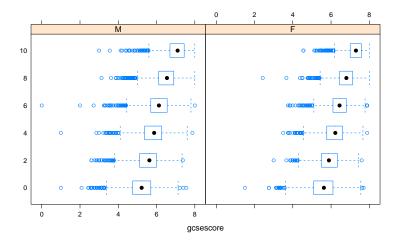
gcsescore

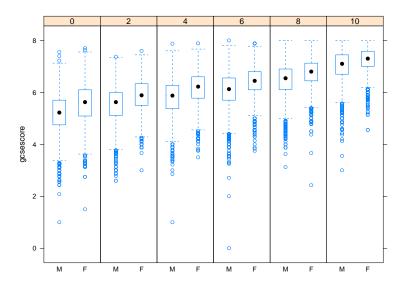
> histogram(~ gcsescore | factor(score), data = Chem97)

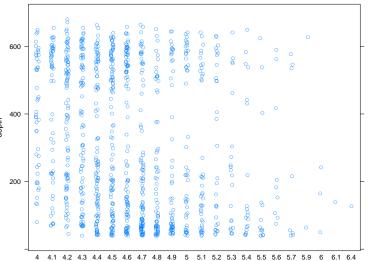



Trellis Philosophy: Part I

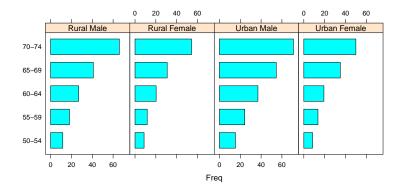
- · Display specified in terms of
 - Type of display (histogram, densityplot, etc.)
 - Variables with specific roles
- Typical roles for variables
 - · Primary variables: used for the main graphical display
 - Conditioning variables: used to divide into subgroups and juxtapose (multipanel conditioning)
 - Grouping variable: divide into subgroups and superpose
- Primary interface: high-level functions
 - · Each function corresponds to a display type
 - · Specification of roles depends on display type
 - Usually specified through the formula and the groups argument


> qqmath(~ gcsescore | factor(score), Chem97, groups = gender, auto.key = list(columns = 2), f.value = ppoints(100), type = c("p", "g"), aspect = "xy")

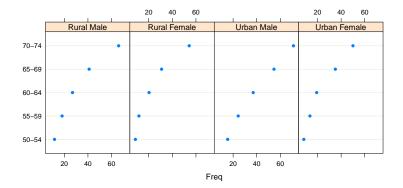


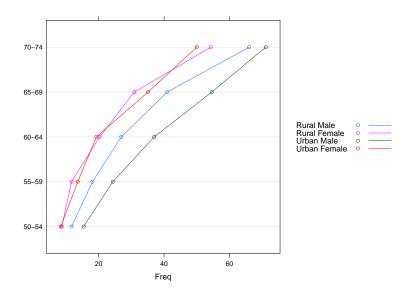

> qq(gender ~ gcsescore | factor(score), Chem97, f.value = ppoints(100), type = c("p", "g"), aspect = 1)

> bwplot(factor(score) ~ gcsescore | gender, Chem97)

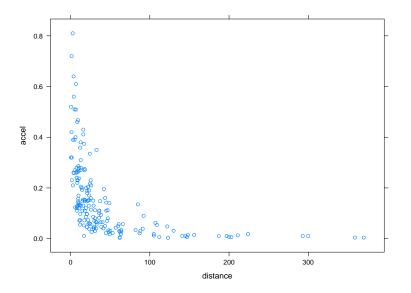

depth

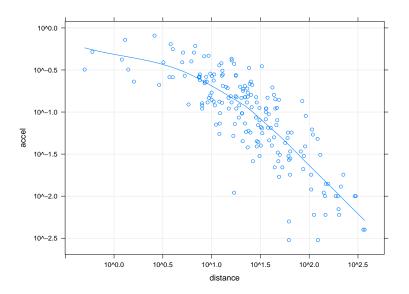
The VADeaths dataset


- Death rates in Virginia, 1941, among different population subgroups
- > VADeaths


	Rural	Male	Rural	Female	Urban	Male
50-54		11.7		8.7		15.4
55-59		18.1		11.7		24.3
60-64		26.9		20.3		37.0
65-69		41.0		30.9		54.6
70-74		66.0		54.3		71.1
	Urban	Femal	le			
50-54		8.	. 4			
55-59 13.6		. 6				
60-64	60-64 19.3		. 3			
65-69	35.1		.1			
70-74	4 50.0		. 0			

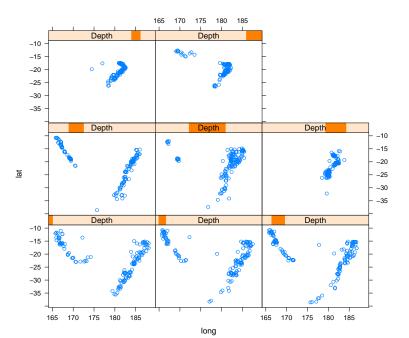
> barchart (VADeaths, groups = FALSE, layout = c(4, 1))

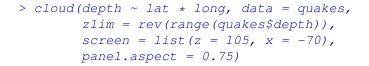

> dotplot(VADeaths, groups = FALSE, layout = c(4, 1))

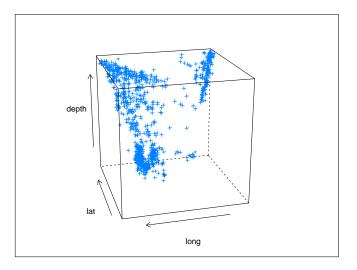


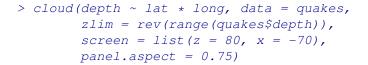
> data(Earthquake, package = "nlme")

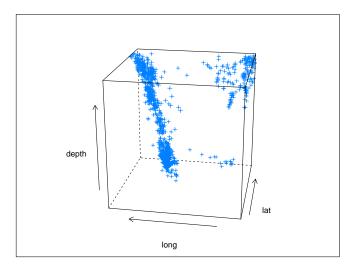
> xyplot(accel ~ distance, data = Earthquake)

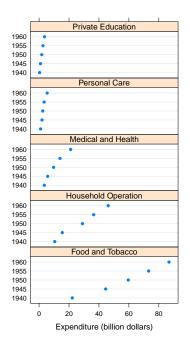


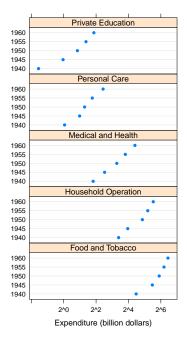

> summary(Depth)


Intervals:


	min	max	count
1	39.5	63.5	138
2	60.5	102.5	138
3	97.5	175.5	138
4	161.5	249.5	142
5	242.5	460.5	138
6	421.5	543.5	137
7	537.5	590.5	140
8	586.5	680.5	137


Overlap between adjacent intervals: [1] 16 14 19 15 14 15 15 > xyplot(lat ~ long | Depth, data = quakes)


More high-level functions


- More high-level functions in lattice
 - Won't discuss, but examples in manual page
- Other Trellis high-level functions can be defined in other packages, e.g.,
 - ecdfplot(), mapplot() in the latticeExtra package
 - hexbinplot () in the hexbin package

The "trellis" object model

- One important feature of lattice:
 - · High-level functions do not actually plot anything
 - They return an object of class "trellis"
 - Display created when such objects are print () -ed or plot () -ed
- Usually not noticed because of automatic printing rule
- Can be used to arrange multiple plots
- Other uses as well

```
> dp.uspe <-
      dotplot(t(USPersonalExpenditure),
              groups = FALSE, layout = c(1, 5),
              xlab = "Expenditure (billion dollars)")
> dp.uspe.log <-
      dotplot(t(USPersonalExpenditure),
              groups = FALSE, layout = c(1, 5),
              scales = list(x = list(log = 2)),
              xlab = "Expenditure (billion dollars)")
> plot(dp.uspe, split = c(1, 1, 2, 1))
> plot(dp.uspe.log, split = c(2, 1, 2, 1),
      newpage = FALSE)
```


Trellis Philosophy: Part I

- · Display specified in terms of
 - Type of display (histogram, densityplot, etc.)
 - Variables with specific roles
- Typical roles for variables
 - · Primary variables: used for the main graphical display
 - Conditioning variables: used to divide into subgroups and juxtapose (multipanel conditioning)
 - Grouping variable: divide into subgroups and superpose
- Primary interface: high-level functions
 - · Each function corresponds to a display type
 - · Specification of roles depends on display type
 - Usually specified through the formula and the groups argument

Trellis Philosophy: Part II

- Design goals:
 - Enable effective graphics by encouraging good graphical practice (e.g., Cleveland, 1985)
 - Remove the burden from the user as much as possible by building in good defaults into software
- Some obvious examples:
 - Use as much of the available space as possible
 - Encourage direct comparsion by superposition (grouping)
 - · Enable comparison when juxtaposing (conditioning):
 - use common axes
 - add common reference objects (such as grids)
- Inevitable departure from traditional R graphics paradigms

Trellis Philosophy: Part III

- · Any serious graphics system must also be flexible
- lattice tries to balance flexibility and ease of use using the following model:
 - · A display is made up of various elements
 - Coordinated defaults provide meaningful results, but
 - · Each element can be controlled independently
 - The main elements are:
 - the primary (panel) display
 - axis annotation
 - strip annotation (describing the conditioning process)
 - legends (typically describing the grouping process)

- · The full system would take too long to describe
- Online documentation has details; start with ?Lattice