
An Introduction to R
Lattice Graphics

Deepayan Sarkar

Indian Statistical Institute, Delhi

October 2011

R graphics

• R has two largely independent graphics subsystems
• Traditional graphics

• Available in R from the beginning
• Rich collection of tools
• Not very flexible

• Grid graphics
• Relatively recent (2000)
• Low-level tool, highly flexible

• Grid forms the basis of two high-level graphics systems:
• lattice: based on Trellis graphics (Cleveland)
• ggplot2: inspired by “Grammar of Graphics” (Wilkinson)

The lattice package

• Trellis graphics for R (originally developed in S)
• Powerful high-level data visualization system
• Provides common statistical graphics with conditioning

• Emphasis on multivariate data
• Sufficient for typical graphics needs
• Flexible enough to handle most nonstandard requirements

• Traditional user interface:
• Collection of high-level functions: xyplot, dotplot, etc.
• Interface based on formula and data source

High-level functions in lattice

Function Default Display
histogram() Histogram
densityplot() Kernel Density Plot
qqmath() Theoretical Quantile Plot
qq() Two-sample Quantile Plot
stripplot() Stripchart (Comparative 1-D Scatter Plots)
bwplot() Comparative Box-and-Whisker Plots
barchart() Bar Plot
dotplot() Cleveland Dot Plot
xyplot() Scatter Plot
splom() Scatter-Plot Matrix
contourplot() Contour Plot of Surfaces
levelplot() False Color Level Plot of Surfaces
wireframe() Three-dimensional Perspective Plot of Surfaces
cloud() Three-dimensional Scatter Plot
parallel() Parallel Coordinates Plot

The Chem97 dataset

1997 A-level Chemistry examination in Britain
> data(Chem97, package = "mlmRev")
> head(Chem97[c("score", "gender", "gcsescore")])

score gender gcsescore
1 4 F 6.625
2 10 F 7.625
3 10 F 7.250
4 10 F 7.500
5 8 F 6.444
6 10 F 7.750

> histogram(~ gcsescore, data = Chem97)

gcsescore

P
er

ce
nt

 o
f T

ot
al

0

5

10

15

20

25

0 2 4 6 8

> histogram(~ gcsescore | factor(score), data = Chem97)

gcsescore

P
er

ce
nt

 o
f T

ot
al

0

10

20

30

0 2 4 6 8

0 2

0 2 4 6 8

4

6

0 2 4 6 8

8

0

10

20

30

10

> densityplot(~ gcsescore | factor(score), Chem97,
plot.points = FALSE,
groups = gender, auto.key = TRUE)

gcsescore

D
en

si
ty

0.0

0.2

0.4

0.6

0.8

0 2 4 6 8

0 2

0 2 4 6 8

4

6

0 2 4 6 8

8

0.0

0.2

0.4

0.6

0.8

10

M
F

Trellis Philosophy: Part I

• Display specified in terms of
• Type of display (histogram, densityplot, etc.)
• Variables with specific roles

• Typical roles for variables
• Primary variables: used for the main graphical display
• Conditioning variables: used to divide into subgroups and

juxtapose (multipanel conditioning)
• Grouping variable: divide into subgroups and superpose

• Primary interface: high-level functions
• Each function corresponds to a display type
• Specification of roles depends on display type

• Usually specified through the formula and the groups
argument

> qqmath(~ gcsescore | factor(score), Chem97,
groups = gender, auto.key = list(columns = 2),
f.value = ppoints(100),
type = c("p", "g"), aspect = "xy")

qnorm

gc
se

sc
or

e

3

4

5

6

7

8

−2 −1 0 1 2

0 2

−2 −1 0 1 2

4

6

−2 −1 0 1 2

8

3

4

5

6

7

8

10

M F

> qq(gender ~ gcsescore | factor(score), Chem97,
f.value = ppoints(100), type = c("p", "g"),
aspect = 1)

M

F

3

4

5

6

7

8

3 4 5 6 7 8

0 2

3 4 5 6 7 8

4

6

3 4 5 6 7 8

8

3

4

5

6

7

8

10

> bwplot(factor(score) ~ gcsescore | gender, Chem97)

gcsescore

0

2

4

6

8

10

0 2 4 6 8

M

0 2 4 6 8

F

> bwplot(gcsescore ~ gender | factor(score), Chem97,
layout = c(6, 1))

gc
se

sc
or

e

0

2

4

6

8

M F

0

M F

2

M F

4

M F

6

M F

8

M F

10

> stripplot(depth ~ factor(mag), data = quakes,
jitter.data = TRUE, alpha = 0.6)

de
pt

h

200

400

600

4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.9 6 6.1 6.4

The VADeaths dataset

• Death rates in Virginia, 1941, among different population
subgroups

> VADeaths

Rural Male Rural Female Urban Male
50-54 11.7 8.7 15.4
55-59 18.1 11.7 24.3
60-64 26.9 20.3 37.0
65-69 41.0 30.9 54.6
70-74 66.0 54.3 71.1

Urban Female
50-54 8.4
55-59 13.6
60-64 19.3
65-69 35.1
70-74 50.0

> barchart(VADeaths, groups = FALSE, layout = c(4, 1))

Freq

50−54

55−59

60−64

65−69

70−74

0 20 40 60

Rural Male

0 20 40 60

Rural Female

0 20 40 60

Urban Male

0 20 40 60

Urban Female

> dotplot(VADeaths, groups = FALSE, layout = c(4, 1))

Freq

50−54

55−59

60−64

65−69

70−74

20 40 60

Rural Male

20 40 60

Rural Female

20 40 60

Urban Male

20 40 60

Urban Female

> dotplot(VADeaths, type = "o",
auto.key = list(points = TRUE, lines = TRUE,

space = "right"))

Freq

50−54

55−59

60−64

65−69

70−74

20 40 60

Rural Male
Rural Female
Urban Male
Urban Female

> data(Earthquake, package = "nlme")
> xyplot(accel ~ distance, data = Earthquake)

distance

ac
ce

l

0.0

0.2

0.4

0.6

0.8

0 100 200 300

> xyplot(accel ~ distance, data = Earthquake,
scales = list(log = TRUE),
type = c("p", "g", "smooth"))

distance

ac
ce

l

10^−2.5

10^−2.0

10^−1.5

10^−1.0

10^−0.5

10^0.0

10^0.0 10^0.5 10^1.0 10^1.5 10^2.0 10^2.5

> Depth <- equal.count(quakes$depth, number = 8,
overlap = 0.1)

> summary(Depth)

Intervals:
min max count

1 39.5 63.5 138
2 60.5 102.5 138
3 97.5 175.5 138
4 161.5 249.5 142
5 242.5 460.5 138
6 421.5 543.5 137
7 537.5 590.5 140
8 586.5 680.5 137

Overlap between adjacent intervals:
[1] 16 14 19 15 14 15 15

> xyplot(lat ~ long | Depth, data = quakes)

long

la
t

−35

−30

−25

−20

−15

−10

165 170 175 180 185

Depth Depth

165 170 175 180 185

Depth

Depth Depth

−35

−30

−25

−20

−15

−10
Depth

−35

−30

−25

−20

−15

−10
Depth

165 170 175 180 185

Depth

> cloud(depth ~ lat * long, data = quakes,
zlim = rev(range(quakes$depth)),
screen = list(z = 105, x = -70),
panel.aspect = 0.75)

lat

long

depth

> cloud(depth ~ lat * long, data = quakes,
zlim = rev(range(quakes$depth)),
screen = list(z = 80, x = -70),
panel.aspect = 0.75)

lat

long

depth

More high-level functions

• More high-level functions in lattice
• Won’t discuss, but examples in manual page

• Other Trellis high-level functions can be defined in other
packages, e.g.,

• ecdfplot(), mapplot() in the latticeExtra package
• hexbinplot() in the hexbin package

The “trellis” object model

• One important feature of lattice:
• High-level functions do not actually plot anything
• They return an object of class “trellis”
• Display created when such objects are print()-ed or
plot()-ed

• Usually not noticed because of automatic printing rule
• Can be used to arrange multiple plots
• Other uses as well

> dp.uspe <-
dotplot(t(USPersonalExpenditure),

groups = FALSE, layout = c(1, 5),
xlab = "Expenditure (billion dollars)")

> dp.uspe.log <-
dotplot(t(USPersonalExpenditure),

groups = FALSE, layout = c(1, 5),
scales = list(x = list(log = 2)),
xlab = "Expenditure (billion dollars)")

> plot(dp.uspe, split = c(1, 1, 2, 1))
> plot(dp.uspe.log, split = c(2, 1, 2, 1),

newpage = FALSE)

Expenditure (billion dollars)

1940
1945
1950
1955
1960

0 20 40 60 80

Food and Tobacco
1940
1945
1950
1955
1960

Household Operation
1940
1945
1950
1955
1960

Medical and Health
1940
1945
1950
1955
1960

Personal Care
1940
1945
1950
1955
1960

Private Education

Expenditure (billion dollars)

1940
1945
1950
1955
1960

2^0 2^2 2^4 2^6

Food and Tobacco
1940
1945
1950
1955
1960

Household Operation
1940
1945
1950
1955
1960

Medical and Health
1940
1945
1950
1955
1960

Personal Care
1940
1945
1950
1955
1960

Private Education

Trellis Philosophy: Part I

• Display specified in terms of
• Type of display (histogram, densityplot, etc.)
• Variables with specific roles

• Typical roles for variables
• Primary variables: used for the main graphical display
• Conditioning variables: used to divide into subgroups and

juxtapose (multipanel conditioning)
• Grouping variable: divide into subgroups and superpose

• Primary interface: high-level functions
• Each function corresponds to a display type
• Specification of roles depends on display type

• Usually specified through the formula and the groups
argument

Trellis Philosophy: Part II

• Design goals:
• Enable effective graphics by encouraging good graphical

practice (e.g., Cleveland, 1985)
• Remove the burden from the user as much as possible by

building in good defaults into software
• Some obvious examples:

• Use as much of the available space as possible
• Encourage direct comparsion by superposition (grouping)
• Enable comparison when juxtaposing (conditioning):

• use common axes
• add common reference objects (such as grids)

• Inevitable departure from traditional R graphics paradigms

Trellis Philosophy: Part III

• Any serious graphics system must also be flexible
• lattice tries to balance flexibility and ease of use using the

following model:
• A display is made up of various elements
• Coordinated defaults provide meaningful results, but
• Each element can be controlled independently
• The main elements are:

• the primary (panel) display
• axis annotation
• strip annotation (describing the conditioning process)
• legends (typically describing the grouping process)

• The full system would take too long to describe
• Online documentation has details; start with ?Lattice

	Introduction
	Basic use
	Univariate
	Tables
	Scatter plots
	Shingles
	Object

	Overview

