
Extending Lattice: Using generics and methods

to implement new visualization methods

within the Trellis framework

Deepayan Sarkar

Abstract

The lattice add-on package implements Trellis graphics in R. One of

the major recent changes to the package API has been to make all high

level functions generic, with the traditional implementations available as

the“formula”method. This allows for cleaner and more flexible implemen-

tations for certain uses that were permitted in the original S-PLUS version

on a one-off basis. For example, dotplot could be used to display one-way

tables, but the new approach naturally extends to multi-way tables as

well. More importantly, it opens up the possibility of new Trellis displays

specifically designed for previously unsupported classes. We present some

examples of such extensions and describe a few issues generally relevant

to the development of new Trellis-style visualizations using the lattice in-

frastructure.

1 Introduction

The lattice add-on package for R (R Development Core Team, 2007) implements
common statistical graphics with multipanel conditioning, not unlike the Trellis
suite in S-PLUS. The primary user interface is a collection of high level func-
tions (xyplot, histogram, cloud, etc.), each producing a certain type of statistical
graphic by default. Many variations of these standard graphics are built into
lattice, and can be activated with additional arguments in the high level func-
tion calls. Figure 1 gives an example using the densityplot function. However,
other kinds of extensions may not be as easily implemented by the casual user.
Third party software authors thus have the opportunity to develop non-trivial
extensions that implement novel visualization methods, while taking advantage
of the considerable infrastructure already present in lattice. In this paper, we
give an overview of the facilities in lattice that aid such extensions.

1.1 Panel functions

The conventional approach to implementing novel visualizations has been to
write new panel functions (and sometimes new prepanel functions as well). To

1

> faithful$Eruptions <- equal.count(faithful$eruptions, 4)

> densityplot(~ waiting | Eruptions, faithful,

+ kernel = "epanechnikov", plot.points = "rug")

waiting

D
en

si
ty

0.00

0.02

0.04

0.06

40 60 80 100

Eruptions

40 60 80 100

Eruptions

40 60 80 100

Eruptions

40 60 80 100

Eruptions

Figure 1: Kernel density estimate of waiting time till eruptions of the Old Faith-
ful geyser, conditional on the duration of the previous eruption. An optional
argument is used to choose the Epanechnikov kernel rather than the default
Gaussian. Arguments to default panel functions (panel.densityplot in this exam-
ple) can be supplied in this manner to produce many common variants.

continue the density example from Figure 1, suppose one wishes to forego the
kernel density estimation method altogether and use the log-spline density es-
itimate (Stone et al., 1997) implemented in the logspline package. This can be
achieved, as shown in Figure 2, through a panel function that computes and
draws the density, along with a prepanel function that computes panel limits.
The relevant functions are defined as:

> library(logspline)

> prepanel.ls <- function(x, n = 50, ...) {

+ fit <- logspline(x)

+ xx <- do.breaks(range(x), n)

+ yy <- dlogspline(xx, fit)

+ list(ylim = c(0, max(yy)))

+ }

> panel.ls <- function(x, n = 50, ...) {

+ fit <- logspline(x)

+ xx <- do.breaks(range(x), n)

+ yy <- dlogspline(xx, fit)

+ panel.rug(x = x, start = 0, end = 0,

+ x.units = c("npc", "native"))

+ panel.lines(xx, yy, ...)

+ }

2

> densityplot(~ waiting | Eruptions, data = faithful,

+ prepanel = prepanel.ls, panel = panel.ls)

waiting

D
en

si
ty

0.00

0.02

0.04

0.06

0.08

40 60 80 100

Eruptions

40 60 80 100

Eruptions

40 60 80 100

Eruptions

40 60 80 100

Eruptions

Figure 2: Conditional log-spline density estimates, implemented using user de-
fined prepanel and panel functions.

1.2 Limitations

Not all extensions can be formulated in this manner. Consider the following
survival fit with two groups:

> library(survival)

> fit <- survfit(Surv(time, status) ~ x, data = aml)

Suppose we wish to plot the survival curves for the two groups in separate panels
(which is not possible with the plot.survfit method) along with confidence bands.
It so happens that all the relevant information is accessible from the “survfit”
object, and the plot we want is fairly simple to produce, as shown in Figure
3. However, this approach has several limitations, not least of which is that it
requires the user to know the internal representation of “survfit”objects.

1.3 Generics and methods

One solution to this is a generic-method system: specifically, if one could write
an xyplot method for “survfit” objects, such a method could encapsulate any
non-standard arguments and special knowledge of class internals. This has the
obvious benefit of not needing new function names unless they are appropri-
ate, keeping the namespace relatively clean. To this end, all lattice high level
functions have been made S3 generic functions, with argument list (x, data, ...).
The data defining the display in these functions have traditionally been speci-
fied using a formula and data frame interface, much like the various statistical
modeling functions in S. These interfaces are now available as “formula”meth-
ods, which are usually the workhorse that other methods end up calling. Thus,
a rudimentary xyplot method for“survfit”objects might be implemented as

> xyplot.survfit <-

+ function(x, data = NULL, type = "s", conf.int = FALSE,

3

> xyplot(upper+surv+lower ~ time | rep(names(strata), strata),

+ data = fit, type = "s")

time

up
pe

r
+

 s
ur

v
+

 lo
w

er

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150

x=Maintained

0 50 100 150

x=Nonmaintained

Figure 3: Survival curves for two groups. The call to produce this plot looks
simple; however, it requires the user to know (1) that“survfit”objects are R lists,
(2) the meaning of components upper, lower, surv and strata, (3) the fact that the
formula in an xyplot call can contain multiple terms (separated by a ”+” sign)
that are superposed and (4) that the type=”s” argument produces the suitable
“steps”. An xyplot.survfit method that encapsulates these details would be more
intutive for the user, and could provide additional niceties like an option for
marking censoring times.

4

+ ylab = "Probability of Survival", ...)

+ {

+ g <- with(x, rep(names(strata), strata))

+ if (conf.int)

+ xyplot(upper+surv+lower ~ time | g,

+ data = x, type = type, ylab = ylab, ...)

+ else

+ xyplot(surv ~ time, data = x, groups = g,

+ type = type, ylab = ylab, ...)

+ }

where the conf.int argument determines whether the confidence intervals will be
plotted. By default, they are not, and all the survival curves are plotted within
a single panel. Figure 3 can then be reproduced (with a better y axis label)
using

> xyplot(fit, conf.int = TRUE)

In the remainder of this paper, we present several other, more realistic, examples
that we hope can serve as models for developers interested in creating their own
extensions.

2 Examples

2.1 S3 methods

In view of the generic-method approach, there are clearly two kinds of exten-
sions. On one hand, there are situations where existing function names are
appropriate; i.e., the function implements a familiar visualization but for a new
type of data source. On the other hand, entirely new names might be appropri-
ate for functions that implement novel visualizations. Examples of the first kind
are given in Figure 4 (a dotplot method for matrices, from the lattice package)
and Figure 5 (an xyplot method for a replicated MCMC object, from the coda
package). For the most part, these methods transform their first argument to a
suitable data frame and call the formula method, perhaps changing the defaults
of some arguments and adding a few more that control the initial transforma-
tion. Rather than listing the function definitions here, we refer the reader to the
actual implementations, available from CRAN (http://cran.r-project.org),
for further details.

2.2 S4 methods

While the S3 scheme works well for plotting whole objects, it is insufficient in
situations where the flexibility of a formula interface is desirable, but with data
objects that go beyond the restrictive data frame paradigm. This is particu-
larly important in the context of modern high throughput bioinformatics data,
where covariate information is often referred to as “phenodata” (usually small)

5

> dotplot(VADeaths, auto.key = list(space = "right"),

+ xlab = "Rate (per 100)", aspect = 0.8, type = "o")

Rate (per 100)

50−54

55−59

60−64

65−69

70−74

20 40 60

Rural Male
Rural Female
Urban Male
Urban Female

Figure 4: Dot plot of death rates (per 100) in Virginia, 1940, produced using
the (S3) dotplot method for“matrix”objects. It is possible to recreate this plot
with the traditional formula interface, but this requires familiarity with the
as.data.frame.table function that must be used to transform the table into a
suitable data frame.

and each “sample” consists of thousands of measurements on the basic experi-
mental unit. Fortunately, multiple dispatch using the S4 method system makes
this fairly simple and the primary challenge is the handling of potentially large
data sets. In Figure 6, we use the densityplot method from the Bioconductor
(Gentleman et al., 2004) package flowViz that dispatches on a“formula”object x
and a“flowSet”object data. In this example, GvHD is a“flowSet”object with 35
samples with some associated pheonodata (e.g., Patient ID and Visit number).
Each sample produces a (on average) 15000 × 8 data matrix, the columns of
which (e.g., FSC-H) are the variables we are interested in visualizing. The näıve
approach would be to convert the full data into an expanded data frame (a
“join” operation), but this would produce a data frame with roughly 15000× 35
rows! The solution used in the flowViz package is to use only the phenodata
to construct a lattice call, keeping the environment containing the actual data
in the scope of the prepanel and panel functions, which access it only when
necessary. No particular care needs to be taken when defining such S4 methods,
as dispatch to appropriate S3 methods is handled automatically.

2.3 New functions

Of course, existing generic function names may not be meaningful for new vi-
sualizations, and a completely new function name is often warranted. Even in
such cases, our recommendation is to create the new function as a generic, along
with specific methods as necessary. This has the benefit of encouraging future

6

> library(coda); data(line)

> xyplot(line, strip = FALSE, strip.left = TRUE, start = 10)

.index

1
2

3
4

0 50 100 150

al
ph

a

−
0.

5
0.

5
1.

5

be
ta

0.
5

1.
5

2.
5

si
gm

a

Figure 5: A diagnostic plot for MCMC objects, produced using the xyplot
method for“mcmc.list” objects defined in the coda package. Unlike a standard
xyplot call, this version by default allows different vertical scales and chooses a
layout that makes panels as wide as possible (rather than have them be close to
squares). The start argument, new in this method, is used to skip the first few
samples.

extensions, and with a coordinated choice of argument names, it also allows
multiple methods in multiple packages (perhaps written by different authors) to
be used simultaneously without causing naming conflicts. An example of this is
the rootogram function used in Figure 7 to create hanging rootograms (Tukey,
1977). While this example uses the“formula”method in the latticeExtra package,
one can concurrently use the version of rootogram in the vcd package, where it is
also a generic function. Generally speaking, creating a new visualization func-
tion usually involves writing new prepanel and panel functions, and writing a
wrapper that ends up calling an existing lattice high level function with a com-
patible formula. The rootogram method for“formula”objects is a good example
of this approach.

Our final example (Figure 8) uses the hexbinplot function from the hexbin
package, which implements hexbin plots (Carr et al., 1987) with multipanel
conditioning. This is a particularly interesting example because of the way it
handles the legend describing the color coding within a panel, which is difficult
because the lattice model has no formal mechanism to allow the panel function to
communicate with the legend. As with high level functions in lattice, hexbinplot
is an S3 generic function for which further methods can be written.

7

> library(flowViz); data(GvHD)

> densityplot(factor(Visit) ~ `FSC-H` | factor(Patient), data = GvHD)

FSC−H

1

2

3

4

5

6

7

5

200 400 600 800 1000

6 7

1

2

3

4

5

6

7

200 400 600 800 1000

9 10

Figure 6: A visualization of the FSC-H channel in the GvHD data (flowViz). Each
panel represents a patient, and the estimated densities of FSC-H for multiple
visits are stacked on top of each other within each panel. The densityplot method
used is an S4 method with signature x=”formula”, data=”flowSet”.

8

> library(latticeExtra)

> df <- make.groups(p47 = rpois(1000, lambda = 47),

+ p50 = rpois(1000, lambda = 50),

+ p53 = rpois(1000, lambda = 53))

> rootogram(~ data | which, data = df,

+ dfun = function(x) dpois(x, lambda = 50))

data

P
(X

=
x)

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

30 40 50 60 70 80

p47

30 40 50 60 70 80

p50

30 40 50 60 70 80

p53

Figure 7: Hanging rootograms (Tukey, 1977) comparing the frequency distri-
bution of simulated Poisson random variates, with mean 47, 50, and 53, to the
theoretical Poisson(50) distribution. A good fit is indicated by the “hanging”
lines uniformly ending near the vertical origin, as in the middle panel. This is
an example of a new display function, complete with the usual features expected
in Trellis graphics, implemented using the infrastructure provided by the lattice
package.

9

> library(hexbin); data(NHANES)

> hexbinplot(Hemoglobin ~ TIBC | Sex, data = NHANES,

+ aspect = 0.85, type = "g")

TIBC

H
em

og
lo

bi
n

5

10

15

20

100 200 300 400 500 600 700

F

100 200 300 400 500 600 700

M Counts

1
13
25
37
49
61
73
85
97

109
121
133
145
157
169
181
193

Figure 8: A conditional plot implementing the hexagonal binning algorithm of
Carr et al. (1987). This example is somewhat challenging for the Trellis model,
as it requires the panels to communicate information regarding bin counts to
the legend.

3 Summary

We have presented in this paper several examples illustrating how the new
generic-method system introduced in lattice allows the development of new intu-
itive, user friendly interfaces. With careful coding practices, such methods can
handle large and complex data structures. In most cases, these new functions
can piggyback on existing high level functions, and rarely require the use of
unexported lattice utilities (in fact, such need should be considered a flaw in the
design of lattice and reported as such). There are of course other, somewhat
different, approaches that extend lattice (notably the nlme and Hmisc packages),
which may serve as better models in specific situations.

One important aspect still missing is an extensible graphical settings system
that allows developers to introduce new graphical parameters that can be ma-
nipulated transparently using the standard interfaces available in lattice for that
purpose. Hopefully, this shortcoming will be addressed at some future date.

References

D. B. Carr, R. J. Littlefield, W. L. Nicholson, and J. S. Littlefield. Scatterplot
matrix techniques for large N . Journal of the American Statistical Associa-

tion, 82:424–436, 1987.

10

Robert C. Gentleman, Vincent J. Carey, Douglas M. Bates, et al.
Bioconductor: Open software development for computational biol-
ogy and bioinformatics. Genome Biology, 5:R80, 2004. URL
http://genomebiology.com/2004/5/10/R80.

R Development Core Team. R: A Language and Environment for Statistical

Computing. R Foundation for Statistical Computing, Vienna, Austria, 2007.
URL http://www.R-project.org. ISBN 3-900051-07-0.

Charles J. Stone, Mark H. Hansen, Charles Kooperberg, and Young K. Truong.
Polynomial splines and their tensor products in extended linear modeling:
1994 Wald memorial lecture. The Annals of Statistics, 25(4):1371–1470, 1997.

John W. Tukey. Exploratory Data Analysis. Addison-Wesley Publishing Co Inc,
1977.

11

