Some results on Transition Probabilities

S. M. SRIVASTAVA

ABSTRACT

Motivated by some applications in modal logic, using measurable selection theorems, we prove the following results on the existence of transition probabilities. In what follows, X and Y are uncountable Polish spaces with λ a Borel probability on X and $B \subset X \times Y$ a Borel set.

Result 1. Let \mathcal{A} be a countably generated sub σ -algebra of the Borel σ -algebra \mathcal{B}_Y . Suppose for each $x \in X$, $P(x, \cdot)$ is a probability measure on \mathcal{A} such that for every $A \in \mathcal{A}$, $x \to P(x, A)$ is Borel measurable. Then, for each $x \in X$, there is a Borel probability $Q(x, \cdot)$ on Y extending $P(x, \cdot)$ with $x \to Q(x, C)$ λ -measurable for every Borel $C \subset Y$. We also give a necessary and sufficient condition under which we can choose the extensions $Q(x, \cdot)$ so that for every Borel set $C \subset Y$, $x \to Q(x, C)$ is Borel measurable.

Result 2. Assume that for every $x \in X$, the section $B_x = \{y \in Y : (x, y) \in B\}$ is uncountable. Then for every $x \in X$, there is a continuous Borel probability $P(x, \cdot)$ on Y with topological support contained in B_x such that for every Borel $C \subset Y$, $x \to P(x, C)$ is λ -measurable.