
Continuity and Incentive Compatibility

in Cardinal Mechanisms ∗

Lars Ehlers

Dipjyoti Majumdar

Debasis Mishra

and Arunava Sen †

September 13, 2019

Abstract

We show that every cardinal incentive compatible voting mechanism satisfying a

continuity condition, can only take ordinal, but not cardinal information into account.

Our results apply to many standard models in mechanism design without transfers,

including the standard voting models with any domain restrictions.

∗We are grateful to two anonmous referess and the Editor-in-Chief Atsushi Kajii for their comments and

suggestions. We thank Yaron Azrieli, Abhay Bhatt, Benjamin Brooks, Christopher Chambers, Siddhartha

Chatterjee, Bhaskar Dutta, Albin Erlanson, Ozgur Kibris, Vikram Manjunath, Benny Moldovanu (and

his students), Herve Moulin, Shasikanta Nandeibam, Arup Pal, Marek Pycia, Shigehiro Serizawa, William

Thomson, and seminar participants at the 2015 World Congress of Econometric Society, 2015 Canadian

Economic Theory Conference, 2014 Society for Social Choice and Welfare meeting and Osaka University for

useful discussions.
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1 Introduction

Many important models in mechanism design preclude the use of monetary transfers. This

may be due to ethical (school choice problems, kidney exchange problems) or institutional

(voting) reasons. A typical model in such an environment consists of a set of alternatives and

ordinal preferences (strict linear orders) of agents over these alternatives. A mechanism or a

social choice function (scf) selects a lottery over the set of alternatives. A notable feature of

these models is that they only use ordinal information about preferences over alternatives.

In this paper, we ask if there is any loss of generality in restricting attention to ordinal

mechanisms in such environments.

Casual reasoning suggests that a mechanism that uses “a lot of” information regarding

agents’ preferences is more susceptible to manipulation by agents. Two well-known results in

this literature are illustrations of this informal principle. If all preferences are admissible, the

Gibbard-Satterthwaite Theorem (Gibbard, 1973; Satterthwaite, 1975) states that the only

information that an incentive compatible mechanism can use, is the preference information

of a single (dictator) agent. If preferences are single-peaked, only peaks of agent preferences

can be used in computing the social outcome at a profile (Moulin, 1983). Our results ac-

cord with this principle. Although cardinal information is available, we show that incentive

compatibility in (private values) voting models implies that most of it cannot be used by the

designer.

If the solution concept is dominant strategy and the mechanism is deterministic (i.e.,

lotteries produced by the scf are degenerate), then incentive compatibility immediately im-

plies that the scf cannot be sensitive to cardinal information.1 However, the answer to this

question is not obvious if either (a) we allow for randomization and/or (b) we use the weaker

solution concept of Bayesian incentive compatibility. 2 The central issue in such cases is that

an agent has to evaluate lotteries based on cardinal utilities over alternatives. We follow the

standard practice of evaluating lotteries using the expected utility criterion. Consequently,

the evaluation of lotteries uses cardinal preference information of agents. Moreover, it implic-

itly imposes a domain restriction on agent preferences over the outcomes of the mechanism

(i.e. lotteries). It seems natural therefore to believe that this cardinal preference information

1 To see this, suppose the scf picks alternative a when agent i reports some utility representation of his true

preference ordering Pi (a strict ordering), but picks an alternative b for some other utility representation.

If a 6= b, then agent i will clearly manipulate to the utility representation that picks the higher ranked

alternative according to Pi.
2 The demanding requirement of dominant strategies with deterministic mechanisms often leads to im-

possibility results in standard voting models (Gibbard, 1973; Satterthwaite, 1975). Using randomization

or the weaker solution concept of Bayesian incentive compatibility expands the set of incentive compatible

mechanisms. Randomization is a also a natural device for achieving fairness.
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can be used by the mechanism designer to determine the value of the scf at various profiles.

Our main results (Thoerem 1, Theorem 2 and Theorem 3) shows this to be false. We

establish that every dominant strategy incentive compatible, cardinal and random scf that

satisfies some version of continuity, is ordinal. We discuss two notions of ordinality and,

correspondingly, two notions of continuity. To understand them, note that the type of an

agent in our cardinal model is a utility vector over alternatives and agents use expected

utility to evaluate lotteries. Now, consider an agent i and fix the utility vectors of other

agents at u−i.

Our first notion of ordinality requires that we treat two utility vectors representing the

same ordinal ranking over lotteries in the same manner. In other words, we say that an scf

is vNM-ordinal if ui and u′i are two utility vectors which are affine transformations of each

other, then the outcome of the scf is the same at (ui, u−i) and (u′i, u−i).

To understand vNM-ordinality better, note that the outcome of an scf in our model is

a lottery over the set of alternatives. Agents evaluate lotteries over alternatives using the

expected utility criterion. By the expected utility theorem, the set of all utility vectors

over alternatives can be partitioned into equivalence classes where utility vectors within each

equivalence class rank lotteries in the same way. vNM-ordinality requires that scfs assign

the same lottery to all utility vectors within an equivalence class.

Note however that even though these utility vectors rank the lotteries the same manner,

they do not assign them the same expected utility values. vNM-ordinality amounts to ig-

noring the expected values of the lotteries and only considering ordinal ranking of lotteries.

Though this is without loss of generality in a model where the designer only cares about or-

dinal ranking of lotteries (i.e., utility is ordinal), as we show, vNM-ordinality is not implied

by incentive compatibility. Hence, it is not an assumption that can be imposed without loss

of generality when utility is cardinal.

Our second notion of ordinality, which we call strong ordinality, requires that the scf be

sensitive to only ordinal ranking of alternatives. In other words, strong ordinality says that if

ui and u′i are two utility vectors which represent the same ordinal ranking over alternatives,

then the outcome of the scf is the same at (ui, u−i) and (u′i, u−i). Strong ordinality implies

vNM-ordinality because if ui and u′i are affine transformations of each other, then they

represent the same ordinal ranking over alternatives.

We impose two versions of continuity. Fix the types of all agents except an arbitrary agent

i. If i varies the cardinal intensities of her preferences over alternatives without changing her

ordinal ranking over the alternatives, then the outcome of the scf must vary continuously. Our

notion of continuity is clearly weaker than the standard notion in that it applies only to sub-

domains where the ordinal rankings over alternatives are unchanged. Thus, our formulation

allows scfs to be sensitive to cardinal intensities but restricts them to be continuous in a
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limited sense. We call this requirement cone continuity (c-continuity). We also consider a

stronger version of continuity where we require the outcome of the scf to vary uniformly

continuously. We call this requirement uc-continuity. 3

Our first result (Theorem 1) shows that every dominant strategy incentive compatible

scf is vNM-ordinal almost everywhere. In other words, there is a dense subset of the do-

main where the scf is vNM-ordinal and the complement of this subset has measure zero.

We give an example to illustrate that dominant strategy incentive compatibility does not

imply vNM-ordinality (everywhere) - this is in contrast to the trivial conclusion in the de-

terministic scf case, where incentive compatibility implies (strong) ordinality. We use our

main result to establish two striking results: (a) every c-continuous and dominant strategy

incentive compatible scf is vNM-ordinal (Theorem 2) and (b) every uc-continuous and dom-

inant strategy incentive compatible scf is strongly ordinal (Theorem 3). We emphasise here

that incentive compatibility itself implies c-contunuity of the scf almost everywhere. Our as-

sumption implies that if we strengthen it to everywhere, we get vNM-ordinal scfs. Further,

if we strengthen it to uc-continuity everywhere, we get strongly ordinal scfs. We discuss the

implications of c-continuity and uc-continuity on our results in greater detail in Remarks 3

and 4.

It is well known that there are incentive compatible scfs that are not strongly ordinal -

we give some examples later. The uc-continuity condition requires that as the cardinal value

of all the alternatives approach zero for the agent, the value of the scf must converge to any

single value. This drives the strong ordinality result.

If the solution concept is Bayesian incentive compatibility, our conclusions are in terms

of interim allocation probabilities. 4 In particular, we show that every cardinal Bayesian

incentive compatible mechanism satisfying c-continuity property must be such that an agent’s

interim allocation probability of each alternative does not change whenever she changes

her type by using an affine transformation. Similarly, every cardinal Bayesian incentive

compatible mechanism satisfying uc-continuity property must be such that an agent’s interim

allocation probability of each alternative does not change whenever she changes her type such

that the ordinal ranking over alternatives do not change. We note that these results for the

Bayesian incentive compatibility case requires no assumptions on the priors of the agents.

As an application of our result, we show that the utilitarian scf is not Bayesian incentive

3In general, uniform continuity is stronger than continuity, but they become equivalent if the domain is

compact. Since we apply our continuity requirements on subdomains which are open, this equivalence is not

true for us.
4The interim allocation probability of an alternative being chosen at a type of agent i is the expected

probability of that alternative being chosen, where the expectation is the conditional expectation over all

possible types of other agents conditional on the type of agent i.
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compatible under mild conditions on the priors of the agents and the type space. Further, we

show that among all weighted utilitarian scfs, except the dictatorship (which assigns positive

weight on one agent and zero weight on all other agents), no other scf is Bayesian incentive

compatible.

Our results apply to standard voting models but can also be applied to private good

allocation problems (for instance, matching models) with the additional assumption of non-

bossiness. Non-bossiness requires the following: a type change by an agent that does not

change her allocation also leaves the allocations of all other agents unchanged. Introduced

by Satterthwaite and Sonnenschein (1981), non-bossiness is a commonly used condition in

the literature (Papai, 2000; Ehlers, 2002).

We believe that the paper contributes to the literature on mechanism design without

transfers in several ways. It provides a foundation for the use of ordinal mechanisms. More-

over, we believe that our paper makes a methodolgical contribution. We use techniques from

multidimensional mechanism design with transfers, particularly subgradient techniques used

in that literature, to prove our results. Related methods have been used in some restricted

one dimensional problems in the voting literature recently (Borgers and Postl, 2009; Goswami

et al., 2014; Gershkov et al., 2014; Hafalir and Miralles, 2015). To the best of our knowledge,

ours is the first paper to use the multidimensional versions of these results in such a setting.

We define the type space of an agent by specifying an arbitrary set of permissible lin-

ear orders over alternatives and considering all positive utility functions representing these

orders. Thus our specification requires maximal cardinal richness consistent with an arbi-

trary set of ordinal restrictions. Our results therefore hold for standard unrestricted ordinal

preferences, single-peaked ordinal preferences, and all standard domain restrictions studied

in strategic social choice theory - here, domain restriction means restrictions on the ordinal

ranking of alternatives (degenerate lotteries).

1.1 Cardinal versus Ordinal Utility

A critical feature of our model is the cardinality assumption, i.e. the assumption that every

agent can associate a real number (or value) with every alternative. We believe this is a

reasonable assumption in many situations of interest. For instance, the alternatives could be

possible locations of a public facility. The utility associated with each location by an agent

is the (privately observed) transportation or time cost to each location. Or the alternatives

could be production plans relevant to several managers of a firm. The value of each plan

to a manager is the profit associated with it. Moreover, each manager’s profit is private

information because of non-publicly observed costs. Notice that these utilities are measured

in specific units in these models - time/money in the first example and money in the second
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example. Hence, the utility numbers are easily measurable and carry significance. Without

these utility numbers, a planner will have to disregard intensity of preferences of agents in

these models.

We note that the use of cardinal utilities in models without transfers, is widespread -

recent instances include Schmitz and Troger (2012); Nandeibam (2013); Azrieli and Kim

(2014); Ben-Porath et al. (2014); Ashlagi and Shi (2014); Gershkov et al. (2014). 5

There is a long standing debate in utility theory on the issue whether utility is ordinal or

cardinal (Alchian, 1953; Strotz, 1953; Baumol, 1958). Our results provide a mechanism design

perspective to this debate by showing that even if utility is cardinal, incentive compatibility

and continuity imply that this cardinal information must be ignored. Hence, our results can

be seen as providing a foundation for using ordinal utility models.

2 The Model

We first present a simple one-agent model. We show later how the single-agent results can

be extended to the multiple agent framework. There is a finite set of alternatives denoted

by A = {a, b, c, . . .} with |A| ≥ 2. Let P be the set of all strict (linear) orderings over the

set of alternatives A. For every P ∈ P , we say a utility function v : A → R+ represents P

if for all a, b ∈ A, aPb if and only if v(a) > v(b). For every P ∈ P , let V P be the set of all

utility functions that represent P . Note that V P is an open cone in R|A|+ . 6

Throughout the paper, we will fix a domain D ⊆ P and let V = ∪P∈DV P . The type of

the agent is a vector v ∈ V . A social choice function (scf) is a map f : V → L(A), where

L(A) is the set of lotteries over A. Notice that our scfs allow for randomization. For every

v ∈ V , we denote the probability that the scf f chooses a ∈ A at v by fa(v).

We investigate two notions of incentive compatibility: dominant strategy and Bayesian.

When we show how we extend our results to a multi-agent model, we also clarify how

our results adapt in these two notions of incentive compatibility. In the one-agent model,

incentive compatibility is defined as follows.

Definition 1 An scf f is incentive compatible if for all v, v′ ∈ V , we have

v · f(v) ≥ v · f(v′).

5 Gershkov et al. (2014) consider deterministic dominant strategy incentive compatible mechanisms, where

restricting attention to ordinal mechanisms is without loss of generality. However, they consider cardinal

utilities to compute an optimal mechanism.
6 Our results can be extended if V P consists of all utility vectors, including the negative ones, representing

P .
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Depending on the solution concept, incentive compatibility here may refer to dominant

strategy incentive compatibility or Bayesian incentive compatibility. 7

2.1 Ordinal Mechanisms

We introduce two notions of ordinality here. The first one is a strong notion of ordinality in

this context.

Definition 2 An scf f is strongly ordinal if for all P ∈ D, for all v, v′ ∈ V P , we have

f(v) = f(v′).

Strong ordinality requires that we completely ignore cardinal intensities of agents on the

alternatives and only consider ordinal rankings. Note that strong ordinality only requires

the scf to produce the same outcome in each subdomain, i.e., fixing the ordinal ranking of

alternatives in A. Hence, it does not require the scf to be a constant scf - in particular, it

can be sensitive to ordinal ranking over alternatives.

However, since the outcome of the scf is a lottery over alternatives, the appropriate

notion of ordinality in this context must ignore cardinal utilities of lotteries and only consider

ordinal ranking of lotteries. Since we are using expected utility to compute cardinal utilities

of lotteries, the expected utility theorem defines a specific ordinal ranking of lotteries.

For any u, v ∈ V , u is an affine transformation of v if there exists α > 0 and β ∈ R such

that u(a) = αv(a) + β for all a ∈ A. Any utility function v induces a ranking over lotteries

in L(A) via the expected utility theorem. If u is an affine transformation of v, then u and v

induce the same ranking over lotteries. Consequently, the set of utility functions V can be

partitioned into equivalence classes, each representing a unique ranking of lotteries in L(A).

This gives rise to the following notion of ordinality.

Definition 3 An scf f is vNM-ordinal if for every u, v ∈ V such that u is an affine

transformation of v, we have f(u) = f(v).

A vNM-ordinal scf does not distinguish between utility functions belonging to the same

equivalence class. It should be noted that vNM ordinality is much weaker than strong

ordinality that we have defined.

If we use a vNM-ordinal scf, then it is without loss of generality to restrict attention to

the following domain.

7 The incentive compatibility of an ordinal scf is straightforward to define if the solution concept is dom-

inant strategies and the scf is deterministic. If the solution concept is Bayesian or if we consider randomized

scfs, then incentive compatibility in an ordinal model is usually defined in terms of a first-order stochastic

dominance relation (Gibbard, 1977; d’Aspremont and Peleg, 1988; Majumdar and Sen, 2004).
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Definition 4 A domain V vNM ⊆ R|A| is a vNM domain if for every v ∈ V vNM , (i)

v(a) 6= v(b) for all a ∈ A and for all b 6= a, (ii) v(a) = 1 if v(a) > v(b) for all b 6= a and

(iii) v(a′) = 0 if v(a′) < v(b) for all b 6= a′.

v(a)

v(b)

v(a) > v(b) > v(c)

v(b) > v(a) > v(c)

(1, 0)

(0, 1)

Figure 1: Our domain and the vNM domain

Consider an example with three alternatives A = {a, b, c} and two possible strict linear

orders in D: for every v ∈ V , either v(a) > v(b) > v(c) or v(b) > v(a) > v(c). The projection

of V to the hyperplane v(c) = 0 is shown in Figure 1, which has two cones (above and below

the 45-degree line), each representing the strict linear orders in D. The vNM domain in this

case consists of two lines as shown in Figure 1.

If an scf f is vNM-ordinal, then its domain can be restricted to V vNM in the following

sense: for every v ∈ V , there exists a unique v′ ∈ V vNM such that v′ is an affine transforma-

tion of v and f(v) = f(v′). Moreover, any f defined on the vNM domain can be uniquely

extended to a vNM-ordinal scf over the entire domain. Further, such an extension is incentive

compatible if and only if f is incentive compatible on the vNM domain.

3 Incentive Compatibility and vNM-ordinality

We are not assuming vNM-ordinality to begin with - we do not see any compelling reason

to do so, particularly in a cardinal setting. By not assuming vNM-ordinality we are allowing

the scf to be sensitive to the expected value of lotteries. Moreover, incentive compatibility

does not imply vNM-ordinality. The following example illustrates that we can have incentive

compatible scfs that are not vNM-ordinal.
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Example 1 Let A = {a, b, c}. Fix a strict linear order P , and let the top, middle, and

bottom ranked alternatives be a, b, and c respectively. We now define an scf f as follows.

For any v ∈ V P , we define f(v) ≡ (fa(v), f b(v), f c(v)) as:

f(v) =


(1
4
, 1
4
, 1
2
) if [v(a)− v(b)] > [v(b)− v(c)]

(0, 3
4
, 1
4
) if [v(a)− v(b)] < [v(b)− v(c)]

(0, 3
4
, 1
4
) if [v(a)− v(b)] = [v(b)− v(c)] and v(a)− v(c) > 1

(1
4
, 1
4
, 1
2
) if [v(a)− v(b)] = [v(b)− v(c)] and v(a)− v(c) ≤ 1

Figure 2 shows the example in R2 by projecting the type space onto the hyperplane

v(c) = 0. The regions that assign the lottery (0, 3
4
, 1
4
) are shown above the line v(a) = 2v(b)

(in red color with dashes), while the region that assign the lottery (1
4
, 1
4
, 1
2
) is shown below

the line v(a) = 2v(b) (in blue color with dots). On the line v(a) = 2v(b), f assigns the lottery

(0, 3
4
, 1
4
) for v(a) > 1 and the lottery (1

4
, 1
4
, 1
2
) for v(a) ≤ 1.

v(a)

v(b)

lottery (1
4
, 1
4
, 1
2
)

lottery (0, 3
4
, 1
4
)

v(a) = 2v(b)

Figure 2: An example of an scf that violates vNM-ordinality

We first claim that f is incentive compatible. Pick v, v′ ∈ V P . We consider two cases.

Case 1. Suppose f(v) = (1
4
, 1
4
, 1
2
). Notice that, by definition of f , [v(a)−v(b)] ≥ [v(b)−v(c)].

If f(v′) = f(v), then the agent cannot manipulate from v to v′. So, suppose that f(v′) =

(0, 3
4
, 1
4
). Then, truthtelling at v gives the agent an utility equal to

1

4
[v(a) + v(b)] +

1

2
v(c).

Manipulating to v′ gives the agent an utility equal to

3

4
v(b) +

1

4
v(c).
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The difference in utility between truthtelling and manipulation is

1

4
[v(a)− 2v(b) + v(c)] =

1

4

[
[v(a)− v(b)]− [v(b)− v(c)]

]
≥ 0,

where the inequality followed from our earlier conclusion that [v(a) − v(b)] ≥ [v(b) − v(c)].

Hence, f is incentive compatible.

Case 2. Suppose f(v) = (0, 3
4
, 1
4
). Notice that, by definition of f , [v(a)−v(b)] ≤ [v(b)−v(c)].

If f(v′) = f(v), then the agent cannot manipulate from v to v′. So, suppose that f(v′) =

(1
4
, 1
4
, 1
2
). Then, truthtelling at v gives the agent an utility equal to

3

4
v(b) +

1

4
v(c).

Manipulating to v′ gives the agent an utility equal to

1

4
[v(a) + v(b)] +

1

2
v(c).

The difference in utility between truthtelling and manipulation is

1

4
[−v(a) + 2v(b)− v(c)] =

1

4

[
[v(b)− v(c)]− [v(a)− v(b)]

]
≥ 0,

where the inequality followed from our earlier conclusion that [v(a) − v(b)] ≤ [v(b) − v(c)].

Hence, f is incentive compatible.

To verify that f is not vNM-ordinal, pick v ≡ (2, 1, 0) and v′ ≡ (1, 0.5, 0). Note that

f(v′) = (1
4
, 1
4
, 1
2
) and f(v) = (0, 3

4
, 1
4
), but v is an affine scaling of v′. This implies that f is

not vNM-ordinal.

3.1 Almost vNM-ordinality

Though Example 1 showed that incentive compatibility does not imply vNM-ordinality, one

can see that vNM-ordinality is violated in that example in a small subset of the domain. We

formalize this intuition and show that incentive compatibility implies vNM-ordinality almost

everywhere.

Definition 5 A social choice function f is almost vNM-ordinal if for every P ∈ D,

there exists V̄ P ⊆ V P such that

(i) V̄ P is dense in V P and V P \ V̄ P has measure zero.

(ii) if u ∈ V̄ P and v is an affine transformation of u, then v ∈ V̄ P .
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(iii) for every u, v ∈ V̄ P , if u and v are affine transformations of each other, then f(v) =

f(u).

A scf is almost vNM-ordinal if it is vNM-ordinal over a set V̄ P that is “generic” with

respect to V P . Part (ii) of Definition 5 ensures that vNM-ordinality applies non-vacuously

- whenever u belongs to V̄ P , so do all its affine transformations. In Figure 1, there are sets

that are generic in each of the blue and red cones. Pick u in one of these sets, say in the

red cone. Then every v on the infinite ray containing the origin and u (excluding the origin)

belongs to the generic set for the red cone and vNM ordinality applies, i.e. f(u) = f(v).

Our first main result is the following.

Theorem 1 Every incentive compatible scf is almost vNM-ordinal.

Proof : Define the indirect utility function Uf for any incentive compatible scf f as follows:

for all v ∈ V , Uf (v) = v · f(v). Fix a P ∈ D and let v, v′ ∈ V P . An immediate consequence

of incentive compatibility is:

Uf (v) ≥ Uf (v′) + (v − v′) · f(v′)

Consequently, Uf is convex and f(v′) is a subgradient of Uf at v′ (see Chapter 23 in

Rockafellar (1970)). Moreover, f(v′) is the gradient of Uf at all points v′ where Uf is

differentiable (Theorem 25.1 in Rockafellar (1970)). Let V̄ P be the set of all such points.

Since a convex function is differentiable almost everywhere, V̄ P is dense in V P and its

complement V P \ V̄ P has measure zero. We show below that V̄ P satisfies parts (ii) and (iii)

of Definition 5.

Consider any v ∈ V̄ P and consider u ∈ V P such that u(a) = αv(a) + β for all a ∈ A,

where α > 0 and β ∈ R. Using vector notation, we will write u = αv + 1β, where 1β is the

vector in R|A| all of whose components are β. We will show that (a) f(u) = f(v) and (b)

u ∈ V̄ P . We do this in three steps.

Step 1 - A property of Uf . Incentive constraints imply that

v · f(v) ≥ v · f(u),

αv · f(u) + β = u · f(u) ≥ u · f(v) = αv · f(v) + β.

The second inequality implies that v · f(u) ≥ v · f(v), and this along with the first inequality

implies that

v · f(v) = v · f(u). (1)
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Now,

Uf (u) = u · f(u) = αv · f(u) + β

= αv · f(v) + β

= αUf (v) + β,

where the third equality follows from Equation 1.

Step 2. For every δ > 0 and a ∈ A, let 1aδ denote the vector in R|A| whose component for

alternative a is δ with all other components being zero. Let δ′ = δ
α

. We have

Uf (u+ 1aδ) = Uf (αv + 1β + 1aδ)

= Uf (α(v + 1aδ′) + 1β)

= αUf (v + 1aδ′) + β,

where the last equality follows from Step 1.

Step 3. We can now conclude the proof. Consider any δ > 0 and a ∈ A. Let δ′ = δ
α

. Now,

since v ∈ V̄ P , f(v) is the gradient of Uf at v. Using this, we can write

lim
δ→0

Uf (u+ 1aδ)− Uf (u)

δ
= lim

δ→0

[
αUf (v + 1aδ′) + β

]
−
[
αUf (v) + β

]
δ

= lim
δ→0

αUf (v + 1aδ′)− αUf (v)

δ

= lim
δ′→0

Uf (v + 1aδ′)− Uf (v)

δ′

= fa(v),

where the property derived in Step 2 was used in the first equality and the assumption that

v ∈ V̄ P , in the last equality. This shows that the partial derivative of Uf along a exists at u.

This implies that Uf is differentiable at u 8. Hence, u ∈ V̄ P . But the above equations also

show that the gradient at u equals f(v). Hence, f(u) = f(v). This completes the proof. �

The proof of Theorem 1 reveals that an incentive compatible scf is continuous almost

everywhere. We record this fact as a corollary below. To state the corollary, we denote by

fP the restriction of an scf f to any arbitrary P ∈ D. Note that fP is a map fP : V P → L(A).

Corollary 1 Suppose f is an incentive compatible scf. For every P , fP is continuous

almost everywhere in V P .

8A convex function defined on an open convex set is differentiable at a point if and only if its partial

derivatives exist at that point, see Chapter 23 in Rockafellar (1970).
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One way to interpret Corollary 1 is as follows: Theorem 1 shows that incentive compatibility

implies the indirect utility function Uf is convex, and f(.) is the sub-gradient. Any convex

function is differentiable almost everywhere, and wherever the function is differentiable, the

derivative is continuous. Corollary 1 is simply a re-statement of this fact.

3.2 Continuous Mechanisms

Corollary 1 shows that some form of continuity is already implied almost everywhere by

incentive compatibility. In this section, we begin by modifying this implication in a minor

way. While the modifications we talk about are technical, we believe continuity is a natural

assumption to impose on mechanisms - small changes in player announcements should not

lead to dramatic changes in outcomes. All our continuity properties are imposed on fP for

arbitrary P . We begin with the standard notion of continuity.

Definition 6 An scf f is cone continuous (c-continuous) if for every P ∈ D, fP is

continuous in V P , i.e., for every v ∈ V P , for every ε > 0, there exists δ such that for all

v′ ∈ V P with ‖v − v′‖ < δ, we have ‖f(v)− f(v′)‖ < ε.

Fix an scf f and P ∈ P . By allowing for cardinal scfs, we are allowing fP to be a

non-constant map, i.e., for any v, v′ ∈ V P , f(v) can be different from f(v′). Note that an

ordinal scf trivially satisfies c-continuity since for every P , fP (v) = fP (v′) for all v, v′ ∈ V P .

c-continuity does not impose any restriction between fP and fP ′ if P 6= P ′.

Also, note that Theorem 1 already implies that an incentive compatible scf is c-continuous

almost everywhere. So, c-continuity assumption strengthens it in a minor way. As a result,

Theorem 1 is extended in the following manner.

Theorem 2 Every incentive compatible and c-continuous scf is vNM-ordinal.

Proof : Let f be an incentive compatible and c-continuous scf. By Theorem 1, f is almost

vNM-ordinal. Fix a P ∈ D. Almost vNM-ordinality implies that there exists V̄ P ⊆ V P

such that V̄ P is dense in V P and V P \ V̄ P has measure zero. Further, for every v ∈ V̄ P and

u ∈ V P such that u = αv + 1β with α > 0 and β ∈ R, we have u ∈ V̄ P and f(v) = f(u).

Pick v ∈ V P \V̄ P . Since V̄ P is dense in V P , there exists a sequence {vk} such that vk ∈ V̄ P

and the sequence converges to v. By continuity of f , the sequence {f(vk)} converges to f(v).

Consider u = αv + 1β, where α > 0 and β ∈ R. For every vk in the sequence {vk},
define uk = αvk + 1β. Clearly the sequence {uk}k converges to u. Since vk ∈ V̄ P , it follows

from the properties of V̄ P that uk ∈ V̄ P . The continuity of f implies that the sequence

{f(uk)} converges to f(u). By Theorem 1, f(vk) = f(uk). Hence, the sequence {f(uk)} also

converges to f(v), i.e. f(v) = f(u). �
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The following example illustrates Theorem 2.

Example 2 Let A = {a, b, c}. Let P be such that the top, middle, and bottom ranked

alternatives are a, b, and c respectively. The scf is specified over the vNM domain and

extended to the the entire domain. In the vNM domain, a utility function v representing

P will have v(a) = 1, v(c) = 0, and v(b) ∈ (0, 1). Let θ = v(b). A utility function or type

in this domain is therefore determined entirely by θ. Define an scf fP over this domain as

follows:

faP (θ) =
1

2
− θ2

4

f bP (θ) =
θ

2

f cP (θ) =
1

2
− θ

2
+
θ2

4
.

Here faP (θ), f bP (θ) and f cP (θ) denote the probabilities assigned to alternatives a, b and c re-

spectively for type θ in the vNM domain.

The scf is now extended to the domain V P in the following way. For all v ∈ V P , let

θ(v) = v(b)−v(c)
v(a)−v(c) . Then fxP (v) = fxP (θ(v)) for all alternatives x ∈ {a, b, c}. Observe that fP is

cardinal in the sense that the agent’s intensity of preference for the middle-ranked alternative

b is used to generate the outcome of the scf.

We first claim that fP is incentive compatible over V P . It follows from the construction

of fP that it suffices to prove incentive- compatibility over the vNM domain. Consider this

domain and observe that the agent with type θ who reports a type θ′, has net utility is

1

2
− θ′2

4
+
θθ′

2
.

On the other hand, truth telling gives a net utility of

1

2
− θ2

4
+
θ2

2
=

1

2
+
θ2

4
.

The difference between truth telling and deviating to θ′ is thus given by

θ2

4
+
θ′2

4
− θθ′

2
=
(θ

2
− θ′

2

)2
≥ 0.

Hence, f is incentive compatible.

The scf fP is continuous. Observe that the scf restricted to the vNM domain is continuous

in θ by construction, i.e. if {θk} is a sequence converging to θ, then the sequence {fP (θk)}
converges to fP (θ). Let {vk} ∈ V P be a sequence converging to v ∈ V P . Clearly, the

sequence {θ(vk)} converges to θ(v). By our earlier remark, {f(vk)} converges to f(v).
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Pick v, v′ ∈ V P such that v′ = αv + β with α > 0. Observe that θ(v) = θ(v′) so that

fP (v) = fP (v′). Thus fP is vNM-ordinal as required by Theorem 2.

Although, fP is continuous in v, it does have an unattractive feature. To see this, pick

θ, θ′ ∈ (0, 1) such that θ 6= θ′ and let v, v′ ∈ V P be such that θ(v) = θ and θ(v′) = θ′.

According to the construction of fP , fP (v) 6= fP (v′). Also fP (εv) = fP (v) and fP (εv′) =

fP (v′) for all ε > 0. By choosing ε small enough, the distance between εv and εv′ can be

made arbitrarily small. Thus every neighbourhood of types around the zero type (the utility

function that assigns zero to all alternatives) restricted to V P , contains the entire range of

fP . The zero type does not belong to V P but V P does contain types arbitrarily close to

it. Very small variations or mistakes in announcements when utilities of all alternatives are

close to zero will lead to very substantial variations in the lotteries generated by fP . More

formally, fP fails to be uniformly continuous although it is continuous. 9 10

We show below that the failure of uniform continuity in this example is not accidental -

every scf satisfying incentive-compatibility and uniform continuity must be strongly ordinal.

Definition 7 An scf f is uniformly cone continuous (uc-continuous) if for every

P ∈ D, fP is uniformly continuous in V P , i.e., for every ε > 0, there exists δ such that for

all v, v′ ∈ V P with ‖v − v′‖ < δ, we have ‖f(v)− f(v′)‖ < ε.

A uniformly continuous function is continuous - the converse is true if the domain is com-

pact (Rudin, 1976). The uc-continuity assumption strengthens Theorem 1 even further.

Theorem 3 Every incentive compatible and uc-continuous scf is strongly ordinal.

Proof : We do the proof in two steps. In Step 1, we prove a stronger result and show that

the theorem follows from this step in Step 2.

Step 1. Consider the following regularity condition.

Definition 8 An scf f is 0-regular, if for all P ∈ D and all sequences {vk}, {v′k} in V P

converging to 0, we have

lim
vk→0

f(vk) = lim
v
′k→0

f(v
′k).

The 0-regularity condition applies to type sequences converging to the origin in a given

subdomain. It requires the scf to converge to the same value along all such sequences. We

first show that every incentive compatible, c-continuous, and 0-regular scf is strongly ordinal.

9One question that arises is whether the scf in example 2 can achieve some natural objective in some

applications. The recent literature on school choice mechanisms show that cardinal mechanisms improve on

efficiency. We discuss this issue in detail in section 6.
10Though this example is specific, one can construct a family of such mechanisms.
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Lemma 1 Every incentive compatible, c-continuous, and 0-regular scf is strongly ordinal.

Proof : Let f be a incentive compatible, c-continuous, and 0-regular scf. By Theorem

2, f is a vNM-ordinal scf. Pick any v, v′ ∈ V P , where P ∈ D and v, v′ represent P .

By vNM-ordinality, for every ε > 0, we have f(v) = f(εv) and f(v′) = f(εv′). Hence,

f(v) = limε→0 f(εv) and f(v′) = limε→0 f(εv′). By 0-regularity, limε→0 f(εv) = limε→0 f(εv′).

Therefore, f(v) = f(v′) as required. �

Step 2. In this step, we show that every uc-continuous scf is c-continuous and 0-regular.

Clearly, a uc-continuous scf is c-continuous (since uniform continuity implies continuity). Let

f be an incentive compatible and uc-continuous scf.

Claim 1 Suppose fP is uniformly continuous. Choose a sequence of types {vk} in V P con-

verging to 0. The sequence {fP (vk)} must converge to a point that is independent of the

chosen sequence {vk}.

The proof of this claim is provided in the Appendix. The proof follows from the fact that

every uniformly continuous function can be extended to its closure in a uniformly continuous

manner, and moreover, such an extension is unique - see Exercise 13 in Chapter 4 of Rudin

(1976). It is then easy to verify that Claim 1 is true. We provide a self contained proof in

the Appendix.

Claim 1 shows that if f is uc-continuous, then it is 0-regular, and this concludes our

proof. �

We conclude this section with two remarks.

Remark 1. If |A| = 2, Theorem 3 holds without any further assumptions regarding uc-

continuity or domains. 11 To see this, suppose A = {a, b} and f is a incentive compatible

scf. Note that f(v, a) + f(v, b) = 1 for all v ∈ V . Using this, for any v, v′ ∈ V , incentive

compatibility implies that

[v(a)− v(b)]fa(v) + v(b) ≥ [v(a)− v(b)]fa(v′) + v(b)

[v′(a)− v′(b)]fa(v′) + v′(b) ≥ [v′(a)− v′(b)]fa(v) + v′(b).

Combining these two inequalities we get, fa(v) = fa(v′). This also highlights the fact that

we can always fix the lowest ranked alternative value at zero and work with the rest of the

alternatives, reducing the dimensionality of the problem.

11The two alternatives case occupies an important place in the strategic voting literature because the

Gibbard-Satterthwaite theorem does not hold in this case. Schmitz and Troger (2012) considers an optimal

mechanism design problem in a two-alternative model with cardinal intensities. Similarly, Azrieli and Kim

(2014) consider Pareto optimal mechanism design in a two alternatives model with cardinal intensities.
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Remark 2. None of the results in this section, Theorems 1, 2 and 3 depend on any restriction

of ordinal preferences over alternatives. They remain valid for arbitrary domains of ordinal

preferences over alternatives, e.g., the unrestricted domain, the single peaked domain, the

single dipped domain etc. However the domain must include all cardinalisations of admissible

ordinal preferences.

Remark 3. An important observation is that our domain may contain multiple ordinal

preference orderings. However, uc-continuity imposes restrictions only on the limits of se-

quences which lie in the same cone (ordinal preference). Therefore, it is not the case that

uc-continuity implies that every incentive compatible scf is a constant. In particular, every

ordinal mechanism which is incentive compatible is uc-continuous, e.g., a the median voting

mechanisms of Moulin (1983) is incentive compatible and uc-continuous if the domain is the

single peaked domain.

Remark 4. A critical assumption in our model is that all ordinal preferences are strict. If

the domain admits all indifferences, then c-continuity by itself will imply that every incentive

compatible scf is constant. In this model, a compactness argument will guarantee that c-

continuity and uc-continuity have the same implications. Consequently, Theorem 2 will

imply that a c-continuous and incentive compatible scf must be strongly ordinal. By our

assumption regarding indifferences, 0 ∈ V P for all P ∈ D. Therefore, such an scf must be

constant everywhere in the domain.

4 Extension to Many Agents

In this section, we discuss extensions of our result to a multi-agent model. Let N = {1, . . . , n}
be the set of agents. The type space of agent i will be denoted as Vi, and, as before, it is the

set of all non-negative utility functions consistent with some set of strict orderings Di ⊆ P .

Let V = V1× . . .×Vn be the set of all profiles of types. As before, A is the set of alternatives.

A social choice function f is a map

f : V → L(A)n.

Observe that f picks n lotteries at each type profile - one for each agent. This formulation

allows us to capture both public good and private good problems. We assume no exter-

nalities, i.e., the utility of an agent only depends on the lottery chosen for her. For any

scf f , fi(v) and fai (v) will denote the lottery chosen for agent i at type profile v and the

corresponding probability of choosing alternative a respectively.

We distinguish between two kinds of models. A voting model is one where every scf f

satisfies fi(v) = fj(v) for every pair of agents i, j ∈ N and every type profile v. In these
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models, an scf must choose the same lottery for all the agents. This covers the standard

strategic voting models. Any model that is not a voting model will be called a private good

model. In these models, there is no requirement of choosing the same lottery for all agents

although there may be restrictions on the choices. For instance, in the one-sided matching

model (here A is the set of objects), an scf need not choose the same lottery over objects for

each agent, but the lotteries must satisfy feasibility conditions.

As before, we consider two notions of incentive compatibility.

Dominant Strategy Incentive Compatibility. Dominant strategy incentive compati-

bility requires that for every i ∈ N , vi, v
′
i ∈ Vi and v−i ∈ V−i, we have vi · fi(vi, v−i) ≥

vi ·fi(v′i, v−i). The definitions of c-continuity and uc-continuity can now be straightforwardly

adapted with additional qualifiers for each i ∈ N and each v−i.

To define the notions of ordinality here, we say that two type profiles v, v′ ∈ V are

ordinally equivalent if for every i ∈ N , vi and v′i are affine transformations of each other.

Similarly, we say two profiles v, v′ ∈ V are strongly ordinally equivalent if for every i ∈ N , vi

and v′i represent the same strict ordering in Di. An scf f is vNM-ordinal if for every pair

of type profiles v, v′ ∈ V such that v and v′ are ordinally equivalent, we have fi(v) = fi(v
′)

for all i ∈ N . An scf f is strongly ordinal if for every pair of type profiles v, v′ ∈ V such

that v and v′ are strongly ordinally equivalent, we have fi(v) = fi(v
′) for all i ∈ N .

We can now extend Theorems 2 and 3. Note here that we do not require any assumption

on {Di}i∈N .

Theorem 4 In the voting model, (a) every dominant strategy incentive compatible and c-

continuous scf is vNM-ordinal and (b) every dominant strategy incentive compatible and

uc-continuous scf is strongly ordinal.

Proof : Let f be a dominant strategy incentive compatible and c-continuous scf. By virtue

of the voting model assumption, fi(v
′′) = fj(v

′′) for all i, j ∈ N and v′′. Fix any pair of

ordinally equivalent type profiles v, v′ ∈ V . We move from v to v′ by changing the types of

agents one at a time and apply Theorem 2 at each step. This immediately implies that f is

vNM-ordinal. A similar proof using Theorem 3 establishes (b). �

This argument does not work in the private good models for well-known reasons. In

the move from (vi, v−i) to (v′i, v−i) (where (vi, v−i) and (v′i, v−i) are ordinally equivalent),

Theorem 2 guarantees fi(vi, v−i) = fi(v
′
i, v−i) but not fj(vi, v−i) = fj(v

′
i, v−i) for any j 6= i.

This can be restored by the familiar non-bossiness condition adapted to our model. An scf

f is non-bossy if for all i ∈ N , for all P ∈ D, and for all vi, v
′
i ∈ V P and for all v−i ∈ V−i,

fi(vi, v−i) = fi(v
′
i, v−i) implies fj(vi, v−i) = fj(v

′
i, v−i) for all j 6= i. Non-bossiness requires
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that if an agent is not able to change his allocation, then the allocation of other agents should

remain unchanged. It is now easy to see that Theorem 4 holds in private good problem with

the additional non-bossiness condition.

Theorem 4 can be used to strengthen several existing characterization results. We give

two such results.12 We do so informally without introducing extra notations.

Consider the standard voting model in Gibbard (1973, 1977). Our domain consists of

all strict orderings of the set of alternatives, i.e., V = ∪P∈PV P . By Theorem 4, every

c-continuous and dominant strategy incentive compatible scf on this domain must be vNM-

ordinal. Now, applying Gibbard (1977), every c-continuous and dominant strategy incentive

compatible scf on this domain is a convex combination of unilaterals and duples – details

about unilateral and duple scfs may be found in Gibbard (1977).

Consider the object allocation problem in Svensson (1999); Papai (2000); Pycia and Ün-

ver (2017). In this model, an alternative corresponds to an object. Our domain consists of

all strict orderings of the set of objects, i.e., V = ∪P∈PV P once again. By the adaptation of

Theorem 4 to the private good models, every c-continuous, non-bossy, and dominant strat-

egy incentive compatible scf on this domain must be vNM-ordinal. Now, applying Pycia and

Ünver (2017), every deterministic, c-continuous, non-bossy, Pareto efficient, and dominant

strategy incentive compatible scf must be a trading cycle – again, details about tranding

cycles can be found in Pycia and Ünver (2017).

Bayesian Incentive Compatibility. Each agent has a conditional distribution over the

types of other agents. Thus agent i of type vi has a probability measure Gi(·|vi) over V−i. We

do not impose any restriction on the distributions and allow for arbitrary correlation. For

any scf f , Πf
i (vi) reflects the interim allocation probability vector at vi for agent i. Formally,

for every a ∈ A, i ∈ N and vi ∈ Vi,

Πf
i (vi, a) :=

∫
V−i

fai (vi, v−i)dGi(v−i|vi).

An scf f is Bayesian incentive compatible if for every i ∈ N and for every vi, v
′
i ∈ Vi, we

have vi · Πf
i (vi) ≥ vi · Πf

i (v
′
i). It is straightforward to extend the definitions of c-continuity

and uc-continuity requiring continuity and uniform continuity of Πf instead of f .

Definition 9 An scf f is ec-continuous if for every i ∈ N , for every P ∈ D, Πf
i is

continuous in V P .

An scf f is euc-continuous if for every i ∈ N , for every P ∈ D, Πf
i is uniformly continuous

in V P .

12We are a grateful to a reviewer for pointing this out.
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The scf f is vNM-ordinal in expectation (ev-ordinal) if for all i ∈ N and pairs

of ordinally equivalent types vi, v
′
i ∈ Vi, we have Πf

i (vi) = Πf
i (v
′
i). Similarly, the scf f is

strongly ordinal in expectation (es-ordinal) if for all i ∈ N and pairs of strongly

ordinally equivalent types vi, v
′
i ∈ Vi, we have Πf

i (vi) = Πf
i (v
′
i). It is important to observe

that the notion of e-ordinality is different from that of ordinality in the dominant strategy

case because interim probabilities for an agent depends only on her type rather than on the

entire type profile.

With these modifications, Theorems 2 and 3 can be directly extended as follows: every

BIC and ec-continuous scf is ev-ordinal and every BIC and euc-continuous scf is es-ordinal. In

view of the notion of ordinality in the Bayesian model (see our earlier remark), the distinction

between the voting and private good models disappears and the non-bossiness assumption

is redundant. Hence, an identical proof as in Theorem 4 gives us the following theorem.

Theorem 5 Every Bayesian incentive compatible and ec-continuous scf is ev-ordinal. Every

Bayesian incentive compatible and euc-continuous scf is es-ordinal.

We provide some applications of both Theorem 4 and Theorem 5 in the next section.

5 Applications

In this section, we provide a couple of application of our results. The applications illustrate

how our results can be readily used to show that certain class of social choice functions

cannot be incentive compatible in our model.

As before, let N = {1, . . . , n} be the set of agents. A type profile is denoted by v ≡
(v1, . . . , vn) and let V be the set of all type profiles.

Definition 10 The scf f̂ : V → L(A) is the proportional utilitarian voting rule if, for all

v ∈ V and a ∈ A, we have

f̂a(v) =

∑
i∈N vi(a)∑

b∈A
∑

i∈N vi(b)

In other words, the probability of choosing alternative a in profile v is the aggregate

utility of a relative to the aggregate utility of all alternatives. Note that the denominator is

positive and the numerator is non-negative by our assumption.

Theorem 6 The proportional utilitarian voting rule is not dominant strategy incentive com-

patible.
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Proof : We will prove the result by contradiction. Observe that f̂ is c-continuous (since

admissible orderings are strict and type 0 does not belong to V). Suppose f̂ is incentive

compatible. Theorem 4 implies that f̂ is vNM ordinal. We show that this is false.

Pick i ∈ N and v ∈ V such that vi(a)∑
b∈A vi(b)

6=
∑

j 6=i vj(a)∑
j 6=i

∑
b∈A vj(b)

for some a ∈ A. Note that

such a v can be found in every open neighborhood of V . Choose αi > 0 and αi 6= 1. Let

v′ ∈ V such that v′i = αivi and v′j = vj for all j 6= i. Then v and v′ are ordinally equivalent

and Theorem 4 requires f̂(v′) = f̂(v). However,

f̂a(v′) =
αivi(a) +

∑
j 6=i vi(a)

αi
∑

b∈A vi(b) +
∑

j 6=i
∑

b∈A vj(b)
6=

v(a) +
∑

j 6=i vi(a)∑
b∈A vi(b) +

∑
j 6=i
∑

b∈A vj(b)
= f̂a(v).

Therefore f̂ is not incentive compatible. �

Our next example is the utilitarian scf.

Definition 11 An scf f ∗ is a utilitarian scf if for every v ∈ V, we have

f ∗(v) ∈ arg max
a∈A

∑
i∈N

vi(a).

Observe that we are assuming that an utilitarian scf is deterministic - this will mean

breaking ties at some subset of (measure zero) profile of types in a deterministic manner. As

we have remarked earlier, dominant strategy incentive compatible deterministic scfs must

be strongly ordinal. The utilitarian scf is clearly not strongly ordinal. We show below

that impossibility persists if we weaken the incentive compatibility requirement to Bayesian

incentive compatibility. This is done by showing that the utilitarian scf is not ev-ordinal

but ec-continuous, and applying Theorem 5. We will show this for the unrestricted domain.

Further, we will work with bounded type spaces.

Formally, let P be the set of all preference orderings. Fix a real number β > 0. The type

space of every agent is defined as

V := {v ∈ R|A|+ : v(a) 6= v(b) ∀a, b ∈ A, and max
a∈A

v(a) ≤ β}. (2)

Note that V consists of all non-negative utility functions representing preference orderings

in P with values not more than β. All our results discussed in earlier sections continue to

hold with this upper bound restriction.

We will assume that each agent i ∈ N has a probability measure Gi over V n−1 which

is independent of his type. The Lebesgue measure will be denoted by µ. We will make the

following assumption about the probability measure Gi.

Our assumption over the priors of agents is the following.
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Assumption A. Suppose for every agent i ∈ N , the prior (probability measure) Gi over

V n−1 is independent of his type. Further, this probability measure is absolutely continuous

with respect to µ and admits a positive density function gi over V n−1.

Theorem 7 Suppose Assumption A holds and f ∗ : V n → A is a utilitarian scf, where V is

as defined in (2). Then, f ∗ is not Bayesian incentive compatible.

Proof : Fix an agent i ∈ N and an alternative a ∈ A. For each vi ∈ V , let

R(vi, a) := {v−i ∈ V n−1 : f ∗(vi, v−i) = a}.

Note that every v−i ∈ R(vi, a) satisfies vi(a) +
∑

j 6=i vj(a) ≥ vi(b) +
∑

j 6=i vj(b) for all b 6= a.

Hence, R(vi, a) can be equivalently written as

R(vi, a) := {v−i ∈ V n−1 :
∑
j 6=i

[
vj(b)− vj(a)

]
≤ vi(a)− vi(b) ∀ b ∈ A}.

Because of our assumptions on type spaces, R(vi, a) is a convex and bounded set. We com-

plete the proof in three steps.

Step 1. Pick vi ∈ V such that vi(a) = β
2

and vi(b) is arbitrarily close to 0 for all b 6= a,

where β is as defined in Equation (2). Now, let v′i = 2vi. Note that v′i(a) = β and v′i(b) is

close to 0 for all b 6= a.

Since vi(a)− vi(b) < v′i(a)− v′i(b) for all b 6= a, we have R(vi, a) ( R(v′i, a). Now, the set

R(v′i, a) \R(vi, a) is equal to

{v−i : [vi(a)− vi(b)] <
∑
j 6=i

[
vj(b)− vj(a)

]
≤ 2[vi(a)− vi(b)] ∀ b ∈ A}.

Clearly, this is a set with non-zero measure in V n−1. Since our probability density function

is strictly positive, we get that

Πf∗(v′i, a)− Πf∗(vi, a) :=

∫
R(v′i,a)\R(vi,a)

gi(v−i)dv−i > 0.

Hence, Πf∗

i (v′i, a) > Πf∗

i (vi, a). This shows that the utilitarian scf is not ev-ordinal.

Step 2. Next, we consider a sequence of types {vki } for agent i in his type space V con-

verging to vi. Fix an alternative a ∈ A. This sequence constructs a sequence of polyhedral

(convex) sets {R(vki , a)}k in V n−1. Denote by R̄(vki , a) the closure of the set R(vki , a). Hence,

{R̄(vki , a)} is a sequence of compact convex sets. Moreover, since {vki } converges to vi, the

sequence {R̄(vki , a)} must converge to R̄(vi, a) in the Hausdorff metric. Let µ(R̄(vki , a)) be
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the Lebesgue measure of the set R̄(vki , a). By Beer (1974), we know that if a sequence of

compact convex sets converge to a set, then their Lebesgue measures also converge to the

Lebesgue measure of the set. Hence, the sequence of Lebesgue measures {µ(R̄(vki , a))} con-

verges to µ(R̄(vi, a)). For each k, R̄(vki , a) \ R(vki , a) rules out utility vectors which have

indifference, and these sets have zero Lebesgue measure. This implies that {µ(R(vki , a))}
converges to µ(R(vi, a)).

Step 3. Since Gi is absolutely continuous with respect to µ, Step 2 implies that as the

sequence {R(vki , a)} converges to R(vi, a) in the Hausdorff metric, the sequence {Πf∗(vki , a)}
converges to Πf∗(vi, a). Since every {vki } sequence converging to vi induces a sequence

{R(vki , a)} converging to R(vi, a), we conclude that f ∗ is ec-continuous.

Applying Theorem 5, we conclude that f ∗ is not Bayesian incentive compatible. �

With a slight modification in notation, Theorem 7 can also be extended to weighted

utilitarianism as long as at least two agents receive positive weight.

Definition 12 An scf f̃ is a weighted utilitarianism if there exists weights λ1, . . . , λn ≥
0, not all equal to zero, such that for every v ∈ V, we have

f̃(v) ∈ arg max
a∈A

∑
i∈N

λivi(a).

A weighted utilitarianism with weights λ1, . . . , λn is a dictatorship if there exists an

agent i ∈ N such that λi > 0 and λj = 0 for all j 6= i. Agent i is the dictator in this case.

Almost an identical proof to Theorem 5 establishes the following.

Theorem 8 Suppose Assumption A holds and f̃ : V n → A is a non-dictatorial weighted

utilitarian scf where V is as defined in (2). Then, f̃ is not Bayesian incentive compatible.

In the case of dictatorship, the set R(vi, a) for the dictator agent is either the entire V n−1

or the empty set for every a. For any other agent j who is not a dictator, R(vj, a) does not

change by changing vj for every a. As a result, we cannot reach the conclusion in Step 1 of

the proof of Theorem 7.

An alternative proof of Theorem 7 (and Theorem 8) can be provided along the follow-

ing lines. We know that utilitarianism can be implemented by the Vickrey-Clarke-Groves

(VCG) mechanisms in dominant strategies by using transfers in a quasilinear environment.

Typically, the expected transfer of an agent in a VCG mechanism is non-zero. If the utili-

tarianism is Bayesian incentive compatible without transfers, then we have two mechanism

implementing the same scf in Bayesian equilibrium, but one with zero expected transfers
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and one with non-zero expected transfers. Standard revenue equivalence results in these

settings (Rockafellar, 1970; Krishna and Maenner, 2001; Milgrom and Segal, 2002) imply

that this is not possible. 13

6 Relationship to the Literature

The primary focus of the literaure on mechanism design without monetary transfers has

been on deterministic models and dominant strategies. As we have noted earlier, the issue

of cardinal information has no bearing in these cases and is of relevance only on (a) models

involving randomization (b) models using Bayes-Nash rather than dominant strategies as a

solution concept. We comment briefly on the literature in these areas and their relationship

with our work.

The seminal paper in randomized mechanism design for voting models is Gibbard (1977).

The paper considered an explicitly ordinal problem in a dominant strategy framework when

the preferences of agents is unrestricted. It proposed a demanding notion of incentive-

compatibility where the truth-telling lottery was required to stochastically dominate the

lottery arising from any manipulation. This approach has been extended to several re-

stricted domains of ordinal preferences in voting models (Chatterji et al. (2012), Peters et al.

(2014), Chatterji et al. (2014) and Pycia and Ünver (2015)) and in ordinal matching models

(Bogomolnaia and Moulin (2001), and Erdil (2014)).

Random mechanism design with cardinal utilities and dominant strategies has received far

less attention. Hylland (1980), Barbera et al. (1998); Dutta et al. (2007); Nandeibam (2013)

revisit Gibbard’s voting model with cardinal utilities in the unrestricted ordinal domain

while Zhou (1990) considers the one-sided matching problem. Significantly, all the papers

use the vNM domain except Nandeibam (2013). While Barbera et al. (1998); Dutta et al.

(2007) show that every randomized DSIC scf in the vNM domain with unrestricted ordinal

preferences must be a random dictatorship under unanimity and other additional conditions,

Nandeibam (2013) shows a weaker version of this result without assuming vNM domain but

still requiring unrestricted ordinal preferences. Zhou (1990) shows incompatibility of Pareto

efficiency, DSIC, and symmetry in the one-sided matching problem.

Majumdar and Sen (2004) consider deterministic Bayesian incentive compatible mech-

anisms in an ordinal model employing a solution concept developed for this framework in

d’Aspremont and Peleg (1988). Borgers and Postl (2009) consider a model with three al-

ternatives and two agents in the vNM domain. The two agents have fixed but completely

13Showing the fact that a VCG mechanism generates non-zero expected transfers will require some work,

and needs some assumptions on priors.
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opposed ordinal preferences. The type of each agent is the utility of the common second-

ranked or “compromise” alternative. In the vNM domain, this model gives rise to a special

one-dimensional mechanism design problem with transfers. They characterize the set of car-

dinal Bayesian incentive compatible scfs using Myersonian techniques. The characterization

is further extended in Postl (2011). Miralles (2012) considers a model of allocating two ob-

jects to agents without monetary transfers and Bayesian incentive compatibility. A recent

paper by Kim (2014) considers the vNM domain with Bayesian incentive compatibility. He

shows that every ordinal mechanism is dominated (in terms of utilitarian social welfare) by

a suitable cardinal mechanism in the vNM domain.

Almost all the papers on cardinal mechanisms cited above, consider vNM domains. Many

of them highlight the fact that there is an expansion in the set of incentive compatible scfs

relative to the strongly ordinal model. Our paper provides a foundation for the use of

vNM domains - in a cardinal model, c-continuity and incentive compatibility implies vNM-

ordinality. However, strengthening c-continuity to uc-continuity brings us to a completely

ordinal model giving a precise description of the boundary between vNM domain and the

strongly ordinal model. Moreover, our conclusions are completely independent of the under-

lying ordinal structure of preferences.

Gershkov et al. (2014) considers the design of expected welfare maximizing mechanism

by considering cardinal utilities when agents have particular ordinal preferences.14 Since

they consider deterministic DSIC mechanisms, these mechanisms must be ordinal. But

they still consider cardinal utilities to compute expected welfare maximizing mechanism.

Similarly, Ashlagi and Shi (2014) consider the optimal design of randomized BIC mechanisms

for matching problems by assuming that agents have cardinal utilities.

From a methodological standpoint, our paper is related to (Borgers and Postl, 2009;

Goswami et al., 2014; Gershkov et al., 2014; Hafalir and Miralles, 2015). These papers either

explicitly (Goswami et al., 2014; Gershkov et al., 2014) or indirectly (Borgers and Postl, 2009;

Hafalir and Miralles, 2015) work in a model with one dimensional types. As a result, they

can use the machinery developed in Myerson (1981) for one-dimensional type spaces. On

the other hand, agents in our model have multidimensional types, and we use results from

the multidimensional mechanism design literature - see Vohra (2011) for a comprehensive

treatment of this topic.

A related paper is Carroll (2018), which also seeks to justify the use of ordinal mecha-

nisms. However, the approach taken by that paper is different from ours, and relies on a

formulation of interdependent preferences and a robustness criterion.

Recent literature in school choice considered the tradeoff between reporting cardinal and

14See Carroll (2018) for a related paper.
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ordinal information from an efficiency viewpoint.15 Namely, Abdulkadiroğlu et al. (2011)

show that in the interim setting where all students have equal priorities and identical strict

ordinal preferences (but possibly distinct cardinal utilities) that any agent is weakly better

off in any symmetric Bayesian Nash Equilibrium (BNE) compared to reporting his true or-

dinal ranking to the deferred-acceptance (DA-)mechanism (with students proposing). This

is surprising as DA is incentive compatible. Similar results were shown by Miralles (2009).16

Subsequently, Troyan (2012) showed that this is not true any longer if students do not

have equal priorities. However, Troyan (2012) showed with identical strict ordinal prefer-

ences that from an ex-ante perspective (before an agent learns his cardinal valuations) every

agent continues to be weakly better off under any symmetric BNE of the Boston mechanism

compared to any incentive compatible and anonymous mechanism (treating agents symmet-

rically). Since for ordinal mechanisms the non-bossiness condition is irrelevant if agents have

common ordinal preferences, this implies (by our results) that every agent is weakly better off

under any symmetric BNE of the Boston mechanism compared to any incentive compatible

and uc-continuous mechanism.

Another strand of recent literature considers the allocation of objects based on prices and

cardinal preferences. Following Hylland and Zeckhauser (1979), Miralles and Pycia (2014)

show that the second welfare theorem continues to hold in settings where transfers are not

allowed. More precisely, for any efficient random assignment (where agents are assigned

objects and have cardinal utilities for objects), any efficient assignment can be supported by

prices and budgets. As those vary with cardinal utilities this means that any such mechanism

is neither ordianl nor vNM-ordinal (or almost vNM-ordinal). Thus, this implies for any fixed

ordinal ranking incentive mechanisms violate cannot be (pseudo-)price mechanisms.

Appendix: Proof of Claim 1

Fix a P ∈ D and consider a sequence of types {vk}k∈N in V P such that it converges to 0.

Since {vk}k∈N is convergent in the closure of V P , it must be a Cauchy sequence. We argue

that since fP is uniformly continuous, the sequence {fP (vk)}k∈N is a Cauchy sequence. To

see this, for every δ > 0, since {vk}k∈N is Cauchy sequence, there exists a number J such

that for all j, j′ > J we have ‖vj − vj′‖ < δ. But by uniform continuity, for every ε > 0,

there exists a number δ > 0 such that if ‖vj − vj′‖ < δ then ‖fP (vj) − fP (vj′)‖ < ε. This

shows that the sequence {fP (vk)}k∈N is a Cauchy sequence.

15Fisher (2018) studies an intermediate setting whereby an agent is allowed to either report ordinal pref-

erences or cardinal preferences.
16Pycia (2014) shows that the cardinal efficiency loss can be arbitrarily large and Featherstone and Niederle

(2016) study the interim efficiency loss in an experimental setting.
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As a consequence, {fP (vk)}k∈N must converge. Denote this limit point as L1 ∈ [0, 1]|A|.

Similarly, pick another sequence of types {v′k}k∈N such that it converges to 0. By the same

argument, {fP (v′k)}k∈N must also converge to L2 ∈ [0, 1]|A|. We will show that L1 = L2.

To do this, pick an arbitrary ε > 0. Now, using the definition of convergence, since

{fP (vk)}k∈N converges to L1, there must exist a number n1 such that for all k > n1, we have

‖fP (vk)− L1‖ <
ε

3
. (3)

Similarly, since {fP (v′k)}k∈N converges to L2, there must exist a number n2 such that for all

k > n2, we have

‖fP (v′k)− L2‖ <
ε

3
. (4)

By uniform continuity of fP , we get that there exists δ > 0 such that for all v, v′ ∈ V P with

‖v − v′‖ < δ, we have

‖fP (v)− fP (v′)‖ < ε

3
. (5)

Since both the sequences {vk}k∈N and {v′k}k∈N are converging to 0, there must exist a number

n3 such that for all k > n3 such that ‖vk‖ < δ
2

and ‖v′k‖ < δ
2
, and hence, ‖vk − v′k‖ < δ. By

Inequality 5, we get for all k > n3,

‖fP (vk)− fP (v′k)‖ <
ε

3
. (6)

Now, pick a number K > max(n1, n2, n3) and note that

‖L1 − L2‖ ≤ ‖L1 − fP (vK)‖+ ‖fP (vK)− fP (v′K)‖+ ‖fP (v′K)− L2‖ < ε,

where the first inequality followed from the Euclidean norm property and the second one

followed from Inequalities 3, 4, and 6. Since ε can be chosen arbitrarily small, we conclude

that L1 = L2.
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