
Heuristics for the Traveling Salesman Problem

Christian Nilsson
Linköping University

chrni794@student.liu.se

Abstract

The traveling salesman problem is a well known opti-
mization problem. Optimal solutions to small instances
can be found in reasonable time by linear programming.
However, since the TSP is NP-hard, it will be very time
consuming to solve larger instances with guaranteed op-
timality.

Setting optimality aside, there’s a bunch of algo-
rithms offering comparably fast running time and still
yielding near optimal solutions.

1. Introduction

The traveling salesman problem (TSP) is to find the
shortest hamiltonian cycle in a graph. This problem is
NP-hard and thus interesting. There are a number of
algorithms used to find optimal tours, but none are
feasible for large instances since they all grow expo-
nentially.

We can get down to polynomial growth if we settle
for near optimal tours. We gain speed, speed and speed
at the cost of tour quality. So the interesting properties
of heuristics for the TSP is mainly speed and closeness
to optimal solutions.

There are mainly two ways of finding the optimal
length of a TSP instance. The first is to solve it op-
timally and thus finding the length. The other is to
calculate the Held-Karp lower bound, which produces
a lower bound to the optimal solution (see section 7).
This lower bound is the de facto standard when judg-
ing the performance of an approximation algorithm for
the TSP.

The heuristics discussed here will mainly concern
the Symmetric TSP, however some may be modified to
handle the Asymmetric TSP. When I speak of TSP I
will refer to the Symmetric TSP.

2. Approximation

Solving the TSP optimally takes to long, instead one
normally uses approximation algorithms, or heuristics.
The difference is approximation algorithms give us a
guarantee as to how bad solutions we can get. Nor-
mally specified as c times the optimal value.

The best approximation algorithm stated is that of
Sanjeev Arora[9]. The algorithm guarantees a (1+1/c)-
approximation for every c > 1. It is based om geomet-
ric partitioning and quad trees. Although theoretically
c can be very large, it will have a negative effect on
its running time (O(n(log2n)O(c)) for two-dimensional
problem instances).

3. Tour Construction

Tour construction algorithms have one thing in com-
mmon, they stop when a solution is found and never
tries to improve it. The best tour construction algo-
rithms usually gets within 10-15% of optimality.

3.1. Nearest Neighbor

This is perhaps the simplest and most straightfor-
ward TSP heuristic. The key to this algorithm is to
always visit the nearest city.

Nearest Neighbor, O(n2)

1. Select a random city.

2. Find the nearest unvisited city and go there.

3. Are there any unvisitied cities left? If yes,
repeat step 2.

4. Return to the first city.

The Nearest Neighbor algorithm will often keep its
tours within 25% of the Held-Karp lower bound [1].



3.2. Greedy

The Greedy heuristic gradually constructs a tour by
repeatedly selecting the shortest edge and adding it to
the tour as long as it doesn’t create a cycle with less
than N edges, or increases the degree of any node to
more than 2. We must not add the same edge twice of
course.

Greedy, O(n2log2(n))

1. Sort all edges.

2. Select the shortest edge and add it to our
tour if it doesn’t violate any of the above con-
straints.

3. Do we have N edges in our tour? If no, repeat
step 2.

The Greedy algorithm normally keeps within 15-
20% of the Held-Karp lower bound [1].

3.3. Insertion Heuristics

Insertion heuristics are quite straighforward, and
there are many variants to choose from. The basics
of insertion heuristics is to start with a tour of a sub-
set of all cities, and then inserting the rest by some
heuristic. The initial subtour is often a triangle or the
convex hull. One can also start with a single edge as
subtour.

Nearest Insertion, O(n2)

1. Select the shortest edge, and make a subtour
of it.

2. Select a city not in the subtour, having the
shortest distance to any one of the cities in
the subtoor.

3. Find an edge in the subtour such that the
cost of inserting the selected city between the
edge’s cities will be minimal.

4. Repeat step 2 until no more cities remain.

Convex Hull, O(n2log2(n))

1. Find the convex hull of our set of cities, and
make it our initial subtour.

2. For each city not in the subtour, find its
cheapest insertion (as in step 3 of Nearest In-
sertion). Then chose the city with the least
cost/increase ratio, and insert it.

3. Repeat step 2 until no more cities remain.

3.4. Christofides

Most heuristics can only guarante a worst-case ratio
of 2 (i.e. a tour with twice the length of the optimal
tour). Professor Nicos Christofides extended one of
these algorithms and concluded that the worst-case ra-
tio of that extended algorithm was 3/2. This algorithm
is commonly known as Christofides heuristic.

Original Algorithm (Double Minimum Spanning
Tree), worst-case ratio 2, O(n2log2(n))

1. Build a minimal spanning tree (MST) from
the set of all cities.

2. Duplicate all edges, we can now easily con-
struct an Euler cycle.

3. Traverse the cycle, but do not visit any node
more than once, taking shortcuts when a
node has been visited.

Christofides Algorithm, worst-case ratio 3/2, O(n3)

1. Build a minimal spanning tree from the set
of all cities.

2. Create a minimum-weight matching (MWM)
on the set of nodes having an odd degree.
Add the MST together with the MWM.

3. Create an Euler cycle from the combined
graph, and traverse it taking shortcuts to
avoid visited nodes.

The main difference is the additional MWM calcu-
lation. This part is also the most time consuming one,
having a time complexity of O(n3). Tests have shown
that Christofides’ algorithm tends to place itself around
10% above he Held-Karp lower bound.

For more information on tour construction heuristics
see [2].

4. Tour Improvement

Once a tour has been generated by some tour con-
struction heuristic, we might wish to improve that so-
lution. There are several ways to do this, but the most
common ones are the 2-opt and 3-opt local searches.
Their performances are somewhat linked to the con-
struction heuristic used.

Other ways of improving our solution is to do a tabu
search using 2-opt and 3-opt moves. Simulated anneal-
ing also use these moves to find neighboring solutions.
Genetic algorithms generally use the 2-opt move as a
means of mutating the population.



u
u u

u

u
u u

u

©©© HHH
´

´
´

´
´

´
´

´́
HHH ©©©

Q
Q

Q
Q

Q
Q

Q
QQ

Figure 1. A 2-opt move

uu u

u
u

u

u
u

u

A
A
A
A
A
A
A
A¢

¢
¢
¢
¢
¢
¢
¢

AA
@@

¢¢
¡¡

PP³³

Figure 2. A 3-opt move

4.1. 2-opt and 3-opt

The 2-opt algorithm basically removes two edges
from the tour, and reconnects the two paths created.
This is often refered to as a 2-opt move. There is only
one way to reconnect the two paths so that we still
have a valid tour (figure 1). We do this only if the
new tour will be shorter. Continue removing and re-
connecting the tour until no 2-opt improvements can
be found. The tour is now 2-optimal.

The 3-opt algorithm works in a similar fashion, but
instead of removing two edges we remove three. This
means that we have two ways of reconnecting the three
paths into a valid tour1(figure 2 and figure 3). A 3-opt
move can actually be seen as two or three 2-opt moves.

We finish our search when no more 3-opt moves can
improve the tour. If a tour is 3-optimal it is also 2-
optimal [5].

If we look at the tour as a permutation of all the
cities, a 2-opt move will result in reversing a segment
of the permutation. A 3-opt move can be seen as two
or three segment reversals.

Running the 2-opt heuristic will often result in a tour
with a length less than 5% above the Held-Karp bound.
The improvements of a 3-opt heuristic will usually give
us a tour about 3% above the Held-Karp bound [1].

1not including the connections being identical to a single 2-
opt move

uu u

u
u

u

u
u

u
AA
@@

¢¢
¡¡

PP³³

Figure 3. A 3-opt move

4.2. Speeding up 2-opt and 3-opt

When talking about the complexity of these k-opt
algorithms, one tends to omit the fact that a move can
take up to O(n) to perform (see section 4.8).

A naive implementation of 2-opt runs in O(n2),
this involves selecting an edge (c1, c2) and searching
for another edge (c3, c4), completing a move only if
dist(c1, c2) + dist(c3, c4) > dist(c2, c3) + dist(c1, c4).

An observation made by Steiglitz and Weiner tells
us that we can prune our search if dist(c1, c2) >
dist(c2, c3) does not hold. This means that we can
cut a large piece of our search by keeping a list of each
city’s closest neighbors. This extra information will of
course take extra time to calculate (O(n2log2)), and
also needs a substantial amount of space. Reducing
the number of neighbors in out lists will alow this idea
to be put in practice.

By keeping the m nearest neighbors of each city we
can improve the complexity to O(mn). But we still
have to find the nearest neighbors for each city. Luckily
this information is static for each problem instance, so
we need only do this calulation once and can reuse it
for any subsequent runs on that particular problem.

This speedup will remove the 2-optimality guaran-
tee, but the loss in tour quality is small if we choose
m wisely. Choosing m = 20 will probably reduce the
quality by little or nothing. Choosing m = 5 will give
us a very nice increase of speed at the cost of some
quality[1].

4.3.k-opt

We don’t necessarilly have to stop at 3-opt, we can
continue with 4-opt and so on, but each of these will
take more and more time and will only yield a small
improvement on the 2- and 3-opt heuristics.

Mainly one 4-opt move is used, called “the crossing
bridges” (Figure 4). This particular move can not be
sequentially constructed using 2-opt moves. For this to
be possible two of these moves would have to be illegal
[5].



u
u

u

u
u

u

u
u

u

u
u

u

¢¢
¡¡

AA
@@

AA
@@

¢¢
¡¡

Figure 4. The double-bridge move

4.4. Lin-Kernighan

Lin and Kernighan constructed an algorithm mak-
ing it possible to get within 2% of the Held-Karp lower
bound. The Lin-Kernighan algorithm (LK) is a vari-
able k-opt algorithm. It decides which k is the most
suitable at each iteration step. This makes the algo-
rithm quite complex, and few have been able to make
improvements to it. For a more in-depth study of the
LK algorithm and possible improvements, see [5].

The time complexity of LK is approximately O(n2.2)
[5], making it slower than a simple 2-opt implementa-
tion. However the results are much better with LK,
and given improvements suggested by Helsgaun [5], it
will probably not be that much slower.

4.5. Tabu-Search

A neighborhood-search algorithm searches among
the neighbors of a candidate to find a better one. When
running a neighborhood-search on the TSP, neighbor-
ing moves are often normal 2-opt moves.

A problem with neighborhood searches is that one
can easily get stuck in a local optimum. This can be
avoided by using a tabu-search.

The tabu-search will allow moves with negative gain
if we can not find a positive one. By allowing negative
gain me may end up running in circles, as one move
may counteract the previous. To avoid this the tabu-
search keeps a tabu list containing illegal moves. After
moving to a neighboring solution the move will be put
on the tabu-list and will thus never be applied again
unless it improves our best tour or the tabu has been
pruned from our list.

There are several ways of implementing the tabu list.
One involves adding the two edges being removed by a
2-opt move to the list. A move will then be considered
tabu if it tries to add the same pair of edges again.
Another way is to add the shortest edge removed by a
2-opt move, and then making any move involving this
edge tabu. Other methods keep the endpoints of each

move, making a move tabu if it uses these endpoints
[1].

A big problem with the tabu search is its running
time. Most implementations for the TSP will take
O(n3) [1], making it far slower than a 2-opt local
search. Given that we use 2-opt moves, the length of
our tours will be slightly better than that of a standard
2-opt search.

4.6. Simulated Annealing

Simulated Annealing (SA) has been successfully
adapted to give approximate solutions for the TSP. SA
is basically a randomized local search algorithm allow-
ing moves with negative gain.

A baseline implementation of SA for the TSP is pre-
sented in [1]. They use 2-opt moves to find neighboring
solutions. Not surprisingly the resulting tours are com-
parable to those of a normal 2-opt algorithm. Better
results can be obtained by increasing the running time
of the SA algorithm, showing results comparable to the
LK algorithm.

Due to the 2-opt neighborhood, this particular im-
plementation takes O(n2) with a large constant of
proportionality[1]. Some speed-ups are necessary to
make larger instances feasible to run, and also to make
it competitive to other existing approximation algo-
rithms.

The first thing to improve is the 2-opt neighbor-
hood. By keeping neighborhood lists as described in
section 4.2, one can cut down this part dramatically.
By incorporating neighborhood lists and other improv-
ments mentioned in [1], the algorithm can actually
compete with the LK algorithm.

4.7. Genetic Algorithms

Continuing on the randomized path will take us to
Genetic Algorithms (GA). GAs work in a way similar
to nature. An evolutionary process takes place within
a population of candidate solutions.

A basic GA starts out with a randomly generated
population of candidate solutions. Some (or all) can-
didates are then mated to produce offspring and some
go through a mutating process. Each candidate has a
fitness value telling us how good they are. By selecting
the most fit candidates for mating and mutation the
overall fitness of the population will increase.

Applying GA to the TSP involves implementing a
crossover routine, a measure of fitness, and also a mu-
tation routine. A good measure of fitness is the actual
length of the candidate solution.



Different approaches to the crossover and mutation
routines are discussed in[1]. Some implementations
have shown good results, even better than the best
of several LK runs. But as with both the Tabu-search
and the SA algorithm running time is an issue.

4.8. Tour Data Structure

The implementation of a k-opt algorithm will in-
volve reversing segments of the tour. This reversal
can take from O(log2(n)) to O(n), depending on your
choice of data structure for the tour.

If you plan to use a vector as data structure, a single
reversal will take O(n), and a simple lookup like finding
the previous or next city will be possible in O(1). The
O(n) complexity for reversing segments is very bad for
large instances. It will totally dominate the running
time on instances with more than 103 cities [3].

Another data structure is needed for instances with
more than 103 cities. The answer to our problem is a
two-level tree [3]. They are more difficult to implement,
but will give us the advantage of O(

√
n) per reversal.

A lookup is still O(1). These two-level trees will do the
job for problem sizes of up to 106 cities [3].

This is where splay trees enter. Having an amor-
tised worst-case time complexity of O(log2(n)) for both
moves and lookups [3], it will outperform both the pre-
vious structures for large problem instances. The im-
plementation is a bit tricky, but will be well worth it.

A mixture of these three representations would be
the best choice. Using arrays for problems with less
than 103 cities, two-level trees for instances with up
to 106 cities and finally splay trees for the largest in-
stances.

5. Branch & Bound

Branch & Bound algorithms are often used to find
optimal solutions for combinatorial optimiziation prob-
lems. The method can easily be applied to the TSP
no matter if it is the Asymmetric TSP (ATSP) or the
Symmetric TSP (STSP).

A method for solving the ATSP using a Depth-First
Branch & Bound (DFBnB) algorithm is studied in [7].
The DFBnB starts with the original ATSP and solves
the Assignment Problem (AP). The assignment prob-
lem is to connect each city with its nearest city such
that the total cost of all connections is minimized. The
AP is a relaxation of the ATSP, thus acting as a lower
bound to the optimal solution of the ATSP.

We have found an optimal solution to the ATSP
if the solution to the AP is a complete tour. If the
solution is not a complete tour we must find a subtour

within the AP solution and exclude edges from it. Each
exclusion will branch our search.

The actual cutting is done by first choosing α as
the length of the best solution currently known. All
branches are cut if the cost of the AP solution exceeds
α.

The DFBnB solves the ATSP with optimality. How-
ever, it can also be used as an approximation algorithm
by adding extra constraints. One is to only remove the
most costly edges of a subtour, thus decreasing the
branching factor.

6. Ant Colony Optimization

Researchers are often trying to mimic nature when
solving complex problems, one such example is the very
successful use of Genetic Algorithms. Another interest-
ing idea is to mimic the movements of ants.

This idea has been quite successful when applied to
the TSP, giving optimal solutions to small problems
quickly [8]. However, as small as an ant’s brain might
be, it is still far to complex to simulate completely. But
we only need a small part of their behaviour to solve
our problem.

Ants leave a trail of pheromones when they explore
new areas. This trail is meant to guide other ants to
possible food sources. The key to the success of ants is
strength in numbers, and the same goes for ant colony
optimization.

We start with a group of ants, typically 20 or so.
They are placed in random cities, and are then asked
to move to another city. They are not allowed to en-
ter a city already visited by themselves, unless they
are heading for the completion of our tour. The ant
who picked the shortest tour will be leaving a trail of
pheromones inversely proportional to the length of the
tour.

This pheromone trail will be taken in account when
an ant is choosing a city to move to, making it more
prone to walk the path with the strongest pheromone
trail. This process is repeated until a tour being short
enough is found. Consult [8] for more detailed infor-
mation on ant colony opimization for the TSP.

7. The Held-Karp Lower Bound

A common way of measuring the performance of
TSP heuristics is to compare its results to the Held-
Karp (HK) lower bound. This lower bound is actu-
ally the solution to the linear programming relaxation
of the integer programming formulation of the TSP.
The solution can be found in polynomial time by us-



ing the Simplex method and a polynomial constraint-
separation algorithm[4].

A HK lower bound averages about 0.8% below the
optimal tour length [4]. But its guaranteed lower lower
bound is only 2/3 of the optimal tour.

It is not feasible to compute the solution exactly
for very large instances using this method. Instead
Held and Karp has proposed an iterative algorithm
to approximate the solution. It involves computing a
large amount of minimum spanning trees (each taking
O(nlog2(n))). The iterative version of the HK will of-
ten keep within 0.01% of the optimal HK lower bound
[4].

8. Conclusion

Selecting an approximation algorithm for the TSP
involves several choices. Do we need a solution with
less than 1% excess over the of the Held-Karp bound,
or do we settle with 4%? The difference in running
time can be substantial.

The Lin-Kernighan algorithm will most likely be the
best candidate in most situations, leaving 2-opt as a
faster alternative.

It all comes down to one key detail, speed.

References

[1] D.S. Johnson and L.A. McGeoch, “The Traveling
Salesman Problem: A Case Study in Local Opti-
mization”, November 20, 1995.

[2] D.S. Johnson and L.A. McGeoch, “Experimental
Analysis of Heuristics for the STSP”, The Traveling
Salesman Problem and its Variations, Gutin and
Punnen (eds), Kluwer Academic Publishers, 2002,
pp. 369-443.

[3] M.L Fredman, D.S. Johnson, L.A. McGeoch, G.
Ostheimer, “Data Structures For Traveling Sales-
men”, J. ALGORITHMS 18, 1995, pp. 432-479.

[4] D.S. Johnson, L.A. McGeoch, E.E. Rothberg,
“Asymptotic Experimental Analysis for the Held-
Karp Traveling Salesman Bound” Proceedings of
the Annual ACM-SIAM Symposium on Discrete Al-
gorithms, 1996, pp. 341-350.

[5] K. Helsgaun, “An Effective Implementation of the
Lin-Kernighan Traveling Salesman Heuristic”, De-
partment of Computer Science, Roskilde Univer-
sity.

[6] D. Applegate, W. Cook and A. Rohe, “Chained
Lin-Kernighan for large traveling salesman prob-
lems”, July 27, 2000.

[7] W. Zhang, “Depth-First Branch-and-Bound versus
Local Search: A Case Study”, Information Sciences
Institute and Computer Science Department Uni-
versity of Southern California.

[8] M. Dorigo, L.M. Gambardella, “Ant Colonies for
the Traveling Salesman Problem”, Universit Libre
de Bruxelles, Belgium, 1996.

[9] S. Arora, “Polynomial Time Approximation
Schemes for Euclidian Traveling Salesman and
Other Geometric Problems”, Journal of the ACM,
Vol. 45, No. 5, September 1998, pp. 753-782.


