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Abstract We study the design of optimal mechanisms in a setting where
job-agents compete for being processed by a service provider that can
handle one job at a time. Each job has a processing time and incurs a
waiting cost. Jobs need to be compensated for waiting. We consider two
models, one where only the waiting costs of jobs are private informa-
tion (1-d), and another where both waiting costs and processing times
are private (2-d). An optimal mechanism minimizes the total expected
expenses to compensate all jobs, while it has to be Bayes-Nash incen-
tive compatible. We derive closed formulae for the optimal mechanism
in the 1-d case and show that it is efficient for symmetric jobs. For non-
symmetric jobs, we show that efficient mechanisms perform arbitrarily
bad. For the 2-d case, we prove that the optimal mechanism in general
does not even satisfy IIA, the ‘independent of irrelevant alternatives’ con-
dition. We also show that the optimal mechanism is not even efficient
for symmetric agents in the 2-d case

1 Introduction

The design of optimal auctions is recognized as an intriguing issue in auction
theory; first studied by Myerson (1981) for single item auctions. In that setting,
the goal is to maximize the seller’s revenue. We study the design of optimal
auctions (or more precisely, mechanisms) in a setting where job-agents compete
for being processed by a service provider that can only handle one job at a time.

Our results. We consider two cases. In the one-dimensional (1-d) case, jobs’
processing times are public information and a job’s weight is only known to the
job itself. Publicly known probability distributions over a finite set of possible
weights represent common beliefs about the weights. In the two-dimensional (2-
d) case, both weights and processing times are private information of the jobs.
In both cases we aim at finding Bayes-Nash incentive compatible mechanisms
that minimize the expected expenses of the service provider. Given jobs’ re-
ports about their private information, a mechanism determines both an order
in which jobs are served, and for each job a payment that the job receives. The



payment can be seen as a compensation for waiting. By a graph theoretic inter-
pretation of the incentive compatibility constraints - as used e.g. by Rochet [12]
and Malakhov and Vohra [7] - we are able to derive optimal mechanisms. For
the one-dimensional case, we obtain closed formulae for modified job weights,
and show that serving the jobs in the order of non-increasing ratios of mod-
ified weights over service times is optimal for the service provider, as long as
a certain regularity condition is fulfilled. It turns out that the optimal mecha-
nism is not necessarily efficient, i.e., in general it does not maximize total utility.
But it does so if e.g. all jobs are symmetric. For non-symmetric jobs, we show
by example that the objective can be arbitrarily far from optimal if we insist
on efficiency. We also compare our optimal mechanism to the generalized VCG
mechanism and see that expected payments differ even for the case of symmetric
jobs. For the two-dimensional case, our main result is that the optimal mecha-
nism generally does not satisfy a property called IIA, ‘independent of irrelevant
alternatives’. That implies that the optimal mechanism cannot be expressed in
terms of modified weights along the lines of the 1-d case. In fact, any kind of
priority based list scheduling algorithm where the priorities of a job depend only
on the characteristics of that job itself cannot in general be an optimal mecha-
nism. We conclude that optimal mechanism design for the two-dimensional case
is substantially more involved than two-dimensional mechanism design for auc-
tion settings, as studied in [7]. We also show that even for symmetric jobs, in
the 2-d case the optimal mechanism is not efficient.

Related Work. Myerson [11] studies optimal mechanisms for single item
auctions and continuous 1-dimensional type spaces. Here, optimal auctions are
modified Vickrey auctions, i.e. modified efficient auctions. When regarding the
seller as additional agent who bids zero in the original auction, his modified bid
might become non-zero in the optimal auctions yielding a reservation price. For a
comparison between Myerson’s and our results, see Section 3. In [4], the authors
give an introduction to optimal mechanism design with 1-dimensional continuous
types under dominant strategy incentive compatibility. Both Myerson’s and our
optimal allocation rules turn out to be dominant strategy implementable as well,
while they yield optimal mechanisms in the larger class of Bayes-Nash incentive
compatible mechanisms. Malakhov and Vohra [7] regard optimal mechanisms
for an auction setting with discrete 2-dimensional type spaces. The derived op-
timal mechanisms again employ the efficient allocation rule with modified bids.
We show that their approach must fail in our setting. For details, we refer to
Section 4. Armstrong [1] studies a multi-object auction model where valuations
are additive and drawn from a binary distribution (i.e. high or low). He gives
optimal auctions under specific conditions that reduce the type graph. From this
paper it becomes evident that optimal mechanism design with multi-dimensional
discrete types is difficult. For our model, we formalize this difficulty by showing
that traditional approaches inevitably yield IIA-mechanisms and therefore must
fail. Other scheduling models have been looked at from a different angle in the
economic literature. See, e.g., [8] for efficient and budget-balanced mechanism



design in a 1-dimensional model and [9] for mechanisms that prevent merging
and splitting of jobs.

2 Optimal Mechanisms for the 1-Dimensional Setting

Setting & Preliminaries. Consider a single machine which can handle one job
at a time. Let J = {1, . . . , n} denote the set of non-preemptive jobs. We regard
jobs as selfish agents that act strategically. Each job j has a processing time pj

and a weight wj . While pj is publicly known, the actual wj is private information
to job j. We refer to the private information of a job as its type. Jobs share
common beliefs about other jobs’ types in terms of probability distributions. We
assume discrete distribution of weights, that is, agent j’s weight wj follows a
probability distribution over the discrete set Wj = {w1

j , . . . , w
mj

j } ⊂ R, where

w1
j ≤ · · · ≤ w

mj

j . Let ϕj be the probability distribution of wj , that is, ϕj(w
i
j)

denotes the probability associated with wi
j for i = 1, . . . , mj . Let Φj(w

i
j) =

∑i

k=1 ϕj(w
k
j ) be the cumulative probability up to wi

j . Both ϕj and Φj are public
information. We assume that jobs’ weights are independently distributed. Let
us denote by W = Πj∈JWj the set of all type profiles. For any job j, let W−j =
Πk 6=jWk. Let ϕ be the joint probability distribution of w = (w1, . . . , wn). Then

ϕ(w) = Πn
j=1ϕj(w

ij

j ) for w = (wi1
1 , . . . , win

n ) ∈ W . Let w−j and ϕ−j be defined

analogously. For wi
j ∈ Wj and w−j ∈ W−j , we denote by (wi

j , w−j) the type

profile where job j has type wi
j and the types of all other jobs are w−j .

A direct revelation mechanisms consists of an allocation rule f and a payment
scheme π. Jobs have to report their weights and they might report untruthfully if
it suits them. Depending on those reports, the allocation rule selects a schedule,
i.e. an order in which jobs are processed on the machine. The payment scheme
assigns a payment that is made to jobs in order to reimburse them for their
waiting cost. The payments can be seen as a reimbursement for waiting.

Let S = {σ |σ is a permutation of (1, . . . , n)} denote the set of all feasi-
ble schedules. Then the allocation rule is a mapping f : W → S. For any
schedule σ ∈ S, let σj be the position of job j in the ordering of jobs in σ.
Then, by Sj(σ) =

∑
σk<σj

pk, we denote the start time or waiting time of

job j in σ. If job j has waiting time Sj and actual weight wi
j , it encounters

a valuation of −wi
jSj. If j additionally receives payment πj , his total utility is

πj −wi
jSj , i.e., we assume quasi-linear utilities. Let us denote by ESj(f, wi

j) :=∑
w−j∈W−j

Sj(f(wi
j , w−j))ϕ−j(w−j) the expected waiting time of job j if it

reports weight wi
j and allocation rule f is applied. Denote by Eπj(w

i
j) :=∑

w−j∈W−j
πj(w

i
j , w−j)ϕ−j(w−j) the expected payment to j. We assume that

jobs aim at maximizing their expected utility.

Definition 1. A mechanism (f, π) is Bayes-Nash incentive compatible if for
every agent j and every two types wi

j,w
k
j ∈ Wj

Eπj(w
i
j) − wi

jESj(f, wi
j) ≥ Eπj(w

k
j ) − wi

jESj(f, wk
j ) (1)



under the assumption that all agents apart from j report truthfully. If for allo-
cation rule f there exists a payment scheme π such that (f, π) is Bayes-Nash
incentive compatible, then f is called Bayes-Nash implementable. The payment
scheme π is referred to as an incentive compatible payment scheme.

In order to account for individual rationality, we need to guarantee non-
negative utilities for all agents that report their true weight. To that end, we
add a dummy weight w

mj+1
j to the type space Wj for every agent j. We as-

sume ESj(f, w
mj+1
j ) = 0 and Eπj(w

mj+1
j ) = 0 for all j ∈ J . Furthermore,

we impose the incentive constraints Eπj(w
i
j) − wi

jESj(f, wi
j) ≥ Eπj(w

mj+1
j ) −

wi
jESj(f, w

mj+1
j ) implying that Eπj(w

i
j)−wi

jESj(f, wi
j) ≥ 0 for any Bayes-Nash

incentive compatible mechanism (f, π). Therefore, the dummy weights together
with the mentioned assumptions guarantee that individual rationality is satisfied
along with the incentive constraints. The dummy weight can be interpreted as
an option for any job not to take part in the mechanism.

Definition 2. An allocation rule f satisfies monotonicity w.r.t. weights or short
monotonicity if for every agent j ∈ J , wi

j < wk
j implies that ESj(f, wi

j) ≥

ESj(f, wk
j ).

Theorem 1. An allocation rule f is Bayes-Nash incentive compatible if and
only if it satisfies monotonicity w.r.t. weights.

The proof is standard and therefore omitted. We refer, e.g., to [10] for details.

The Type Graph. A useful tool for deriving optimal mechanisms is the
type graph. It has been used earlier, e.g. in [6,7,10]4. The type graph5 Tf is
defined for a fixed agent j. Tf has node set Wj and contains an arc from any
node wi

j to any other node wk
j of length

ℓik = wi
j [ESj(f, wk

j ) − ESj(f, wi
j)].

Here, ℓik represents the gain in expected valuation for agent j by truthfully
reporting type wi

j instead of lying type wk
j . The incentive constraints for a Bayes-

Nash incentive compatible mechanism (f, π) and job j can be read as

Eπj(w
k
j ) ≤ Eπj(w

i
j) + wi

j [ESj(f, wk
j ) − ESj(f, wi

j)] = Eπj(w
i
j) + ℓik.

That is, the expected payments Eπj(·) constitute a node potential in Tf . A
standard result in graph theory says that these node potentials exist if and only
if there is no negative cycle in the graph. That is, Bayes-Nash implementability of
an allocation rule f is equivalent to the fact that the type graph Tf for any agent
j has no negative cycle. We then say that the Tf ’s satisfy the non-negative cycle
property. Monotonicity is equivalent to the fact that there is no negative cycle

4 The exact definitions of the type graph might differ in the papers depending on the
underlying model.

5 We suppress the dependence on agent j in the notation and simply write Tf .



of length two in Tf . We call this property the non-negative two-cycle property.
It follows from

ℓik + ℓki = wi
j [ESj(f, wk

j ) − ESj(f, wi
j)] + wk

j [ESj(f, wi
j) − ESj(f, wk

j )]

= (wi
j − wk

j )[ESj(f, wk
j ) − ESj(f, wi

j)].

The last term is non-negative for all jobs j and any two types wi
j and wk

j iff
monotonicity holds.

Optimal Mechanisms. It is well known that scheduling in order of non-
increasing weight over processing time ratios minimizes the sum of weighted start
times

∑n

j=1 wjSj(f(w)) for any type profile w ∈ W , and therefore maximizes the
total valuation of all agents. This allocation rule is known as Smith’s rule [13].
The optimal mechanism that we derive deploys a slightly different allocation
rule, namely Smith’s rule with respect to certain modified weights.

Our goal is to set up a mechanism that is Bayes-Nash incentive compatible
and among all such mechanisms minimizes the expected total payment that has
be made to the jobs. Given any Bayes-Nash incentive compatible mechanism
(f, π), one can obviously substitute the payment scheme by its expected payment
scheme yielding (f, Eπ(·)) without loosing Bayes-Nash incentive compatibility.
Moreover, the expected total payment to the agents remains unchanged under
the substitution. Therefore, we restrict focus to mechanisms in which agents
always receive a payment that is equal to the expected payment given the agent’s
report and which is independent of the specific report of the other agents and of
the actual allocation.

Note that, unlike e.g. in [11], in the discrete setting considered here rev-
enue equivalence does not hold. Therefore, there are possibly multiple payment
schemes that make an allocation rule incentive compatible. Let f be an allo-
cation rule and let πf (·) be a payment scheme that minimizes expected ex-
penses for the machine among all payment schemes that make f Bayes-Nash
incentive compatible. More specifically, πf

j (wi
j) denotes the payment to agent

j declaring weight wi
j under this optimal payment scheme. Let Pmin(f) =

∑
j∈J

∑
wi

j
∈Wj

ϕj(w
i
j)π

f
j (wi

j) be the minimum expected total expenses for al-

location rule f . The following lemma specifies the optimal payment scheme for
a given allocation rule.

Lemma 1. For a Bayes-Nash implementable allocation rule f , the payment
scheme defined by

πf
j (w

mj+1
j ) = 0, πf

j (wi
j) =

mj∑

k=i

wk
j [ESj(f, wk

j )−ESj(f, wk+1
j )] for i = 1, . . . , mj

is incentive compatible, individually rational and minimizes the expected total
payment made to agents. The corresponding expected total payment is given by

Pmin(f) =
∑

j∈J

mj∑

i=1

ϕj(w
i
j)w

i
jESj(f, wi

j),



where the modified weights wj are defined as follows

w1
j = w1

j , wi
j = wi

j + (wi
j − wi−1

j )
Φj(w

i−1
j )

ϕj(wi
j)

for i = 2, . . . , mj .

The proof relies on the observation that minimal expected payments can
be expressed as shortest path lengths in the type graph; we refer to the full
version [5] for more details.

Given the minimum payments per allocation rule, we want to specify the
allocation rule f which minimizes Pmin(f) among all Bayes-Nash implementable
allocation rules.

Definition 3. If f ∈ arg min{Pmin(f) | f : W → S, f Bayes-Nash implementable},
then we call the mechanism (f, πf ) an optimal mechanism.

We will need the following regularity condition that ensures Bayes-Nash im-
plementability of the allocation rule in our optimal mechanism.

Definition 4. We say that regularity is satisfied if for every agent j and i =
2, . . . , mj − 1

wi
j + (wi

j − wi−1
j )

Φj(w
i−1
j )

ϕj(wi
j)

≤ wi+1
j + (wi+1

j − wi
j)

Φj(w
i
j)

ϕj(w
i+1
j )

.

This implies that wi
j < wk

j whenever wi
j < wk

j .

Note that regularity is satisfied e.g. if the differences wi
j −wi−1

j are constant and
the distribution has a non-increasing reverse hazard rate.

Theorem 2. Let the modified weights be defined as in Lemma 1. Let f be the
allocation rule that schedules jobs in order of non-increasing ratios wj/pj. If
regularity holds, then (f, πf ) is an optimal mechanism.

Proof. We show that f is Bayes-Nash implementable and minimizes Pmin(f)
among all Bayes-Nash implementable allocation rules. For any allocation rule f ,
it is not hard to see that we can rewrite Pmin(f) as follows, using independence

of weight distributions. Let W ′
j = Wj \ {w

mj+1
j } and W ′ = Πj∈JW ′

j .

Pmin(f) =
∑

j∈J

∑

wi
j
∈W ′

j

ϕj(w
i
j)w

i
jESj(f, wi

j)

=
∑

w∈W ′

ϕ(w)
∑

j∈J

w̄jSj(f(w)).

Thus, Pmin(f) can be minimized by minimizing
∑

j∈J w̄jSj(f(w)) for every
reported type profile w. This is achieved by scheduling in order of non-increasing
ratios wj/pj. Under Smith’s rule, the expected start time ESj(wj) is clearly non-
increasing in the modified weight wj . The regularity condition ensures that it is
non-increasing in the original weights wj . Therefore, Smith’s rule with respect to
modified weights satisfies monotonicity and is hence Bayes-Nash implementable
by Theorem 1. This completes the proof. ⊓⊔



It is not hard to see that the optimal allocation rule – Smith’s rule with
respect to modified weights – is even dominant strategy implementable, with
the same total expected payment for the mechanism.

3 Optimality versus Efficiency

For symmetric agents the optimal and the efficient allocation coincide.

Corollary 1. If agents are symmetric, i.e. W1 = · · · = Wn, ϕ1 = · · · = ϕn and
p1 = · · · = pn and if distributions are such that regularity holds, then the optimal
mechanism is efficient.

If weight distributions differ among agents or if agents have different process-
ing times, then the optimal mechanism is in general not efficient. In fact, when
restricting to efficient mechanisms, the total expected payment can be arbitrarily
bad in comparison to the optimal one. This is illustrated by the following two
examples; proofs can be found in the full version of this paper [5].

Example 1. Let there be two jobs 1 and 2 with W1 = {M +1} and W2 = {1, M}
for some constant M . Let ϕ2(1) = 1 − 1/M , ϕ2(M) = 1/M and p1 = p2 = 1.
Let Eff be the efficient and Opt be the optimal allocation rule. Then the ratio
Pmin(Eff)/Pmin(Opt) goes to infinity as M goes to infinity.

Remark 1. In the above, the ratio of the expected payments of the efficient versus
the optimal allocation rule is analyzed. It is also easy to see that the expected
ratio of the payments tends to infinity as M approaches infinity.

Example 2. Let there be two jobs 1 and 2 with the same weight distribution
W1 = W2 = {1, M}, ϕj(1) = 1 − 1/M , ϕj(M) = 1/M for j = 1, 2. Let p1 = 1/2
and p2 = M/2 + 1. Let Eff be the efficient and Opt be the optimal allocation
rule. Then the ratio Pmin(Eff)/Pmin(Opt) goes to infinity as M goes to infinity.

Remark 2. As in the first example, it is easy to see that the expected ratio of
the payments tends to infinity as M approaches infinity.

Comparison to Myerson’s result. For the single item auction and con-
tinuous type spaces, Myerson [11] has made similar observations: in his setting,
the efficient auction is the Vickrey auction. The optimal auction can be seen as a
modified Vickrey Auction with the seller submitting a bit himself. In our setting
also, the allocation in the optimal mechanism is equivalent to the efficient allo-
cation rule with respect to modified data. Nevertheless, in [11] the optimal and
the efficient mechanism may differ. For the single item auction this can be due
to the seller keeping the item (even in the symmetric case) or because a bidder
that has not submitted the highest bid can get the item in the asymmetric case.
In our setting, the optimal and the efficient mechanism can only differ if agents
are asymmetric, see Corollary 1 and Examples 1 and 2.



On the generalized VCG Mechanism. The VCG mechanism is due to
Vickrey [14], Clarke [2] and Groves [3]. The allocation rule is the efficient one. In
our setting this means scheduling in order of non-increasing ratios wj/pj. The
payment scheme can be shown to be

πV CG
j (w) = pj

∑

k∈J
σk<σj

wk ,

where w is the reported type profile and σ the efficient schedule. As illustrated
by examples 1 and 2, the allocation of the VCG mechanism can differ from the
allocation of the optimal mechanism if agents are not symmetric. Moreover, if
jobs are symmetric, the VCG mechanism still can be non-optimal in terms of
payments. This is illustrated by the following example.

Example 3. There are two symmetric agents with W1 = W2 = {w1, w2}, w1 <
w2, and ϕj(w

1) = ϕj(w
2) = 1/2 for j = 1, 2. Processing times are equal (w.l.o.g.,

p1 = p2 = 1. Then the expected expenses of the VCG mechanism can be shown
to be strictly higher than those of the optimal mechanism.

4 The 2-Dimensional Setting

Setting and Notation. In contrast to the 1-dimensional setting, both weight
and processing time of a job are now private information of the job. Hence j’s
type is the tuple (wj , pj). We assume public probability distribution informa-
tion, i.e. (wj , pj) ∈ Wj × Pj , where Wj = {w1

j , . . . , w
mj

j } with w1
j ≤ · · · ≤ w

mj

j

and Pj = {p1
j , . . . , p

qj

j } with p1
j ≤ · · · ≤ p

qj

j . Let ϕj be the probability distribu-

tion of j’s type, that is, ϕj(w
i
j , p

k
j ) denotes the probability associated with the

type (wi
j , p

k
j ) for i = 1, . . . , mj and k = 1, . . . , qj . Both ϕj and Φj are public.

Distributions are independent between agents. Denote by T = Πj∈J (Wj × Pj)
the set of all type profiles. For any job j, let T−j = Πr 6=j(Wr × Pr) be the set
of type profiles of all jobs except j. Let ϕ be the joint probability distribution
of (w1, p1, . . . , wn, pn). Then for type profile t = (wi1

1 , pk1

1 , . . . , win
n , pkn

n ) ∈ T ,

ϕ(t) = Πn
j=1ϕj(w

ij

j , p
kj

j ). Let t−j and ϕ−j be defined analogously. For (wi
j , p

k
j ) ∈

Wj × Pj and t−j ∈ T−j, we denote by ((wi
j , p

k
j ), t−j) the type profile where job

j has type (wi
j , p

k
j ) and the types of the other jobs are represented by t−j . De-

note by ESj(f, wi
j , p

k
j ) :=

∑
t−j∈T−j

Sj(f((wi
j , p

k
j ), t−j))ϕ−j(t−j) the expected

waiting time of job j if he reports type (wi
j , p

k
j ) and allocation rule f is applied.

Denote by Eπj(w
i
j , p

k
j ) :=

∑
t−j∈T−j

πj((w
i
j , p

k
j ), t−j)ϕ−j(t−j) the expected pay-

ment to j.
We assume that an agent can only report a processing time that is not lower

than his true processing time and that a job is processed for his reported pro-
cessing time. This is a natural assumption, since a job can add unnecessary work
to achieve a longer processing time, but reporting a shorter processing time can



easily be punished by preempting the job after the declared processing time
(before it is actually finished).

Note that by regarding the processing time as private information, we intro-
duce informational externalities: job j has a different valuation for a schedule if
the processing time (and hence the type) of a job scheduled before j changes. In
this regard, our model differs from the auction models studied in [11] and [7].

4.1 Bayes-Nash Implementability and the Type Graph

Definition 5. A mechanism (f, π) is called Bayes-Nash incentive compatible
if for every agent j and every two types (wi1

j , pk1

j ) and (wi2
j , pk2

j ) with i1, i2 ∈
{1, . . . , mj}, k1, k2 ∈ {1, . . . , qj}, k1 ≤ k2,

Eπj(w
i1
j , pk1

j ) − wi1
j ESj(f, wi1

j , pk1

j ) ≥ Eπj(w
i2
j , pk2

j ) − wi1

j ESj(f, wi2
j , pk2

j ) (2)

under the assumption that all agents apart from j report truthfully.

Note that by defining the incentive constraints only for k1 ≤ k2, we account
for the fact that agents can only overstate their processing time, but cannot
understate it.

In order to ensure individual rationality, again add a dummy type tdj to

the type space for every agent j, and let ESj(f, tdj ) = 0 and Eπj(t
d
j ) = 0 for

all j ∈ J . As in the 1-dimensional case, the dummy types together with the
mentioned extra incentive constraints guarantee that individual rationality is
satisfied along with the incentive constraints. Sometimes, it will be convenient
to write (w

mj+1
j , pk

j ) for some k ∈ {1, . . . , qj} instead of tdj .
In the 2-dimensional setting, the type graph Tf of agent j has node set Wj×Pj

and contains an arc from any node (wi1
j , pk1

j ) to every other node (wi2
j , pk2

j ) with
i ∈ {1, . . . , mj}, i2 ∈ {1, . . . , mj + 1}, k ∈ {1, . . . , qj}, k1 ≤ k2 of length

ℓ(i1k1)(i2k2) = wi1
j [ESj(f, wi2

j , pk2

j ) − ESj(f, wi1
j , pk1

j )].

Note that we have arcs only in direction of increasing processing times, since
agents can only overstate their processing time. Furthermore, every node has an
arc to the dummy type, but there are no outgoing arcs from the dummy type.

Definition 6. An allocation rule f satisfies monotonicity w.r.t. weights if for
every agent j ∈ J and fixed pk

j ∈ Pj, wi1
j < wi2

j implies that ESj(f, wi1
j , pk

j ) ≥

ESj(f, wi2
j , pk

j ).

Theorem 3. An allocation rule f is Bayes-Nash incentive compatible in the 2-
dimensional setting if and only if it satisfies monotonicity with respect to weights.

Proof. The claim reduces to showing that in the type graph of any agent j the
non-negative cycle property is equivalent to the non-negative two-cycle prop-
erty. Since there is an arc from a node representing type (wi1

j , pk1

j ) to the node



representing type (wi2
j , pk2

j ) if and only if pk1

j ≤ pk2

j , cycles can only occur be-
tween nodes representing types with equal processing times. Hence, the proof is
analogous to the 1-dimensional case. �

Similar as in [7], one can show that some arcs in the type graph are not
necessary, since the corresponding incentive constraints are implied by others.
The reduced type graph of agent j contains only arcs that are necessary in
that sense. A sketch of the reduced type graph is given in Figure 1. Expected
payments correspond to node potentials in the reduced type graph. The reduced
type graph comes handy particularly when considering our (counter) examples
in the next subsection.

w1

j , p
1

j
w

mj

j , p1

j

w
mj

j , p
qj

j
w1

j , p
qj

j

tdj

Figure 1. Reduced type graph 2-d case.

4.2 On Optimal Mechanisms

We start be quickly reviewing an approach to two-dimensional optimal mecha-
nism design studied in [7]. Here, the authors regard a limited-supply multi-item
auction, were each agent’s type (i, j) is given by a marginal valuation i per item
and a capacity j. Above that capacity, the agent has zero valuation for each
additional item. The goal is revenue maximization. Bayes-Nash implementabil-
ity is equivalent to the expected amount of items allocated to an agent being
monotone in his reported value for i. Malakhov and Vohra [7] use the type graph
approach to derive optimal mechanisms in this 2-d setting. Note, however, that
the approach of [7], and also our approach for the 1-dimensional setting focus on
one agent and its type graph. Hence, in terms of the scheduling model consid-
ered here, any optimal allocation rule derived this way is necessarily a modified
Smith’s rule with modified weights that can be computed from the character-
istics (type report and distribution) of the agent itself. Such an allocation rule
necessarily satisfies the following IIA property.

Definition 7. We say that an allocation rule f is independent of irrelevant
alternatives (IIA) if the relative order of any two jobs j1 and j2 is the same in
the schedules f(t1) and f(t2) for any two type profiles t1, t2 ∈ T that differ only
in the types of agents from J \ {j1, j2}.



In other words, the relative order of two jobs is independent of all other jobs.
For the 2-d setting, this is not necessarily the case for optimal mechanisms.

Theorem 4. The optimal allocation rule for the 2-dimensional setting does in
general not satisfy IIA.

Proof. The proof uses the following instance with three jobs. Job 1 has type
(1, 1), job 2 has type (2, 2) and job 3 has type space {1.9, 2} × {1, 2}. The
probabilities for job 3’s types are ϕ3(1.9, 1) = 0.8, ϕ3(2, 2) = 0.2 and ϕ3(1.9, 2) =
ϕ3(2, 1) = 0 respectively. We show that the best allocation rule that satisfies IIA
achieves a minimum expected total payment of at least 5.6, whereas there exists
an allocation rule – violating IIA – with an expected total payment of 4.88. The
details are contained in the full version of this paper [5]. �

Theorem 4 shows that any list scheduling algorithm where the priority of a
job can be computed from the characteristics of the job itself cannot be optimal
in general. Moreover, the type graph approach must fail, since it focusses on
a single agent. Hence, optimal mechanism design for our 2-dimensional setting
is considerably more complicated than for the 1-dimensional setting and for
traditional auction settings as described in [11] and [7].

One explanation for this complication may lie in the fact that the 2-d setting
considered here in fact entails informational externalities, as opposed to the
auction settings in [11] and [7]. On the other hand, the informational externalities
introduced by private processing times are not the only cause for complications
in the 2-dimensional setting: Consider the 1-dimensional setting, where only the
processing times are private, but the weights are public information. It turns
out that all allocation rules are implementable, even when we allow that jobs
understate their processing times. The optimal payment to a job j that reports
processing time pk

j is equal to wjESj(f, pk
j ), and therefore the total payment to

jobs for allocation rule f is equal to Pmin(f) =
∑

j∈J

∑qj

k=1 ϕj(p
k
j )wjESj(f, pk

j ).
This is minimized by Smiths rule.

When there are only two agents present, then IIA is trivially satisfied. Recall
that in the 1-dimensional case the optimal mechanism is efficient for symmetric
agents and regular distributions and that the uniform distribution is regular.
This is contrasted by the following theorem.

Theorem 5. Even for two symmetric agents, 2 × 2-type spaces and uniform
probability distributions, the optimal mechanism is not efficient.

Proof. We show that the efficient allocation is for some instances dominated by
the w-rule, which schedules the job with the higher weight first. For details we
refer to the full version of this paper [5]. �

5 Conclusion

We have seen that the graph theoretic approach is an intuitive tool for optimal
mechanism design, and yields a closed formula for the optimal mechanism in the
1-d discrete case. The same approach works for the continuous case, too.



Moreover, we have seen that in the two-dimensional case the canonical ap-
proach does not work and that optimal mechanism design seems to be consider-
ably more complicated than in the traditional auction models. We leave it as an
open problem to identify (closed formulae for) optimal mechanisms for the 2-d
case. It is conceivable, however, that closed formulae don’t exist.
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