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Abstract

A seller is selling a good to an (agent, manager) pair. The agent is budget con-

strained but the manager is not. Both value the good differently and want to jointly

acquire it, but they take decisions in a lexicographic manner. In particular, for any

pair of outcomes, the agent first compares using her valuation. If she cannot compare

them (due to budget constraint), then the manager compares. We are interested in

the optimal (expected revenue maximizing) mechanism under incentive and individual

rationality constraints. We show that the optimal mechanism is either a posted price

mechanism or a mechanism involving a pair of posted prices (a menu of three out-

comes). In the latter case, the optimal mechanism involves randomization and pools

types in the middle.
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1 Introduction

An (agent, manager) pair needs to buy a good. The agent (she) is budget constrained,

but the manager (he) is not budget constrained. A seller offers a menu of (quantity, price)

bundles to them in a mechanism. If the agent’s best bundle is within her budget, she buys

it. Else, she contacts the manager. The manager is not budget constrained and can give any

amount of funding as long as she respects his preference. Implicitly, the manager’s payoff is

linked to the agent’s payoff in a monotone way and hence, the manager is willing to fund

(without any side payments). This may be because both the manager and the agent need to

acquire the good for the firm, and their payoff depends on the payoff of the firm. They have

subjective valuation of the good for the firm. The valuations of the agent and the manager

may be different because either there is inherent uncertainty about the valuation of the good

and the agent and the manager may be differently informed about it or they use different

attributes of the good to determine its valuation.

Our objective here is to capture a setting where an agent’s behavior contradicts standard

notions of rationality - ideally, the agent and the manager should get together and choose

the best option according their joint estimate of the good’s valuation. However, they are

naive: (a) the agent only contacts the manager when she cannot choose the best bundle due

to budget constraint; (b) whenever she contacts the manager, she respects his decision; and

(c) the manager can impose his preference only when contacted by the agent. This makes

the problem different from standard monopoly pricing problems. Sales to such an (agent,

manager) pair who take decisions lexicographically, where the agent is budget constrained,

is not uncommon: (child, parent) pair making decision to buy some product; (management,

board) pair of a company making decisions to acquire another company; (department, dean)

pair making decision to recruit a faculty candidate. A department (or, child or management)

only contacts the dean (or, parent or board respectively) when it cannot take a decision about

a new faculty candidate due to budget constraint. But once it contacts the dean, it has to

respect the dean’s preference. 1 We are interested in finding the optimal mechanism for

1The dean and the department cannot jointly evaluate a faculty candidate because the dean is time
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selling to such an (agent, manager) pair.

The private information or type in our model is a pair of valuations: agent’s own valuation

and manager’s valuation. There is no information transmission story here - even though the

agent does not know the valuation of the manager, she can readily access the preference of

the manager, but does so only when she cannot make a decision due to budget constraint.

Hence, her decisions depend on her valuation and the manager’s valuation. The incentive

constraints in our model are quite different from a standard model of mechanism design.

This is because the sequential nature of decision-making generates cyclic preference of the

(agent, manager) pair. Hence, no utility representation is possible for such preferences, and

the incentive constraints are ordinal in nature. In particular, if a mechanism assigns bundle

(q, p) to a type, where q is quantity and p is price, then a manipulation to get another

(quantity, price) pair (q′, p′) is possible if (a) the agent finds (q′, p′) more attractive than

(q, p) and p′ is less than the budget or (b) she cannot compare these two pairs (because the

preferred pair is beyond budget) but the manager finds (q′, p′) more attractive than (q, p).

An incentive compatible mechanism guards against all such manipulations.

Contributions. We fully characterize the optimal (expected revenue maximizing in-

centive compatible and individually rational) mechanism for the seller in our model. The

optimal mechanism is either a posted-price mechanism (the no-haggling solution of Mussa

and Rosen (1978); Riley and Zeckhauser (1983)) or a mechanism involving two posted-prices

- we call it the post-2 mechanism. The post-2 mechanism has a pair of posted prices P1

and P2, both greater than the budget B. If the agent’s valuation of the good is less than

P1, then the object is not sold (and no payments are made). If the agent’s valuation of

the good is more than P1, then the object is sold with probability B
P1

at per unit price P1

(i.e., total payment is B). The remaining probability (1− B
P1

) is sold at per unit price P2 if

the valuation of both the agent and the manager exceeds P2. Hence, a post-2 mechanism

constrained, and may be involved with a number of other such responsibilities. Similarly, the company

board has delegated responsibility to the management with a budget constraint. Burkett (2015) shows that

such arrangements can come out of an equilibrium contracting agreement between a (principal, agent) pair

participating in a mechanism.
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involves an extra layer of pooling of types in the middle and involves randomization. 2

We provide a simple condition on the budget when a post-2 mechanism is optimal.

There are three special cases, where our problem reduces to a standard revenue maximization

problem of a monopolist: (1) when the budget of the agent is sufficiently high (then the agent

can make all the decisions); (2) when the budget of the agent is zero (then the manager makes

all the decisions); and (3) when the preferences of the agent and the manager are identical.

In all these cases, a posted-price mechanism is optimal (Mussa and Rosen, 1978; Riley and

Zeckhauser, 1983) - call the optimal posted-price in such settings a monopoly reserve price.

We show that if the budget of the agent is below the monopoly reserve price, a post-2

mechanism is optimal.

Our optimal mechanism is simple since it can be described by a single parameter or a pair

of parameters, and involves a menu of size two or three. Further, our result works for a rich

class of priors (over values of the (agent, manager) pair), which allows for correlation. The

nature of incentive constraints in our problem implies that there is no revenue equivalence

theorem to work with. Compared to a standard multi-object monopolist, where one runs into

difficulty even in the two-object case (Manelli and Vincent, 2007; Hart and Nisan, 2017), we

still have tractability in our multidimensional model because of the nature of decision-making

and the incentive constraints.

2 An illustration

We explain using a simple example why a posted price mechanism need not be optimal in

our model. For simplicity, consider a setting where valuations of the agent and the manager,

2 Randomization is often seen in practice: same product is sold with different quality levels; limited shares

of a company are possible to acquire instead of complete acquisition; a faculty candidate considers different

levels of teaching in the contract when being hired etc. However, our optimal mechanism design recommends

a particular kind of randomization. We do not know if such particular randomization is seen in practical

problems. Our results suggest that whenever a designer believes he is confronted with an (agent, manager)

pair described in our model, it is optimal to offer such randomization in the menu.
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v ≡ (v1, v2), are distributed in [0, 1]× [0, 1]. We assume that both the agent and the manager

have quasilinear preferences. So, the agent evaluates options using v1 and the manager

evaluates options using v2. Consider a budget B > 0. Suppose the seller uses a posted price

mechanism with price p > B. We argue that such a posted price mechanism cannot be

optimal. To see this, consider the menu in a posted price mechanism: {(1, p), (0, 0)}, i.e.,

take the object with probability 1 at price p or get nothing at zero price. If v ≡ (v1, v2) is

such that v1 ≤ p the agent will prefer (0, 0) to (1, p) and she will take this decision without

consulting the manager. If v ≡ (v1, v2) is such that v2 ≤ p and v1 ≥ p, then the agent

prefers (1, p) to (0, 0) but she cannot take this decision since p > B. Hence, she consults

the manager who prefers (0, 0) to (1, p). Hence, (0, 0) will be preferred over (1, p) at such

profiles. So, the only region where (1, p) is preferred to (0, 0) is when min(v1, v2) ≥ p - this

is when both the agent and the manager prefers (1, p) to (0, 0). This is shown in the left

graph of Figure 1.
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Figure 1: Non-optimality of posted prices

Now, consider another mechanism with a menu of three outcomes: {(1, p), (B
p
, B), (0, 0)}.

So, the new menu contains an outcome that involves randomization and a payment of B.

Consider the profile of values v ≡ (v1, v2). Using the same argument as before, we see that

if min(v1, v2) ≥ p, then the (agent,manager) pair prefers (1, p) to the other two outcomes

in the menu. Similarly, if v1 ≤ p, then the (0, 0) is preferred to the other two outcomes in

the menu. However, if v1 ≥ p but v2 ≤ p, then v1 − p ≥ B
p

(v1 − p). But p > B implies

that the agent cannot compare (1, p) and (B
p
, B) - i.e., the preferred outcome (1, p) is beyond
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beyond the budget. However, since v2 ≤ p, we see that B
p

(v2− p) ≥ v2− p. So, the manager

prefers (B
p
, B) to (1, p). The agent prefers (B

p
, B) to (0, 0) because B

p
(v1 − p) ≥ 0 and she

can compare these outcomes (within budget). Hence, the (B
p
, B) is preferred to the other

outcomes in the menu by the (agent, manager) pair when v1 ≥ p but v2 ≤ p. This is shown

the right graph of Figure 1. This graph has an extra positive measure region where revenue

of B can be earned by the seller at every profile in this region. Hence, this mechanism

generates strictly larger revenue than the posted price mechanism. As is apparent, the seller

is able to exploit the lexicographic nature of decision-making of the (agent, manager) pair

to extract more revenue than in a posted price mechanism. Our main result will show that

it cannot exploit any more than this, i.e., such a mechanism will be optimal.

The above discussion shows that a posted price mechanism which posts a price above

the budget cannot be optimal. Our main result will formalize this intuition - for low enough

budgets, we will show that the optimal mechanism will involve randomization but we can

be precise about the nature of the randomization. The optimal mechanism will be a posted

price mechanism for “high enough” budgets. But for budgets below a certain threshold, it

will be a mechanism involving an extra layer of pooling in the middle.

3 The model

A seller is selling a single object to an agent who evaluates options along with her manager.

She has a publicly observable budget B ∈ (0, β), where β > 0. A consumption bundle is a

pair (a, t), where a ∈ [0, 1] is the allocation probability and t ∈ R is the transfer - amount

paid by the agent. The set of all consumption bundles is denoted by Z ≡ [0, 1]×R. The agent

and the manager evaluate the outcomes in Z using quasilinearity. Hence, their individual

preference can be captured by valuations: a generic valuation of the agent is denoted as v1

and a generic valuation of the manager is denoted by v2. We assume that v1, v2 ∈ V ≡ [0, β]

- all our results extend even if we allow for the fact vi ∈ [0, βi] for each i ∈ {1, 2} and β1 6= β2.

Since the budget is publicly observable, the only private information in the model are the

two valuations (v1, v2).
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Preference (rationale) of the agent with valuation v1 is denoted by �v1 . Formally, �v1 is

a binary relation (incomplete): ∀ (a, t), (a′, t′) ∈ Z,[
(a, t) �v1 (a′, t′)

]
⇔

[
av1 − t ≥ a′v1 − t′ and t ≤ B

]
.

Notice that t′ need not be below B in the above definition. This is consistent with our story

that the agent makes a decision whenever she can.

Preference of the manager with valuation v2 is denoted by �v2 . Formally, ∀ (a, t), (a′, t′) ∈

Z, [
(a, t) �v2 (a′, t′)

]
⇔

[
av2 − t ≥ a′v2 − t′

]
.

Hence, �v2 is complete. Notice that both �v1 and �v2 are transitive.

We denote the aggregate preference of the (agent, manager) pair with type v ≡ (v1, v2)

as �v. The preference �v is a complete binary relation derived from �v1 and �v2 as follows.

For every (a, t), (a′, t′) ∈ Z, [
(a, t) �v (a′, t′)

]
⇔

either
[
(a, t) �v1 (a′, t′)

]
or
[
(a, t) �v1 (a′, t′), (a′, t′) �v1 (a, t), (a, t) �v2 (a′, t′)

]
.

As is expected, �v is intransitive for almost all v ≡ (v1, v2) - for instance, it can be verified

that for v ≡ (v1 = 1
2
, v2 = 1), the aggregate preference over three outcomes (1

2
, B), (1, B +

5
16

), (11
16
, B + 1

16
) cycle. An important consequence of this observation is that there is no

utility representation of the preference of our (agent, manager) pair. As discussed earlier,

the aggregate preference captures the decision making process of the (agent, manager) pair.

For every pair of outcomes, first the agent tries to compare. The manager compares only

if the agent fails to compare due to budget constraint. We interpret this decision-making

process further after defining the incentive constraints.

We assume that the random variable v ≡ (v1, v2) over V × V follows a distribution G

with G1 being the marginal for agent’s valuation and G2 being the marginal for manager’s

valuation. Both G1 and G2 are assumed to be differentiable functions with positive densities

g1 and g2 respectively. Notice that we allow for values of the agent and the manager to be

correlated (but not perfectly correlated since densities g1 and g2 are positive). Our results

will require some restrictions in G1, which we will state later.
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4 The optimal mechanism

4.1 Incentive compatibility

Since the preference of the (agent, manager) pair is completely captured by v ≡ (v1, v2),

we will refer to v as the type in our model. A (direct) mechanism is a pair of maps: an

allocation rule f : V 2 → [0, 1] and a payment rule p : V 2 → R. For every v ∈ V 2, f(v)

denotes the allocation probability and p(v) denotes the payment of this type.

The restriction to such direct mechanisms is without loss of generality as a version of

the revelation principle holds in our setting - see Section 5. 3 Hence, we can discuss about

incentive compatibility of direct mechanisms.

Definition 1 A mechanism (f, p) is incentive compatible (IC) if for all u, v ∈ V 2,

(f(u), p(u)) �u (f(v), p(v)).

Fix a mechanism (f, p) and let the range of the mechanism be

Rf,p := {(a, t) : (f(v), p(v)) = (a, t) for some v ∈ V 2}.

Consider a type u ≡ (u1, u2). The designer has assigned the bundle (f(u), p(u)) to this type.

For every (a, t) ∈ Rf,p, there are two possibilities of manipulation. First, the agent can

manipulate - this is possible if au1 − t > f(u)u1 − p(u) with t ≤ B. Second, the manager

can manipulate and this is possible if the agent could not take a decision, contacted the

manager, and au2 − t > f(u)u2 − p(u). Our notion of IC thus guards against two kinds of

manipulations: one where the agent can take her own decision and manipulates, and the

other where the agent cannot decide due to budget constraint and the manager manipulates.

In general, preferences over outcomes in Rf,p may violate transitivity. However, our

notion of IC requires that at every type u, the outcome (f(u), p(u)) is preferred to any other

3Though direct reporting of valuations of the agent and the manager may seem unrealistic in this setting,

we can think of the direct mechanism as announcing a menu of outcomes and the agent choosing the best

outcome from this menu (with the help of her manager).
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outcome in Rf,p. This implies that if the designer wants type u to choose (f(u), p(u)) from

the menu Rf,p, then it must be the case that for any other outcome (a, t) in Rf,p, the agent

does not prefer (a, t) to (f(u), p(u)) or the agent cannot compare (a, t) and (f(u), p(u)), but

the manager does not prefer (a, t) to (f(u), p(u)). Our notion of IC implies that the outcome

chosen for every type is not involved in a cycle. This allows us to rule out Dutch book

arguments (or money pump) using our notion of incentive compatibility.

Thus, our notion of IC can be broken down into two distinct cases. Fix u, v ∈ V 2. Then,

there are two ways in which bundle (f(u), p(u)) can be (weakly) preferred over (f(v), p(v))

by a type u.

1. First, the agent prefers (f(u), p(u)) over (f(v), p(v)). This is possible if p(u) ≤ B and

u1f(u)− p(u) ≥ u1f(v)− p(v).

2. Second, the agent cannot compare (f(u), p(u)) and (f(v), p(v)), but the manager

prefers (f(u), p(u)) over (f(v), p(v)). This means u2f(u) − p(u) ≥ u2f(v) − p(v).

Further, since the agent cannot compare these two outcomes, one of the following

conditions must hold.

(a) u1f(u)− p(u) > u1f(v)− p(v) but p(u) > B.

(b) u1f(v)− p(v) > u1f(u)− p(u) but p(v) > B.

(c) u1f(v)− p(v) = u1f(u)− p(u) but min(p(u), p(v)) > B.

Besides, IC, we will impose a natural participation constraint. For this, we will assume

that outside option of the (agent, manager) pair is the outcome (0, 0), where she receives

nothing and pays nothing.

Definition 2 A mechanism (f, p) is individually rational (IR) if for all v ∈ V 2,

(f(v), p(v)) �v (0, 0).

It is useful to note that the above IR condition can be equivalently stated as follows. A

mechanism (f, p) is IR if for all v ∈ V 2 (a) when p(v) ≤ B, we have v1f(v) − p(v) ≥ 0 and
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(b) when p(v) > B, we have v1f(v)− p(v) ≥ 0 and v2f(v)− p(v) ≥ 0. This leads us to the

following characterization of IR. Such characterizations are well known in standard settings

and the result below shows that it extends to our model too.

Lemma 1 Consider any IC mechanism (f, p). Then, (f, p) is IR if and only if p(0, 0) ≤ 0.

Proof : Suppose that p(0, 0) ≤ 0. Consider any u ∈ V 2 with p(u) ≤ B. IC implies

that (f(u), p(u)) �u (f(0, 0), p(0, 0)). But p(u) ≤ B and p(0, 0) ≤ 0 < B implies that

u1f(u)− p(u) ≥ u1f(0, 0)− p(0, 0). This combined with the fact that u1f(0, 0)− p(0, 0) ≥ 0

(since −p(0, 0), f(0, 0) ≥ 0), we conclude (f(u), p(u)) �u (0, 0).

Similarly, consider any v = (v1, v2) ∈ V 2 with p(v) > B. IC and the fact that p(0, 0) ≤

0 < B, p(v) > B imply that the agent cannot compare (f(v), p(v)) and (f(0, 0), p(0, 0))

but the manager prefers (f(v), p(v)) to (f(0, 0), p(0, 0)). This implies that v1f(v) − p(v) ≥

v1f(0, 0) − p(0, 0) and v2f(v) − p(v) ≥ v2f(0, 0) − p(0, 0). These inequalities imply that

v1f(v) − p(v) ≥ 0 and v2f(v) − p(v) ≥ 0 as −p(0, 0), f(0, 0) ≥ 0. From this we conclude

(f(v), p(v)) �v (0, 0).

For the other direction, consider the type (0, 0) ∈ V . IR implies that (f(0, 0), p(0, 0)) �(0,0)

(0, 0). This implies that −p(0, 0) ≥ 0. �

4.2 New mechanisms

Incentive compatibility has different implications in our model because of the sequential

nature of decision-making. There are some simple mechanisms that are IC and resemble

similar mechanisms in standard settings where decisions are taken using a single preference

relation.

Definition 3 A mechanism (f, p) is a post-1 mechanism if there exists a K1 ∈ [0, B] such

that

(f(v), p(v)) =

 (0, 0) if v1 ≤ K1

(1, K1) otherwise.
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A post-1 mechanism is a mechanism where the object is allocated by only considering the

value of the agent. So, it can be thought of as a posted price mechanism for the agent. This

is because it posts a price K1 which is less than the budget B, and hence, the agent can

make a decision using her preference. So, if her value is less than K1, then the object is

not allocated. Else, the object is allocated with probability 1. It is easy to see that such a

mechanism is IC and IR.

We now introduce a new class of mechanisms that we call the post-2 mechanisms. Unlike

the post-1 mechanism, the post-2 mechanism considers the values of both the agent and

the manager.

Definition 4 A mechanism (f, p) is a post-2 mechanism if there exists a K1, K2 ∈ [B, β]

with K1 ≤ K2, such that

(f(v), p(v)) =


(0, 0) if v1 ≤ K1

(1, B +K2(1− B
K1

)) if min(v1, v2) > K2

( B
K1
, B) otherwise

B K1 K2

K2

(
1; B +K2(1− B

K1
)
)

( B
K1

; B)

v1

v2

Figure 2: post-2 mechanism

The post-2 mechanism has a pair of posted prices. The first posted price K1 is for the

agent. If the value of the agent is below K1, then the object is not sold. Else, the the object is
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sold with probability B
K1

at per unit price of K1, i.e., the total price paid equals K1 times the

probability of winning, which is K1× B
K1

= B. The remaining probability (1− B
K1

) is sold at

per unit price K2 if the values of both the agent and the manager exceed K2. Figure 2 gives

a graphical illustration of a post-2 mechanism. We show below that a post-2 mechanism

is IC and IR.

Proposition 1 Every post-2 mechanism is IC and IR.

Though, we provide a formal proof of this result (and all subsequent omitted proofs) in

the Appendix, we explain how the notion of incentive compatibility and the lexicographic

decision-making make the result possible. There are three outcomes in the “menu” (range) of

a post-2 mechanism. The outcomes (0, 0) and ( B
K1
, B) are outcomes which can be compared

using preference of the agent. On the other hand, outcome (1, B+K2(1− B
K1

)) has payment

more than B. So, if a type v ≡ (v1, v2) is assigned this outcome, IC requires that (1, B +

K2(1− B
K1

)) is preferred to (0, 0) and ( B
K1
, B) by both the agent and the manager. It is easy

to verify that this is possible if v1, v2 ≥ K2 and K2 ≥ K1. Similarly, the other incentive

constraints can be shown to hold.

A post-2 mechanism uses the naivety of the (agent, manager) pair by posting a pair of

prices. There are other kinds of mechanisms that can be IC. Our main result below shows

that the optimal mechanism can be either a post-1 or a post-2 mechanism.

4.3 Main results

The expected (ex-ante) revenue of a mechanism (f, p) is given by

Rev(f, p) =

∫
V 2

p(v)dG(v)

We say that a mechanism (f, p) is optimal if (a) (f, p) is IC and IR, and (b) Rev(f, p) ≥

Rev(f ′, p′) for any other IC and IR mechanism (f ′, p′).

For the optimality of our mechanisms, we will need a condition on the marginal distri-

bution of the agent. Define the function H1 as follows:

H1(x) = xG1(x) ∀ x ∈ [0, β],
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where G1 is the marginal distributin function of value of the agent.

Theorem 1 Suppose H1 is a strictly convex function. Then, either a post-1 or a post-2

mechanism is an optimal mechanism.

Our results are slightly stronger than what Theorem 1 suggests. We prove that among all

mechanisms which has a positive measure of types where the payment is more than the

budget, a post-2 mechanism is optimal. In the remaining class of mechanisms, a post-1

mechanism is optimal. The strict convexity assumption of H1 is satisfied by a variety of

distributions, including the uniform distribution. 4

We can be more precise about the optimization programs that need to be solved to get

the optimal mechanism in Theorem 1. In particular, we either need to solve a one-variable

or a two-variable optimization program.

Proposition 2 Suppose H1 is strictly convex. Then, the expected revenue from the optimal

mechanism is max(R1, R2), where

R1 = max
K1∈[0,B]

K1(1−G1(K1))

R2 = max
K2∈[B,β],K1∈[B,K2]

B
[
1−G1(K1)

]
+K2

(
1− B

K1

)[
1−G1(K2)−G2(K2) +G(K2, K2)

]
.

The maximization expressions for R1 and R2 reflect the expected revenue from a post-1

and post-2 mechanism respectively.

If the budget B is high enough, then the post-1 mechanism becomes optimal - intuitively,

the agent makes more decisions and screening along her valuation becomes optimal. It is

more interesting to see how much restriction on budget we need to get post-2 mechanism

to be optimal. Below, we derive such a sufficient condition on the budget.

Define the optimal monopoly reserve price as K̄

K̄ := arg max
r∈[0,β]

r(1−G1(r)).

4 Such a distributional assumption has appeared in the context of mechanism design before (Che and

Gale, 2000). The strict convexity of H1 requires that the function G1(x) +xg1(x) is strictly increasing. This

is equivalent to requiring g1(x)
(
x− 1−G1(x)

g1(x)

)
being strictly increasing. The standard regularity condition in

mechanism design requires increasingness of the bracketed term only.
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If H1 is a strictly convex function, K̄ is uniquely defined since x − xG1(x) is a strictly

concave function. The interpretation of K̄ is that if the agent was not budget-constrained,

then the optimal mechanism would have involved a posted-price of K̄. Our other main result

shows that if the budget constraint is less than K̄, then the optimal mechanism is a post-2

mechanism.

Proposition 3 Suppose H1 is strictly convex and B ≤ K̄. Then, the optimal mechanism

is a post-2 mechanism. In particular, it is a solution to the following program.

max
K2∈[B,β], K1∈[B,K2]

B
[
1−G1(K1)

]
+K2

(
1− B

K1

)[
1−G1(K2)−G2(K2) +G(K2, K2)

]
.

Proof : Since H1 is strictly convex, r(1−G1(r)) is strictly increasing for all r ≤ K̄. Using

B ≤ K̄, we get that B(1 − G1(B)) ≥ r(1 − G1(r)) for all r ≤ B. Hence, R1 defined as the

maximum possible revenue in a posted-price mechanism in our problem (Proposition 2) is

R1 = max
K1∈[0,B]

K1(1−G1(K1)) = B(1−G1(B)).

But the post-2 mechanism with K1 = K2 = B generates a revenue of B(1−G1(B)). This

proves the theorem. �

The optimality of post-2 mechanism is possible even for B > K̄. Proposition 3 only

gives a sufficient condition on the budget for optimality of a post-2 mechanism. The exact

optimal mechanism is difficult to describe in general. Section 4.5 works out the exact optimal

mechanism for the uniform distribution prior.

Our results are for the case when the budget B is observed by the seller. We can partially

extend our results to the case when B is also a private information of the (agent, manager)

pair. Under a reasonable assumption on the set of mechanisms, we can completely describe

the optimal mechanism with private budgets. The projection of such an optimal mechanism

for low budget is post-1 mechanism and for high budgets, it is a post-2 mechanism - this

shows that our results are robust to our public budget assumption. We are not able provide

a formal statement and proof of these results due to space constraints.
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4.4 Limiting cases

It is interesting to see what our result says in three extreme cases. First, as B → β, then the

expected revenue from any post-2 mechanism tends to 0 (since K1, K2 ≥ B). As a result,

a post-1 mechanism becomes optimal.

Second, as B → 0, the expected revenue from a post-1 mechanism is zero (since posted

price is not more than B in a post-1 mechanism), but using the expression of revenue for

optimal post-2 mechanism given by Proposition 2 and the fact that B → 0, we see that it

is independent of K1:

max
K2∈[0,β]

K2

(
1−G1(K2)−G2(K2) +G(K2, K2)

)
Hence, the optimal post-2 mechanism can have K1 = K2 and chooses K2 that maximizes the

product of K2 and the probability measure of the square on the north-east corner of Figure

2 (where v1 ≥ K2 and v2 ≥ K2). Note that since B
K1
→ 0, there are only two outcomes in the

menu such a mechanism: (0, 0) and (1, K2). Thus the optimal mechanism converges to the

optimal posted-price mechanism for the manager - just as we described in Section 2, only

types in the north-east square will choose outcome (1, K2) in a posted-price mechanism with

a posted-price K2. Note that such a posted price mechanism is not a post-1 mechanism

because a post-1 mechanism has a posted price less than or equal to the budget. It is just

a post-2 mechanism with one posted price and two outcomes in the range.

Finally, though our results require that we do not have perfect correlation (since densities

are assumed to be positive), it is interesting to see what happens as we approach the perfect

correlation case. As we approach perfect correlation, we have for all x, G(x, x)→ Gi(x) for

each i ∈ {1, 2}. Hence, using Proposition 2, we conclude that the optimal post-2 mechanism

revenue is given by

max
K2∈[B,β],K1∈[B,K2]

B
[
1−G1(K1)

]
+K2

(
1− B

K1

)[
1−G1(K2)−G2(K2) +G(K2, K2)

]
= max

K2∈[B,β],K1∈[B,K2]
B
[
1−G1(K1)

]
+K2

(
1− B

K1

)[
1−G1(K2)

]
.

The above expression is just maximizing the expected revenue of the following class of

mechanisms. Pick any K2 ∈ [B, β] and K1 ∈ [B,K2] and define a mechanism (f, p) as
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follows:

(f(v), p(v)) =


(0, 0) if v1 ≤ K1

(1, B +K2(1− B
K1

)) if v1 > K2

( B
K1
, B) otherwise

A straightforward calculation reveals that the revenue from this mechanism is exactly the

expression in the maximization term above. Of course, this mechanism is an IC mechanism

in a standard model where there is just the agent with type v1. But, we know that the

optimal mechanism in such a model is a posted-price mechanism with some posted-price p∗

and revenue p∗(1−G1(p
∗)). Hence, the revenue R2 from the optimal post-2 mechanism must

satisfy R2 ≤ p∗(1−G1(p
∗)). The expression on the right can be achieved by the revenue of a

post-1 mechanism if p∗ ≤ B. In that case, a post-1 mechanism is an optimal mechanism.

If p∗ > B, then the expression on the right is the revenue from a post-2 mechanism with

K1 = K2 = p∗. Note that since G(x, x) → Gi(x) for each i and for each x, the probability

measure of the rectangle {v : v1 > K2, v2 < K2} tends to zero. Hence, such a post-2

mechanism approaches a strandard posted-price mechanism with two outcomes.

Sketch of proof. We give an overview of the proof of Theorem 1 now - the detailed

proofs are in Appendix. Fix a mechanism (f, p), and define the following partitioning of the

type space: V +(f, p) := {v : p(v) > B} and V −(f, p) = {u : p(u) ≤ B}. The proof considers

two classes of mechanisms, those (f, p) where V +(f, p) has non-zero Lebesgue measure and

those where V +(f, p) has zero Lebesgue measure. Define the following partitioning of the

class of IC and IR mechanisms:

M+ := {(f, p) is IC and IR : V +(f, p) has positive Lebesgue measure}

M− := {(f, p) is IC and IR : V +(f, p) has zero Lebesgue measure}.

The proof of Theorem 1 is completed by proving the following proposition.

Proposition 4 Suppose H1 is strictly convex. Then, the following are true.

1. There exists a post-1 mechanism (f, p) ∈M− such that

Rev(f, p) ≥ Rev(f ′, p′) ∀ (f ′, p′) ∈M−.
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2. There exists a post-2 mechanism (f, p) ∈M+ such that

Rev(f, p) ≥ Rev(f ′, p′) ∀ (f ′, p′) ∈M+.

The proof of (1) in Proposition 4 uses somewhat familiar ironing arguments. However,

proof of (2) in Proposition 4 is quite different, and requires a lot of work to get to a simpler

class of mechanisms where ironing can be applied. The proof proceeds by deriving some

necessary conditions for IC and reducing the space of mechanisms. In this smaller class of

mechanisms, we show that ironing arguments lead to a post-2 mechanism. Though the proof

does not introduce new tools to deal with multidimensional mechanism design problems, it

illustrates that multidimensional mechanism design problems may be tractable under certain

behavioral assumptions.

4.5 Uniform distribution

In this section, we work out the exact optimal mechanism for the uniform distribution case.

We assume that β = 1 and G is the uniform distribution over [0, 1] × [0, 1]. We first show

that the optimal post-2 mechanism has only one posted price (i.e., K1 = K2).

Lemma 2 Suppose β = 1 and G is the uniform distribution over [0, 1] × [0, 1]. Then, the

optimal post-2 mechanism must satisfy:

1. if B ≥ 1
2
(3−

√
5), then K1 = K2 = B,

2. if B < 1
2
(3−

√
5), then K1 = K2 = 1

3

(
B + 2−

√
(B2 +B + 1)

)
.

Using this lemma, we can provide a complete description of the optimal mechanism for

the uniform distribution case.

Proposition 5 Suppose β = 1 and G is the uniform distribution over [0, 1]× [0, 1]. Then,

the optimal mechanism is the following.

1. If B > 1
2
, then a post-1 mechanism with K1 = 1

2
is optimal.
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2. If B ∈ [1
2
(3−
√

5), 1
2
], then a post-1 mechanism with K1 = B is optimal. In this case,

a post-2 mechanism with K1 = K2 = B is also optimal.

3. If B ∈ (0, 1
2
(3 −

√
5)), then a post-2 mechanism with K1 = K2 = 1

3

(
B + 2 −√

(B2 +B + 1)
)

is optimal.

Proof : To do the proof, we first compute the optimal post-1 mechanism, which is the

solution to the following optimization program:

max
K1∈[0,B]

K1(1−K1).

It is clear the optimal post-1 mechanism is K1 = 1
2

if B > 1
2

and K1 = B if B ≤ 1
2
. Now,

we consider the three cases separately.

Case 1 - B > 1
2
. Optimal post-1 mechanism generates a revenue of 1

4
. By Lemma 2,

optimal post-2 mechanism generates a revenue of B(1 − B), which is less than 1
4
. Hence,

the optimal mechanism is a post-1 mechanism with K1 = 1
2
.

Case 2 - B ∈ [1
2
(3 −

√
5), 1

2
]. In this case, both the optimal post-1 mechanism and the

optimal post-2 mechanism (due to Lemma 2) generates a revenue of B(1−B). Hence, the

optimal post-1 mechanism with K1 = B is optimal.

Case 3 - B ∈ (0, 1
2
(3−
√

5)). In this case, the optimal post-1 mechanism generates a revenue

of B(1−B), which is also the revenue generates by a post-2 mechanism with K1 = K2 = B.

But the optimal post-2 is unique and has K1 = K2 = 1
3

(
B + 2 −

√
(B2 +B + 1)

)
due to

Lemma 2. Hence, the result follows. �

Notice that as B → 0, the optimal mechanism is a posted price mechanism with price

1
3
. So, in the limiting case when the agent has zero budget to make decisions, the optimal

mechanism is not a posted price mechanism with posted price 1
2

- which is the optimal posted

price in the standard model. To see why, consider the limiting case B = 0. Suppose the seller
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uses a posted price mechanism with price p. Who are the types who will accept this price?

This is shown in the left graph in Figure 1. All the types (v1, v2) such that v1 < p will choose

outcome (0, 0). All types (v1, v2) with v1 > p but v2 < p will also choose outcome (0, 0)

- this is because even though the agent prefers (1, p) over (0, 0), it cannot make a decision

because of budget constraint. Thus, the only types (v1, v2) which will prefer (1, p) to (0, 0)

are those with v1 > p, v2 > p. Hence, the expected revenue from a posted price mechanism

is p(1 − p)2, which is maximized at 1
3
. This argument establishes the optimal posted price

mechanism. Proposition 5 shows that it is the optimal mechanism.

On the other extreme, when B → β, the optimal mechanism is a posted price mechanism

with price 1
2
. This is because the agent makes all the decisions now and for any price p, the

types that accept this price are just the types with v1 > p. An optimal solution thus gives a

posted price of 1
2

as in a standard model.

5 Notion of incentive compatibility

In this section, we discuss some issues related to the revelation principle and our notion

of incentive compatibility. We show here a version of the revelation principle holds in our

setting. To define an arbitrary mechanism, let M be a message space and µ : M → Z

be a mechanism. A strategy of the (agent, manager) pair is a map s : V → M . We

say that mechanism µ implements the direct revelation mechanism (f, p) if there exists

a strategy s : V → M such that (a) µ(s(v)) �v µ(m) ∀ v ∈ V, ∀ m ∈ M and (b)

µ(s(v)) = (f(v), p(v)) ∀ v ∈ V. Suppose µ implements (f, p). Then, fix some v, v′ ∈ V

and note that (f(v), p(v)) = µ(s(v)) �v µ(s(v′)) = (f(v′), p(v′)), which proves IC of (f, p).

Hence, the revelation principle holds in this setting. It is well known that with behavioral

agents, the revelation principle may not hold in general (de Clippel, 2014). There are at

least two assumptions in our model which allows the revelation principle to work. The first

is the completeness of our relation �v (even though it may be intransitive). The second, and

more important one, is the notion of IC we use.

The primitives of our model involves how the (agent, manager) pair chooses from pairs
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of outcomes. We are silent about how it chooses from a subset of alternatives. This is

consistent with Tversky (1969) and most of the literature which works on binary choice

models (Rubinstein, 1988; Tadenuma, 2002; Houy and Tadenuma, 2009). Our incentive

constraints are appropriate for this binary choice model.

There are two main reasons why we use our existing notions of incentive compatibility

instead of a choice-theoretic version of (i.e., a model where we specify how the (agent,

manager) pair chooses from subsets of outcomes) incentive compatibility. First, to be able

to use choice-incentive compatibility, we have to assume that the (agent, manager) pair

chooses from subsets of outcomes using some choice procedure. The current primitives of

our model are much simpler - it just makes assumptions on how we choose between pairs

of outcomes. Importantly, our notion of incentive compatibility allows us tractability using

minimal assumptions about deviations from rationality. Second, if the primitives of the

model are choice correspondences, then a revelation principle need not hold - see de Clippel

(2014). This implies that the space of mechanisms are more complex than the set of direct

revelation mechanisms. In summary, it is not clear how an optimal mechanism will look like

if we considered a model assuming certain choice behavior of agents over subsets of outcomes

and choice-incentive compatibility as the notion of our incentive compatibility. We leave this

issue for future research.

6 Related literature

Our paper is related to a couple of strands of literature in mechanism design. We go over

them in some detail. Before doing so, we relate our work to two papers which seem directly

related to our work. The first is the work of Burkett (2016), who studies a principal-agent

model where the agent is participating in an auction mechanism. In his model, there is a

third-party which has proposed a mechanism for selling a single good. After the third-party

announces a mechanism, the principal in his model announces another mechanism, which

he terms as a contract, to the agent. The sole purpose of the contract is to determine the

amount the agent will bid in the third-party mechanism. In his model, the value of the good
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to the agent is the only private information - the value of the good to the principal can be

determined from the value of the agent. The main result in this paper is that the optimal

contract for the principal is a “budget-constraint” contract, which specifies a cap on the

report of each type of the agent to the third-party mechanism and involves no side-payments

between the principal and the agent. 5

Though related, our model is quite different. In our model, the values of the agent

and the manager can be completely different (at a technical level, Burkett (2016) has a

one-dimensional mechanism design problem, whereas ours is a two-dimensional mechanism

design problem). Further, we do not model decision-making by our (agent, manager) pair via

a contract. In other words, the naive decision-making in our model makes it quite different

from Burkett (2015, 2016).

Another closely related paper is Malenko and Tsoy (Forthcoming), who study a model

where a single good is sold to a set of buyers. Each buyer is advised by a unique advi-

sor. Each buyer does not know her value but the advisor knows. However, the advisor

has some bias, which is commonly known. Before the start of the auction, there is com-

munication from the advisor to the buyer, which influences how much the buyer bids in

the auction. The aim of Malenko and Tsoy (Forthcoming) is to compare standard auction

formats in the presence of such uncertain buyers being advised by biased consultants. They

find that standard sealed-bid auctions are revenue equivalent, but ascending-price auction

generates more expected revenue than sealed-bid auctions. While their focus is on the effect

of communication on equilibrium of standard form auctions, ours is a mechanism design

problem where the (agent, manager) pair do not engage in any communication. Our novelty

is to solve for the optimal contract of a seller in the presence of a naive (agent, manager) pair.

Behavioral mechanism design. We discuss some literature in mechanism design which

looks at specific models of behavioral agents and designing optimal contracts for selling to

such agents. A very detailed survey with excellent examples can be found in Koszegi (2014).

5In a related paper, Burkett (2015) considers first-price and second-price auctions and compares their

revenue and efficiency properties when a seller is faced with such principal-agent pairs.
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Our literature survey is limited in nature as we focus on models which are closer to ours.

A stream of papers investigate the optimal contract for a firm to a consumer in a two-

period model, where the consumer has time inconsistent preferences. These papers differ

in the way it treats inconsistent preferences and non-common priors between firm and the

consumer.

Eliaz and Spiegler (2006) consider a model where the type of the agent is his “cognitive”

ability. In their model, there are two periods and the agent enjoys a valuation for an action

in each period. In period 2, the agent’s valuation may change to another value. Agents differ

in their subjective assessment of the probability of that transition. So, in their model, the

type is the subjective probability of the agent. They show how the optimal contract treats

sophisticated and naive agents. While this paper allows agents to be time-inconsistent,

in another paper, Eliaz and Spiegler (2008) study a similar model but do not allow time

inconsistency. There, they allow the monopolist to have a separate belief about the change

of state. They characterize the optimal contract and show the implications of non-common

priors on the menu of optimal contract and ex-post efficiency. Grubb (2009) considers a

two period model where a firm is selling a divisible good to consumers. The private type

of the consumer is his demand in period 2. In period 1, the firm offers them a tariff which

is accepted or rejected. If accepted, the consumers buy the quantity in period 2 once they

realize their demand. The key innovation in his paper is again the lack of common prior

between consumers and the firm - in particular, he shows that if the prior of the consumers

is such that it underestimates the variance of the actual prior (for instance, if the consumer

prior has the same mean as the firm, then consumer prior is a mean-preserving spread of

the firm prior), then the optimal tariff of the firm must have three parts (with non-zero

quantities offered at zero marginal cost).

de Clippel (2014) studies complete information implementation with behavioral agents

- his main results extend Maskin’s characterization (Maskin, 1999) to environments with

behavioral agents. Esteban et al. (2007) consider a model where agents have temptation

and self control preferences as in Gul and Pesendorfer (2001), and characterize the optimal
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contract - also see related work on self control preferences in DellaVigna and Malmendier

(2004). There are several other papers who consider time inconsistent preferences and ana-

lyze the optimal contracting problem. Carbajal and Ely (2016) consider a model of optimal

price discrimination when buyers have loss averse preferences with state dependent reference

points. They characterize the optimal contract in their model.

Multidimensional mechanism design. The type space of our agent is two-dimensional.

It is well known that the problem of finding an optimal mechanism for selling multiple goods

(even to a single buyer) is notorious. A long list of papers have shown the difficulties involved

in extending the one-dimensional results in Mussa and Rosen (1978); Myerson (1981); Riley

and Zeckhauser (1983) to multidimensional framework - see Armstrong (2000); Manelli and

Vincent (2007) as examples. Even when the seller has just two objects and there is just one

buyer with additive valuations (i.e., value for both the objects is sum of values of both the ob-

jects), the optimal mechanism is difficult to describe (Manelli and Vincent, 2007; Daskalakis

et al., 2017; Hart and Nisan, 2017). This has inspired researchers to consider approximately

optimal mechanisms (Chawla et al., 2007, 2010; Hart and Nisan, 2017) or additional robust-

ness criteria for design (Carroll, 2017). Compared to these problems, our two-dimensional

mechanism design problem becomes tractable because of the nature of incentive constraints,

which in turn is a consequence of the preference of the agent.

Mechanism design with budget constraints. In our model, the agent is budget

constrained but the manager is not. We compare this with the literature in the standard

model when there is a single object and the buyer(s) is budget constrained. The space of

mechanisms is restricted to be such that payment is no more than the budget. This feasi-

bility requirement on the mechanisms essentially translates to a violation of quasilinearity

assumption of the buyer’s preference for prices above the budget (utility assumed to be −∞)

but below the budget the utility is assumed to be quasilinear. This introduces additional

complications for finding the optimal mechanism. Laffont and Robert (1996) show that an
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all-pay-auction with a suitable reserve price is an optimal mechanism for selling an object to

multiple buyers who have publicly known budget constraints. When the budget is private

information, the problem becomes even more complicated - see Che and Gale (2000) for a

description of the optimal mechanism for the single buyer case and Pai and Vohra (2014) for

a description of the optimal mechanism for the multiple buyers case. All these mechanisms

involve randomization but the nature of randomization is quite different from ours. This is

because the source of randomization in all these papers is either due to budget being private

information (hence, part of the type, as in Che and Gale (2000); Pai and Vohra (2014)) or

because of multiple agents with budget being common knowledge (as in Laffont and Robert

(1996); Pai and Vohra (2014)). Indeed, with a single agent and public budget, the optimal

mechanism in a standard single object allocation model is a posted price mechanism. This

can be contrasted with our result where we get randomized optimal mechanism even with

one (agent, manager) pair and budget being common knowledge. This shows that the lexi-

cographic decision making using two rationales plays an important role in making a post-2

mechanism optimal. Also, the set of menus in the optimal mechanism in the standard single

object auction with budget constraint may have more than three outcomes. Further, the out-

comes in the menu of these optimal mechanisms are not as simple as our post-2 mechanism.

Finally, like us, these papers assume that budget is exogenously determined by the agent.

If the buyer can choose his budget constraint, then Baisa and Rabinovich (2016) show that

the optimal mechanism in a multiple buyers setting allocates the object efficiently whenever

it is allocated - this is in contrast to the exogenous budget case (Laffont and Robert, 1996;

Pai and Vohra, 2014).

A Appendix: Omitted Proofs of Section 4

A.1 Proof of Proposition 1

Proof : Consider a post-2 mechanism (f, p) defined by parameters K1 and K2 with B ≤

K1 ≤ K2. Since p(0, 0) = 0, Lemma 1 implies that (f, p) is IR if it is IC. We show IC of
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(f, p). We will denote by ū → ũ the incentive constraint associated with type ū when it

cannot misreport ũ.

Consider types u, v, s taken from three different regions in Figure 2 with three different

outcomes. In particular, u, v, s satisfy: u1 ≤ K1, min(v1, v2) ≤ K2 but v1 > K1, and

min(s1, s2) > K2. Note that

(f(u), p(u)) = (0, 0), (f(v), p(v)) = (
B

K1

, B), and (f(s), p(s)) = (1, B +K2(1−
B

K1

)).

We consider IC of each of these types.

(1). u→ v, u→ s. Note that since u1 ≤ K1, we have u1
B
K1
− B ≤ 0. Hence, type u weakly

prefers (0, 0) to ( B
K1
, B). Similarly,

u1 −B −K2

(
1− B

K1

)
≤ K1 −B −K2 +

K2

K1

B = (K2 −K1)
( B
K1

− 1
)
≤ 0,

where first inequality is due to u1 ≤ K1 and the second is due to K2 ≥ K1 and B ≤ K1.

Hence, u prefers (0, 0) to (f(s), p(s)).

(2). v → u, v → s. For v → u, we note that v1
B
K1
− B ≥ 0. This follows from the fact that

v1 > K1. Hence, v → u holds as p(v) = B. For v → s, we note that

min(v1, v2)−B −K2

(
1− B

K1

)
≤ min(v1, v2)−B −min(v1, v2)

(
1− B

K1

)
=

B

K1

min(v1, v2)−B.

If min(v1, v2) = v1, then we see that (f(v), p(v)) is preferred to (f(s), p(s)). Else, min(v1, v2) =

v2. In that case since p(s) > B, even if the agent prefers (f(s), p(s)) to (f(v), p(v)), she can-

not compare. But the manager prefers (f(v), p(v)) to (f(s), p(s)). Hence, v → s holds.

(3). s→ u, s→ v. Note that for x ∈ {s1, s2}, we have

0 ≤ K2

K1

B −B ≤ B

K1

x−B = x−B − x
(

1− B

K1

)
≤ x−B −K2

(
1− B

K1

)
,
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where the inequalities follow from the fact that x ≥ min(s1, s2) > K2 ≥ K1 ≥ B. This

shows that the aggregate preference at s prefers (f(s), p(s)) to (f(v), p(v)) and (f(u), p(u)).

Because p(s) > B, s→ v and s→ u hold. �

A.2 Proofs of Theorem 1 and Propositions 2 and 4

In this section, we provide the proof of the main results - Theorem 1 and Propositions 2 and

4. It is clear that Proposition 4 immediately implies Theorem 1. So, we first provide a proof

of Proposition 4, followed by a proof of Proposition 2.

A.2.1 Preliminary Lemmas

We start off by proving a series of necessary conditions for IC. These are use in proving

our main result. The first lemma is a monotonicity condition of allocation rule: for every

IC mechanism, type with higher payment implies higher allocation probability. Hence, the

outcomes in the range of an IC mechanism are ordered in a natural sense.

Lemma 3 For any IC mechanism (f, p), if p(u) < p(v) for any u, v, then f(u) < f(v).

Proof : Take any u, v such that p(u) < p(v). IC implies that (f(v), p(v)) �v (f(u), p(u)). If

p(v) ≤ B, then we must have v1f(v)− p(v) ≥ v1f(u)− p(u) > v1f(u)− p(v), where the last

inequality uses p(v) > p(u). This implies f(u) < f(v).

If p(v) > B, then we have v2f(v)− p(v) ≥ v2f(u)− p(u) > v2f(u)− p(v), where the last

inequality uses p(v) > p(u). This implies f(u) < f(v). �

Lemma 4 For any IC mechanism (f, p), for all u, v

1. if p(u), p(v) ≤ B and u1 > v1, then f(u) ≥ f(v),

2. if p(u), p(v) > B and u2 > v2, then f(u) ≥ f(v).
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Proof : Take any u, v. If p(u), p(v) ≤ B, then adding the incentive constraints using �v1 and

�u1gives us the desired result and if p(u), p(v) > B, then adding the incentive constraints

using �v2 and �u2 gives us the desired result. �

Lemma 5 For any IC mechanism (f, p), for all u, v the following holds:

[
p(u) ≤ B < p(v)

]
⇒
[

min(v1, v2) ≥ min(u1, u2)
]
.

Proof : Since p(u) ≤ B < p(v), by Lemma 3, f(v) > f(u). We consider v → u first. This

gives us

v2f(v)− p(v) ≥ v2f(u)− p(u). (1)

v1f(v)− p(v) > v1f(u)− p(u). (2)

Using f(v) > f(u), and aggregating Inequalities 1 and 2 gives us

min(v1, v2)
(
f(v)− f(u)

)
≥ p(v)− p(u). (3)

IC from u to v implies one of the following two conditions to holds:

Case 1. �u1 prefers (f(u), p(u)) to (f(v), p(v)): this gives

u1f(u)− p(u) ≥ u1f(v)− p(v) or p(v)− p(u) ≥ u1(f(v)− f(u)).

Adding with Inequality 3, we get, (min(v1, v2) − u1)(f(v) − f(u)) ≥ 0. Then, f(v) > f(u)

implies that min(v1, v2) ≥ u1.

Case 2. �u1 does not prefer (f(u), p(u)) to (f(v), p(v)) but budget has a bite - so, �u2
prefers (f(u), p(u)) to (f(v), p(v)): this gives

u2f(u)− p(u) ≥ u2f(v)− p(v). (4)
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Adding Inequalities (4) and (3), we get (min(v1, v2)−u2)(f(v)−f(u)) ≥ 0. Since f(v) > f(u),

we get min(v1, v2) ≥ u2.

Combining both the cases, min(v1, v2) ≥ min(u1, u2). �

Now, fix a mechanism (f, p), and define as before: V +(f, p) := {v : p(v) > B} and

V −(f, p) := {u : p(u) ≤ B}. We now prove some properties of IC mechanisms using these

sets.

Lemma 6 Fix an IC mechanism (f, p). If V +(f, p) and V −(f, p) are non-empty, then the

following holds:

inf
v∈V +(f,p)

min(v1, v2) = sup
u∈V −(f,p)

min(u1, u2).

Proof : Since V +(f, p) is non-empty and min(v1, v2) ≥ 0, we have that infv∈V +(f,p) min(v1, v2)

is a non-negative real number - we denote it as v. By Lemma 5, supu∈V −(f,p) min(u1, u2) is

also a non-negative real number as it is bounded above - we denote this as v̄.

First, we show that v ≥ v̄. If not, then v < v̄. Then, there is some v such that

v < min(v1, v2) < v̄. By definition of v, there is a v′ such that min(v′1, v
′
2) is arbitrarily

close to v and p(v′) > B. Since min(v′1, v
′
2) < min(v1, v2), Lemma 5 gives us p(v) > B.

Similarly, by definition of v̄, there is a u′ such that min(u′1, u
′
2) is arbitrarily close to v̄ and

p(u′) ≤ B. Since min(u′1, u
′
2) > min(v1, v2), Lemma 5 gives us p(v) ≤ B, giving us the

desired contradiction.

Next, we show that v = v̄. If not, v > v̄. But this is not possible since for any v with

v > min(v1, v2) > v̄, we will have both p(v) ≤ B and p(v) > B, giving us a contradiction. �

For any mechanism (f, p), we will denote by K(f,p) the following:

K(f,p) := inf
v∈V +(f,p)

min(v1, v2) = sup
u∈V −(f,p)

min(u1, u2). (5)

By Lemma 6, this is well-defined if V +(f, p) and V −(f, p) is non-empty.
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Lemma 7 If (f, p) is an IC and IR mechanism, then V −(f, p) is non-empty.

Proof : Lemma 1 ensures that (0, 0) ∈ V −(f, p) if (f, p) is IC and IR. �

We remind the following partitioning of the class of IC and IR mechanisms:

M+ := {(f, p) is IC and IR : V +(f, p) has positive Lebesgue measure}

M− := {(f, p) is IC and IR : V +(f, p) has zero Lebesgue measure}.

We now prove a series of Lemmas for M+ class of mechanisms.

A.2.2 Lemmas for M+

The following lemma shows that K(f,p) is well defined if (f, p) ∈M+.

Lemma 8 Suppose (f, p) is an IC and IR mechanism.

1. If V +(f, p) is non-empty, then K(f,p) defined in Equation (5) exists and satisfies: for

all v ∈ V , [
min(v1, v2) > K(f,p)

]
⇒
[
p(v) > B

]
,[

min(v1, v2) < K(f,p)

]
⇒
[
p(v) ≤ B

]
.

2. If (f, p) ∈M+, then β > K(f,p) > B.

Proof : The first part follows from Lemma 6, Lemma 7, and the definition of K(f,p).

For the second part, we first argue that K(f,p) ≥ B. Suppose K(f,p) < B. Then, for some

v with K(f,p) < min(v1, v2) ≤ B, we have p(v) > B. But this violates IR.

Now, assume for contradiction K(f,p) = B < β. In that case, fix some ε ∈ (0, 1) and

positive integer k, and consider the type vk,ε ≡ (B+εk, B+εk). By (1), we know that p(vk,ε) >

B. By IR, (B + εk)f(vk,ε) ≥ p(vk,ε) > B. This gives us f(vk,ε) > B
B+εk

. Since B + ε > B + εk

for all k > 1, by (1) of Lemma 4, we have f(v1,ε) ≥ f(vk,ε) > B
B+εk

. As B
B+εk

can be made

arbitrarily close to 1, we conclude that f(v1,ε) = 1 - notice that v1,ε ≡ (B+ ε, B+ ε) and the

claim holds for all ε ∈ (0, 1). By Lemma 3, for all ε, ε′ ∈ (0, 1), since f(v1,ε) = f(v1,ε
′
) = 1,
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we get that p(v1,ε) = p(v1,ε
′
). Denote p(v1,ε) = B + δ, where ε ∈ (0, 1). By definition, δ > 0.

Now, IR requires that for every ε ∈ (0, 1), (B + ε)f(v1,ε)− p(v1,ε) = (B + ε)− (B + δ) ≥ 0.

But this will mean ε > δ for all ε ∈ (0, 1). Since δ > 0 is fixed, this is a contradiction.

Finally, we know that (f, p) ∈ M+ implies V +(f, p) has positive Lebesgue measure. If

β = K(f,p), then by (1), we know that V +(f, p) has zero Lebesgue measure, which is a

contradiction. �

Next, we show a useful inequality involving K(f,p) for any (f, p) ∈M+.

Lemma 9 Suppose (f, p) is an IC and IR mechanism. If (f, p) ∈ M+, then for all types

u ∈ V with B < p(u), we must have

K(f,p)f(K(f,p), 0)− p(K(f,p), 0) ≥ K(f,p)f(u)− p(u).

Proof : First, consider two types v ≡ (K(f,p), 0) and v′ ≡ (K(f,p), K(f,p) − ε), where ε > 0

such that K(f,p) − ε > 0. Notice that min(v1, v2) < K(f,p) and min(v′1, v
′
2) < K(f,p). Hence,

by Lemma 8, p(v) ≤ B and p(v′) ≤ B. As a result, v → v′ and v′ → v imply that

K(f,p)f(K(f,p), 0)− p(K(f,p), 0) = K(f,p)f(K(f,p), K(f,p) − ε)− p(K(f,p), K(f,p) − ε). (6)

Now, assume for contradiction that for some u with p(u) > B we have

K(f,p)f(K(f,p), 0)− p(K(f,p), 0) < K(f,p)f(u)− p(u).

Using Equation 6 and chooseing ε > 0 sufficiently small, we get,

K(f,p)f(K(f,p), K(f,p) − ε)− p(K(f,p), K(f,p) − ε) <
(
K(f,p) − ε

)
f(u)− p(u).

But then (K(f,p) − ε)f(K(f,p), K(f,p) − ε) − p(K(f,p), K(f,p) − ε) <
(
K(f,p) − ε

)
f(u) − p(u) <

K(f,p)f(u)− p(u). Hence, (K(f,p), K(f,p) − ε)→ u does not hold - a contradiction. �

Lemma 10 Suppose (f, p) ∈ M+ is an IC and IR mechanism. Then the following limits

exist:

lim
δ→0+

f(K(f,p) + δ, β) and lim
δ→0+

p(K(f,p) + δ, β).
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Further, if A(f,p) and P(f,p) are the respective limits above, then the following equations hold:

K(f,p)A(f,p) − P(f,p) = K(f,p)f(K(f,p), 0)− p(K(f,p), 0) (7)

βA(f,p) − P(f,p) = βf(β, β)− p(β, β). (8)

Proof : Fix any δ > 0 such that K(f,p) + δ ≤ β - by Lemma 8, such δ > 0 exists. Consider

two types v ≡ (K(f,p) + δ, β) and v′ ≡ (β, β). By Lemma 8, p(v), p(v′) > B. The pair of

incentive constraints between v and v′ give us

βf(v)− p(v) ≥ βf(v′)− p(v′) and βf(v′)− p(v′) ≥ βf(v)− p(v).

Combining these and using the definition of v′ gives us

βf(K(f,p) + δ, β)− p(K(f,p) + δ, β) = βf(β, β)− p(β, β). (9)

Now, consider v′′ ≡ (K(f,p), 0). By Lemma 8, p(v′′) ≤ B. But p(v) > B implies that

v → v′′ must give us

(K(f,p) + δ)f(v)− p(v) ≥ (K(f,p) + δ)f(v′′)− p(v′′) ≥ K(f,p)f(v)− p(v) + δf(v′′),

where the second inequality comes from Lemma 9 and the fact that p(v) > B. Using

Equation 9, we replace p(v) in the previous equation to get,

(K(f,p) + δ)f(v) ≥ (K(f,p) + δ)f(v′′)− p(v′′) + βf(v)− βf(β, β) + p(β, β) ≥ K(f,p)f(v) + δf(v′′).

Rearranging terms, we get[
β −K(f,p)

]
f(v) ≤

[
βf(β, β)− p(β, β)

]
−
[
K(f,p)f(v′′)− p(v′′)

]
≤
[
β −K(f,p)

]
f(v)− δ

(
f(v)− f(v′′)

)
Since v′′ is independent of δ and v ≡ (K(f,p) + δ, β), we get that[
β −K(f,p)

]
lim
δ→0+

f(K(f,p) + δ, β) =
[
βf(β, β)− p(β, β)

]
−
[
K(f,p)f(K(f,p), 0)− p(K(f,p), 0)

]
.

This gives us the desired expression for A(f,p). Using Equation 9, we also get the desired

expression for P(f,p). Then, it is routine to check that Equations (7) and (8) hold. �

The final preparatory lemma is the following.
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Lemma 11 Suppose (f, p) ∈M+ is an IC and IR mechanism. Then the following are true.

1. P(f,p) ≥ p(u) > B for all u with u2 < β and min(u1, u2) > K(f,p).

2. A(f,p) > f(K(f,p), 0) + 1
K(f,p)

[
B − p(K(f,p), 0)

]
.

Proof : Proof of (1). Consider a type (K(f,p)+δ, β) for some δ > 0 but close to zero, and u

such that u2 < β and min(u1, u2) > K(f,p). By Lemma 8, we know that p(K(f,p)+δ, β), p(u) >

B. By Lemma 4(2), we get f(K(f,p) + δ, β) ≥ f(u). Now, u→ (K(f,p) + δ, β) implies

u2f(u)− p(u) ≥ u2f(K(f,p) + δ, β)− p(K(f,p) + δ, β)

⇒ p(K(f,p) + δ, β)− p(u) ≥ u2

[
f(K(f,p) + δ, β)− f(u)

]
≥ 0.

Since this holds for all δ > 0 arbitrarily close to zero, P(f,p) = limδ→0+ p(K(f,p) + δ, β) ≥ p(u).

Proof of (2). Assume for contradiction that

A(f,p) ≤ f(K(f,p), 0) +
1

K(f,p)

[
B − p(K(f,p), 0)

]
.

⇔ K(f,p)A(f,p) −B ≤ K(f,p)f(K(f,p), 0)− p(K(f,p), 0).

But Equation (7) in Lemma 10 says that the RHS above is equal to K(f,p)A(f,p)−P(f,p). This

gives us P(f,p) ≤ B, which contradicts (1). �

Next, we will look at a subclass of mechanisms which fixes some regions of the type

space. Further, we will show that such a restriction is also without loss of generality for

optimal mechanisms. To show this property, we consider an arbitrary IC and IR mechanism

(f, p) ∈M+. We then construct a new IC and IR mechanism which generates more expected

revenue and has the property we require. The new mechanism, which we denote as (f ′, p′)

is defined as follows.

(f ′(v), p′(v)) =


(A(f,p), P(f,p)) if min(v1, v2) > K(f,p)

(f(v), p(v)) if v1 < K(f,p)(
f(K(f,p), 0) + 1

K(f,p)

(
B − p(K(f,p), 0)

)
, B
)

otherwise
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v1

v2

K(f;p)

K(f;p)B

(f(v); p(v)) = (A(f;p); P(f;p))

(
f(K(f;p); 0) +

1
K(f;p)

(
B − p(K(f;p); 0)

)
; B

)

Figure 3: New mechanism

The new mechanism is shown in Figure 3. The rectangle at the top-right corner of the

type space (excluding the lower boundaries) have the outcome (A(f,p), P(f,p)). The outcomes

in the big white rectangle to the left (but excluding the right boundary) is left unchanged.

Note that v1 < K(f,p) implies p′(v) = p(v) ≤ B by Lemma 8 in this region. The outcomes

along the vertical line corresponding to K(f,p) value of the agent and the outcomes for all

types such that v1 > K(f,p) and v2 ≤ K(f,p) is assigned value(
f(K(f,p), 0) +

1

K(f,p)

(
B − p(K(f,p), 0)

)
, B
)

We prove the following.

Lemma 12 If (f, p) ∈ M+ is an IC and IR mechanism, then the mechanism (f ′, p′) is IC,

IR, and p′(v) ≥ p(v) for almost all v.

Proof : First, we establish that p′(v) ≥ p(v) for almost all v ∈ V . To see this, note

that if v ∈ V is such that v2 < β and min(v1, v2) > K(f,p), then Lemma 11 implies that

p′(v) = P(f,p) ≥ p(v). Next, if v ∈ V such that min(v1, v2) < K(f,p) and v1 ≥ K(f,p), then

p′(v) = B ≥ p(v). For v ∈ V with v1 < K(f,p), we have p′(v) = p(v). Hence, the only profiles

where we cannot compare p(v) and p′(v) have Lebesgue measure zero. So, for almost all v,

we have p′(v) ≥ p(v).

For IC, we consider three possible types belonging to the three regions: (a) s such that
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s1 < K(f,p); (b) t such that t1 > K(f,p), t2 ≤ K(f,p) or t1 = K(f,p); and (c) u such that

min(u1, u2) > K(f,p).

For any two types belonging to the same region we need not verify the incentive con-

straints in the new mechanism as it is either unchanged compared to original mechanism

or they have the same outcome. We note couple of properties that we will use often in

establishing these incentive constraints: (i) (f(s), p(s)) = (f ′(s), p′(s)); (ii) p(K(f,p), 0) ≤ B

by Lemma 8.

(1) s→ t. Note that p(K(f,p), 0) ≤ B and since p(s) ≤ B, incentive constraint s→ (K(f,p), 0)

in (f, p) implies that

s1f(s)− p(s) ≥ s1f(K(f,p), 0)− p(K(f,p), 0)

≥ s1f(K(f,p), 0)− p(K(f,p), 0)−
[
B − p(K(f,p), 0)

](
1− s1

K(f,p)

)
,

where the second inequality follows because p(K(f,p), 0) ≤ B and s1 < K(f,p). Using f(s) =

f ′(s), p(s) = p′(s), and a slight rearrangement of RHS of the above inequality gives us

s1f
′(s)− p′(s) ≥ s1

[
f(K(f,p), 0) +

1

K(f,p)

(
B − p(K(f,p), 0)

)]
−B = s1f

′(t)− p′(t). (10)

Hence, s→ t holds for (f ′, p′).

(2) t→ s. Since p(s) ≤ B, (K(f,p), 0)→ s in (f, p) implies that

K(f,p)f(K(f,p), 0)− p(K(f,p), 0) ≥ K(f,p)f(s)− p(s)

⇒ K(f,p)

[
f(K(f,p), 0) +

1

K(f,p)

(
B − p(K(f,p), 0)

)]
−B ≥ K(f,p)f(s)− p(s)

⇒ K(f,p)f
′(t)− p′(t) ≥ K(f,p)f

′(s)− p′(s)

⇒ K(f,p)

[
f ′(t)− f ′(s)

]
≥ p′(t)− p′(s). (11)

But p′(t) = B ≥ p′(s) = p(s) implies that f ′(t) ≥ f ′(s). Using the fact that t1 ≥ K(f,p), we

get t1

[
f ′(t)− f ′(s)

]
≥ p′(t)− p′(s). Since p′(t) = B and p′(s) ≤ B, this is the desired t→ s

in (f ′, p′).

34



(3) t→ u, u→ t. By Lemma 10, we know that

K(f,p)f(K(f,p), 0)− p(K(f,p), 0) = K(f,p)A(f,p) − P(f,p)

⇔ K(f,p)

[
f(K(f,p), 0)− 1

K(f,p)

(
B − p(K(f,p), 0)

)]
−B = K(f,p)A(f,p) − P(f,p).

Hence, we get

K(f,p)

[
f ′(u)− f ′(t)

]
= p′(u)− p′(t). (12)

Using Lemma 11, we know that f ′(u) > f ′(t) and p′(u) > p′(t). Using min(u1, u2) > K(f,p),

we get

u1f
′(u)− p′(u) ≥ u1f

′(t)− p′(t) and u2f
′(u)− p′(u) ≥ u2f

′(t)− p′(t).

Hence, u→ t holds in (f ′, p′).

Similarly, we now use the fact that min(t1, t2) ≤ K(f,p). If min(t1, t2) = t1, then using

Equation 12, we get t1f
′(t) − p′(t) ≥ t1f

′(u) − p′(u). Else, min(t1, t2) = t2, in which case

again, we get t2f
′(t) − p′(t) ≥ t2f

′(u) − p′(u). So, one of the above constraints must hold,

which ensures that the t→ u holds in (f ′, p′).

(4) s→ u. Using the fact that p′(u) > p′(t), f ′(u) > f ′(t) and s1 ≤ K(f,p); rearranging terms

in Equation 12 we get s1f
′(t) − p′(t) ≥ s1f

′(u) − p′(u). This combined with Equation 10

results in s1f
′(s)− p′(s) ≥ s1f

′(u)− p′(u), which is enough for s→ u as p′(s) = p(s) ≤ B.

(5) u→ s. Since p′(u) > B and p′(s) = p(s) ≤ B, we will need to show that

u1f
′(u)− p′(u) ≥ u1f

′(s)− p′(s) and u2f
′(u)− p′(u) ≥ u2f

′(s)− p′(s).

Combining Equations 11 and 12, we get K(f,p)

[
f ′(u)− f ′(s)

]
≥ p′(u)− p′(s). Using the fact

that p′(u) > p′(s), f ′(u) > f ′(s) and u1, u2 > K(f,p) we arrive at the desired result.

Since p(0, 0) = p′(0, 0) and (f, p) is IR and IC, Lemma 1 implies that (f ′, p′) is IR. �
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A.2.3 Ironing Lemmas

The final Lemma before we start ironing, further simplifies the class of mechanisms that we

need to consider for optimal mechanism design.

Lemma 13 Suppose (f, p) ∈ M+ is an IC and IR mechanism. Then, there exists another

mechanism (f̂ , p̂) such that

1. (f̂(v), p̂(v)) = (f(v), p(v)) for all v with v1 ≥ K(f,p),

2. (f̂(v), p̂(v)) = (f̂(u), p̂(u)) for all u, v with u1 = v1 < K(f,p),

3. p̂(u) ≥ p(u) for all u,

4. p̂(0, 0) = p(0, 0),

5. u→ v for every u, v with p̂(u), p̂(v) ≤ B holds in (f̂ , p̂).

Proof : Consider an IC and IR mechanism (f, p), and let K(f,p) be as defined in Lemma 8.

We complete the proof in two steps.

Step 1. In this step, we show some implications of u → v, where u1, v1 < K(f,p). Consider

any (u1, u2), (u1, u
′
2) such that u1 < K(f,p). Then, by Lemma 8, we have p(u1, u2) ≤ B and

p(u1, u
′
2) ≤ B. Hence, the relevant pair of incentive constraints give us:

u1f(u1, u2)− p(u1, u2) = u1f(u1, u
′
2)− p(u1, u′2). (13)

Also, notice that Equation 13 implies that for all u2 ∈ [0, β],

p(0, u2) = p(0, 0) (14)

Finally, since only incentive constraints corresponding to agent’s value are relevant in this

region, revenue equivalence formula implies that for every u1 < K(f,p) and u2, u
′
2 ∈ [0, β], we

have

u1f(u1, u2)− p(u1, u2) =

∫ u1

0

f(x, u2)dx− p(0, u2) =

∫ u1

0

f(x, u2)dx− p(0, 0)
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u1f(u1, u
′
2)− p(u1, u′2) =

∫ u1

0

f(x, u′2)dx− p(0, u2) =

∫ u1

0

f(x, u′2)dx− p(0, 0)

where the second equalities in each of the equations above are implied by Equation 14. Using

Equation 13, we get ∫ u1

0

f(x, u2)dx =

∫ u1

0

f(x, u′2)dx.

Hence, we can write for every u1 < K(f,p) and every u2 ∈ [0, β],

u1f(u1, u2)− p(u1, u2) =

∫ u1

0

f(x, 0)dx− p(0, 0). (15)

Notice that the RHS of the above equation is independent of u2. Denoting the RHS of the

above equation as U (f,p)(u1), we see that

u1 sup
u2∈[0,β]

f(u1, u2) = sup
u2∈[0,β]

p(u1, u2) + U (f,p)(u1). (16)

Notice that f and p are bounded from above (p is bounded from above because p(u1, u2) ≤ B

for each u2 ∈ [0, β] due to Lemma 8). As a result, the supremums in the above equation

exist. We denote this supremums as follows:

α(u1) := sup
u2∈[0,β]

f(u1, u2) ∀ u1 < K(f,p) (17)

π(u1) := sup
u2∈[0,β]

p(u1, u2) ∀ u1 < K(f,p). (18)

We use these to define our new mechanism in the next step.

Step 2. Now, we define the following mechanism (f̂ , p̂). For every v with v1 ≥ K(f,p), we

have (f̂(v), p̂(v)) = (f(v), p(v)). For all v with v1 < K(f,p), we define

f̂(v) := α(v1); p̂(v) := π(v1).

By definition of p̂, it is clear that p̂(v) ≥ p(v) for all v. Also, Equation 14 ensures that

p̂(0, 0) = π(0) = p(0, 0). Hence, (1), (2), (3), (4) hold for (f̂ , p̂).

For (5), assume for contradiction that u → v in (f̂ , p̂) does not hold for some u, v with

p̂(u), p̂(v) ≤ B. By definition of p̂, we must have p(u) ≤ B and p(v) ≤ B. Also, incentive con-

straints cannot be violated if u1, v1 ≥ K(f,p) since (f, p) is IC and (f̂(u), p̂(u)) = (f(u), p(u))
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and (f̂(v), p̂(v)) = (f(v), p(v)). The other possibilities are analyzed below.

Case 1. u1, v1 < K(f,p). In that case, violation of u→ v implies

u1α(u1)− π(u1) < u1α(v1)− π(v1) = (u1 − v1)α(v1) + v1α(v1)− π(v1).

Using Equation (16), we get that U (f,p)(u1) < U (f,p)(v1) + (u1−v1)α(v1). By definition, there

exists, y ∈ [0, β] such that α(v1) is arbitrarily close to f(v1, y). Using Equation (15) gives us

u1f(u1, y)− p(u1, y) < v1f(v1, y)− p(v1, y) + (u1 − v1)f(v1, y) = u1f(v1, y)− p(v1, y).

This means u→ v is violated for (f, p), a contradiction.

Case 2. u1 < K(f,p) and v1 ≥ K(f,p). In that case, we must have u1α(u1) − π(u1) <

u1f(v) − p(v). But using Equations (15) and (16), we see that there is some y such that

u1f(u1, y)− p(u1, y) < u1f(v)− p(v) which contradicts IC of (f, p).

Case 3. u1 ≥ K(f,p) and v1 < K(f,p). In that case, we must have

u1f(u)− p(u) < u1α(v1)− π(v1) = (u1 − v1)α(v1) + U (f,p)(v1).

Now, pick y such that α(v1) is arbitrarily close to f(v1, y). By Equations (15) and (16):

u1f(u)− p(u) < (u1 − v1)f(v1, y) + v1f(v1, y)− p(v1, y) = u1f(v1, y)− p(v1, y).

This contradicts IC of (f, p) and completes the proof. �

Definition 5 We call a mechanism (f, p) simple if there exists K,A, Â, P with K ∈ (0, B),

P ∈ (B, β], A, Â ∈ [0, 1], A > Â such that

1. p(0, 0) ≤ 0.

2. K(A− Â) = P −B with KA− P ≥ 0.
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3. (f(v), p(v)) = (A,P ) for all v with min(v1, v2) > K,

4. p(v) ≤ B for all v with v1 < K.

5. (f(v), p(v)) = (Â, B) for all v with min(v1, v2) ≤ K and v1 ≥ K.

6. (f(v), p(v)) = (f(v′), p(v′)) for all v, v′ with v1 = v′1 < K.

7. v → v′ hold for all types with p(v), p(v′) ≤ B.

Based on Lemmas 12 and 13, the following is a simple corollary.

Corollary 1 If (f, p) is an optimal mechanism in M+, then there is a simple mechanism

(f̂ , p̂) such that Rev(f, p) ≤ Rev(f̂ , p̂).

Proof : Suppose (f, p) is an optimal mechanism in M+, then Lemma 12 says that there is

another IC and IR mechanism (f ′, p′) such that Rev(f ′, p′) ≥ Rev(f, p). Using K = K(f,p),

Lemma 13 shows that (f ′, p′) satisfies all the properties of a simple mechanism. �

Because of property (6), for any simple mechanism (f, p), we denote the allocation prob-

ability at any type v with v1 < K as simply αf (v1) and the payment as πp(v1). We also

denote by αf (K) ≡ Â and πp(K) ≡ B, where Â is the parameter specified in the simple

mechanism (f, p).

Lemma 14 Suppose (f, p) is a simple mechanism with parameters (K,A, Â, P ). Then, the

revenue from (f, p) is

Rev(f, p) = G1(K)
[
B −Kαf (K)

]
+

∫ K

0

h(x)αf (x)dx

+B(1−G1(K)) +K(A− αf (K))(1−G1(K)−G2(K) +G(K,K)),

where h(x) = xg1(x) +G1(x) for all x ∈ [0, K].

Proof : Fix a simple mechanism with parameters (K,A, Â, P ). We divide the proof into

two parts, where we compute revenue from two disjoint regions of the type space.
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Region 1. Here, we consider all v such that v1 ≤ K. By properties (4) and (5) of the simple

mechanism, payments in this region of type space is not more than B and by property (7),

all the incentive constraints in this region hold. Using standard Myersonian techniques, it is

easy to see that

αf (v1) ≥ αf (v′1) ∀ v′1 < v1 ≤ K (19)

πp(v1) = πp(0) + v1α
f (v1)−

∫ v1

0

αf (x)dx ∀ v1 ≤ K (20)

Hence, the expected payment from this region is∫ K

0

πp(v1)g1(v1)dv1 =

∫ K

0

πp(0)g1(v1)dv1 +

∫ K

0

v1α
f (v1)g1(v1)dv1 −

∫ K

0

( ∫ v1

0

αf (x)dx
)
g1(v1)dv1

= G1(K)πp(0) +

∫ K

0

v1α
f (v1)g1(v1)dv1 −

∫ K

0

(
(G1(K)−G1(v1)

)
αf (v1)dv1

= G1(K)
[
πp(0)−

∫ K

0

αf (x)dx
]

+

∫ K

0

h(x)αf (x)dx

= G1(K)
[
πp(K)−Kαf (K)

]
+

∫ K

0

h(x)αf (x)dx

= G1(K)
[
B −Kαf (K)

]
+

∫ K

0

h(x)αf (x)dx,

where the last but one equality follows from Equation 20 at v1 = K and the last equality

follows from the fact πp(K) = B.

Region 2. Finally, we consider all v such that v1 > K. By definition, the expected revenue

from this region is

B(1−G1(K)) + (P −B)(1−G1(K)−G2(K) +G(K,K))

= B(1−G1(K)) +K(A− αf (K))(1−G1(K)−G2(K) +G(K,K)),

where the equality follows from property (2) of simple mechanism.

Putting together the revenues from both the regions, we get the desired expression of the

expected revenue from the simple mechanism. �

We now prove that for every simple mechanism, there is a post-2 mechanism that

generates as much expected revenue.
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Lemma 15 For every simple mechanism (f, p), there is a post-2 mechanism (f̄ , p̄) such

that Rev(f̄ , p̄) ≥ Rev(f, p).

Proof : Suppose (f, p) is a simple mechanism with parameters (K,A, Â, P ). Now, by prop-

erty (5) of the simple mechanism, Equation 20 along with property (1) imply that

πf (K) = B ≤ Kαf (K)−
∫ K

0

αf (x)dx. (21)

Now, define a post-2 mechanism by parameters: K1 := B

Â
= B

αf (K)
, K2 := K. By

property (1) of simple mechanism, we get that K1 = B
αf (K)

≤ K2 = K. Also, K1 > B. This

means that the new mechanism is a well-defined post-2 mechanism. Denote this mechanism

as (f ′, p′).

It is also easily verified that it is a simple mechanism: the parameters are K ′ := K2 =

K;A′ = 1; Â′ := Â = αf (K);P ′ := B + K2(1 − B
K1

) = B + K(1 − αf (K)), and also note

that every post-2 mechanism is IC (Proposition 1). Note here that αf
′
(K) = αf (K). Also,

αf
′
(x) = 0 for all x ≤ K1 and αf

′
(x) = B

K1
= αf (K) for all x ∈ (K1, K]. Using these

observations and Lemma 14,

Rev(f ′, p′)−Rev(f, p)

=

(
G1(K)

[
B −Kαf (K)

]
+

∫ K

0

h(x)αf
′
(x)dx+B(1−G1(K))+

K(1− αf (K))(1−G1(K)−G2(K) +G(K,K))

)

−

(
G1(K)

[
B −Kαf (K)

]
+

∫ K

0

h(x)αf (x)dx+B(1−G1(K))+

K(A− αf (K))(1−G1(K)−G2(K) +G(K,K))

)
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≥
∫ K

0

h(x)αf
′
(x)dx−

∫ K

0

h(x)αf (x)dx

≥
∫ K

K1

h(x)
(
αf (K)− αf (x)

)
dx−

∫ K1

0

h(x)αf (x)dx.

≥ (K −K1)h(K1)α
f (K)− h(K1)

∫ K

K1

αf (x)dx− h(K1)

∫ K1

0

αf (x)dx

(using h and αf to be increasing functions)

= (K −K1)h(K1)α
f (K)− h(K1)

∫ K

0

αf (x)dx

≥ h(K1)(K −K1)α
f (K)− h(K1)(K −K1)α

f (K)

(using Equation (21) and definition of K1)

= 0.

�

A.2.4 Proof of Proposition 4

The proof of (2) in Proposition 4 now follows from Corollary 1 and Lemma 15. Proof of (1)

in Proposition 4 is given below.

This requires to show that the optimal mechanism in M− is a post-1 mechanism. Every

mechanism (f, p) ∈ M− satisfies the property that types satisfying p(v) > B have zero

measure. We first argue that it is without loss of generality to assume that p(v) ≤ B for all v.

To see this, note that by (1) in Lemma 8 and the fact that V +(f, p) has zero measure, it must

be thatK(f,p) = β. Let πp(β) := supv2<β p(β, v2) and αf (β) := supv2<β f(β, v2). Observe that

αp(β) ≤ B. Hence, we consider the following mechanism (f ′, p′): (f ′(v), p′(v)) = (f(v), p(v))

if v /∈ V +(f, p) and (f ′(v), p′(v)) = (αf (β), πp(β)) otherwise. By construction, the expected

revenue of (f ′, p′) is the same as (f, p) and p′(v) ≤ B for all v. Further, (f ′, p′) is IC (we

only need to worry about incentive constraints of types v ∈ V +(f, p), and they hold because

for all v, p′(v) ≤ B implies we only need to check incentive constraints for value of agent,

which holds due to an argument similar to that in Lemma 13(5)). IR of (f ′, p′) follows from

Lemma 1.
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Now, we state an analogue of Lemma 13 for M− class of mechanisms - the proof of this

lemma is identical to that of Lemma 13, and is skipped.

Lemma 16 Suppose (f, p) ∈ M− is an IC and IR mechanism. Then, there exists another

mechanism (f̂ , p̂) such that

1. (f̂(v), p̂(v)) = (f̂(u), p̂(u)) for all u, v with u1 = v1,

2. p̂(u) ≥ p(u) for all u,

3. p̂(0, 0) = p(0, 0),

4. (f̂ , p̂) is IC and IR.

Using Lemma 16, we only focus on mechanisms satisfying the properties stated in Lemma

16. Let (f, p) be such a mechanism and define αf and πp as before, i.e., αf (v1) = f(v1, v2)

and πp(v1) = p(v1, v2) for all v with v1 < β.

Hence, the expected revenue from a mechanism (f, p) given in Lemma 16 is given by

Rev(f, p) = p(0, 0) +

∫ β

0

u1α
f (u1)g1(u1)du1 −

∫ β

0

(∫ u1

0

αf (x)dx
)
g1(u1)du1

= p(0, 0) +

∫ β

0

xαf (x)g1(x)dx−
∫ β

0

(1−G1(x))αf (x)dx

= p(0, 0) +

∫ β

0

[
h(x)− 1

]
αf (x)dx.

We now construct another posted-price mechanism (f ′, p′) that generates no less revenue

than (f, p). The posted-price mechanism (f ′, p′) is defined as follows. Let K1 := πf (β)
αf (β)

. For

all v with v1 ≤ K1, we set: f ′(v) := 0, p′(v) := 0 and for all v with v1 > K1, we set:

f ′(v) := αf (β), p′(v) := K1α
f (β) = πp(β).

It is not difficult to see that (f ′, p′) is IR and IC. The expected revenue from (f ′, p′) is

given by Rev(f ′, p′) = K1α
f (β)(1−G1(K1)). Now, note that

αf (β)

∫ β

K1

[
h(x)− 1

]
dx = αf (β)

(
K1 −K1G1(K1)

)
= Rev(f ′, p′).
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So, we get

Rev(f ′, p′)−Rev(f, p)

=

(
αf (β)

∫ β

K1

[
h(x)− 1

]
dx

)
−

(
p(0, 0) +

∫ β

0

[
h(x)− 1

]
αf (x)dx

)

= αf (β)

∫ β

K1

h(x)dx−
∫ β

0

h(x)αf (x)dx+

∫ β

0

αf (x)dx− (β −K1)α
f (β)− p(0, 0)

= αf (β)

∫ β

K1

h(x)dx−
∫ β

0

h(x)αf (x)dx+

∫ β

0

αf (x)dx− βαf (β)− πp(β)− p(0, 0)

(Using definition of K1)

= αf (β)

∫ β

K1

h(x)dx−
∫ β

0

h(x)αf (x)dx

(Using revenue equivalence formula (Equation 20) at β)

=

∫ β

K1

[
αf (β)− αf (x)

]
h(x)dx−

∫ K1

0

αf (x)h(x)dx

≥ h(K1)

∫ β

K1

[
αf (β)− αf (x)

]
dx− h(K1)

∫ K1

0

αf (x)dx

(since h is increasing and αf is non-decreasing)

= h(K1)(β −K1)α
f (β)− h(K1)

∫ β

0

αf (x)dx

≥ h(K1)(β −K1)α
f (β)− h(K1)(β −K1)α

f (β)

= 0,

where the last inequality follows from revenue equivalence formula (Equation 20) at β and

p(0, 0) ≤ 0). Hence, every optimal mechanism in M− is a posted-price mechanism described

in (f ′, p′). It is characterized by a posted-price K1 and an allocation probability α if the

value of the agent is above the posted price. The optimization program can be written as

follows.

max
K1,α

K1α(1−G1(K1))

subject to K1α ≤ B, α ∈ [0, 1].
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We argue that the optimal solution to this program must have α = 1 and that will imply

that the optimal solution is a post-1 mechanism. To see this, let K∗ be the unique solution

to the following optimization maxK1∈[0,B]K1(1 − G1(K1)). The fact that this optimization

program has a unique solution follows from the fact that x − xG1(x) is strictly concave

(since xG1(x) is strictly convex). Hence, the revenue from the solution when α = 1 is

K∗(1−G1(K
∗)). Now, suppose the optimal solution has K̂ and α̂. Note that the K̂α̂ ≤ B.

So, define K̃ = K̂α̂ ≤ B. By definition,

K∗(1−G1(K
∗)) ≥ K̃(1−G1(K̃)) = K̂α̂(1−G1(K̂α̂)) ≥ K̂α̂(1−G1(K̂)),

where the final inequality used the fact that G1(K̂α̂) ≤ G1(K̂). This implies that the optimal

solution must have α = 1.

A.2.5 Proof of Proposition 2

We now combine the optimal solutions in M+ and M− as follows. The optimal in M− is a

solution to

max
K1∈[0,B]

K1(1−G1(K1)).

The optimal in M+ is a solution to

max
K2∈(B,β),K1∈[B,K2]

B
[
1−G1(K1)

]
+K2

(
1− B

K1

)[
1−G1(K2)−G2(K2) +G(K2, K2)

]
.

Notice that the optimization for M+ does not admit K2 = B. But if K2 = B and

K1 ∈ [B,K], we must have K1 = B and then the objective function value reduces to

B(1 − G1(B)). This is the same objective function value of the program for M− when

K1 = B. Similarly, if K2 = β is allowed in the optimization for M+, we see that the

objective function is maximized at K1 = B giving a value of B(1−G1(B)) to the objective

function. Again, this is the same objective function value of the program for M− when

K1 = B.

Summarizing these findings, we get that the expected revenue from the optimal mecha-
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nism is max(R1, R2), where

R1 = max
K1∈[0,B]

K1(1−G1(K1))

R2 = max
K2∈[B,β],K1∈[B,K2]

B
[
1−G1(K1)

]
+K2

(
1− B

K1

)[
1−G1(K2)−G2(K2) +G(K2, K2)

]
.

This proves Proposition 2.

A.3 Proof of Lemma 2

Proof : Suppose (K∗1 , K
∗
2) are values of (K1, K2) in the optimal post-2 mechanism. By

definition K∗1 ≤ K∗2 . Using the uniform distribution of G, we see that (K∗1 , K
∗
2) are optimal

solutions to the following optimization problem:

max
K2∈[B,1], K1∈[B,K2]

B
[
1−K1

]
+
(
1− B

K1

)
K2(1−K2)

2. (22)

We consider the following optimization problem, where we fix the value of K∗1 and maximize

over all K2:

max
K2∈[0,1]

B
[
1−K∗1

]
+
(
1− B

K∗1

)
K2(1−K2)

2.

Notice that the objective function is strictly concave in K2, and the unique maximum occurs

when K2 = 1
3
.

Now, assume for contradiction K∗1 < K∗2 . We consider two cases and reach a contradic-

tion in both the cases.

Case 1. Suppose K∗1 ≥ 1
3
. Then, K∗2 >

1
3
. But K2 = K∗1 and K∗1 defines a feasible post-2

mechanism, and generates more revenue. This is a contradiction.

Case 2. Suppose K∗1 <
1
3
. Since K∗2 ≥ K∗1 , we see that K2 = 1

3
and K∗1 defines a feasible

post-2 mechanism and generates more revenue. Hence, K∗2 must be equal to 1
3
. Now, fixing

the value of K2 at 1
3
, we optimize the Expression (22) with relaxed constraints on K1:

max
K1∈[0,1]

B
[
1−K1

]
+
(
1− B

K1

) 4

27
.
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This objective function is strictly concave with a unique maxima at K1 = 2
3
√
3
> 1

3
. Hence,

the objective function of the Expression in (22) is higher at K1 = 1
3

= K∗2 than at (K∗1 , K
∗
2)

with K∗1 <
1
3
. Further, K1 = K2 = 1

3
is a post-2 mechanism since (K∗1 , K

∗
2) with K∗2 = 1

3
is

a post-2 mechanism. This is a contradiction.

Using this, we can conclude that the optimal post-2 mechanism is a solution to the

following single-variable constrained optimization problem.

max
K∈[B,1]

B
(
1−K

)
+
(
K −B

)
(1−K)2. (23)

We denote J(K) := B
(
1−K

)
+
(
K −B

)
(1−K)2 for all K. Notice that

J ′(K) = 3K2 −K(2B + 4) + (B + 1) and J ′′(K) = 6K − (2B + 4).

Hence, we get J ′(B) = B2 − 3B + 1 =
(
B − 3−

√
5

2

)(
B − 3+

√
5

2

)
. Thus, J ′(B) ≤ 0 if and

only if B ≥ 1
2

(
3 −
√

5
)
. But, J ′′(K) = 0 for K = 1

3
(B + 2). Hence, J ′(K) is decreasing in

[B, 1
3
(B+ 2)] and increasing in [1

3
(B+ 2), 1]. Also, J ′(1) = −B < 0. Hence, if J ′(B) ≤ 0, we

must have J ′(K) < 0 for all K ∈ (B, 1].

Proof of (1). This implies that for B ≥ 1
2

(
3−
√

5
)
, we have J ′(K) < 0 for all K ∈ (B, 1].

This implies that J is decreasing in [B, 1], and hence, the optimal solution of Optimization

(23) must have K = B. Then, the first part implies that the optimal post-2 mechanism

must have K∗1 = K∗2 = B.

Proof of (2). If B < 1
2

(
3 −
√

5
)
, then J ′(B) > 0 and J ′(K) = 0 at a unique point

K = 1
3

(
B+2−

√
(B2 +B + 1)

)
. Denote this point of inflection as K̃. Notice that J ′(K) < 0

for all K > K̃, and, hence, J is decreasing after K̃. Further, K̃ < 1
3
(B + 2) and J ′′(K) < 0

for all K < K̃. This means J is strictly concave from B to 1
3
(B + 2). Combining these

observations, we conclude that K = K̃ solves the Optimization in (23). The first part implies

that the optimal post-2 mechanism must have K∗1 = K∗2 = 1
3

(
B + 2 −

√
(B2 +B + 1)

)
, if

B < 1
2

(
3−
√

5
)
. �
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