
Separability and decomposition

in mechanism design with transfers ∗

Debasis Mishra, Swaprava Nath, and Souvik Roy †

August 9, 2017

Abstract

In private values quasi-linear environment, we consider problems where allocation

decisions along multiple components have to be made. Every agent has additively

separable valuation over the components. We show that every unanimous and

dominant strategy implementable allocation rule in this problem is a component-wise

weighted utilitarian rule, which assigns non-negative weight vectors to agents in

each component and chooses an alternative in each component by maximizing the

weighted sum of valuations in that component. A corollary of our result is that

every unanimous and dominant strategy implementable allocation rule can be almost

decomposed (modulo tie-breaking) into dominant strategy implementable allocation

rules along each component.

JEL Codes: D82, D44, D47

Keywords: separable types, affine maximizer, Roberts’ theorem.

∗We thank two anonymous referees and an associate editor for detailed comments that have significantly

improved the paper. We are also grateful to Arunava Sen and participants at a seminar in Indian Statistical

Institute for useful discussions. Nath is supported by the Fulbright-Nehru Postdoctoral Fellowship, 2015-17.
†Debasis Mishra, Indian Statistical Institute, New Delhi, Email: dmishra@isid.ac.in; Swaprava Nath,

Indian Institute of Technology (IIT), Kanpur, Email: swapravn@cs.cmu.edu; Souvik Roy, Indian Statistical

Institute, Kolkata, Email: souvik_roy2004@yahoo.com

1

1 Introduction

Suppose a planner needs to choose various kinds of public goods for a city: a stadium

location among a set of locations, a school with a particular medium of teaching among

a set of teaching mediums, a mode of public transport among various modes of transport

etc. Transfers (in the form of taxes or subsidies) are allowed and agents have (i) additively

separable value over different kinds of public good and (ii) quasi-linear utility over transfers.

How should the planner choose different kinds of public good?

We investigate the class of dominant strategy incentive compatible mechanisms in such

environments - our focus is exclusively on deterministic mechanisms. These kind of settings

are typically characterized by alternatives which have multiple dimensions or components

- kinds of public good in the above example. Agents have additively separable valuations,

which are defined by a valuation function over alternatives in each component, and then, the

value for an alternative is just the sum of valuations of individual components. For instance,

in the example, value for an alternative which consists of (a1) a stadium in downtown, (a2)

a French medium school, and (a3) a monorail transport system is calculated as the sum of

values of a1, a2, and a3.

A natural solution to such a problem in quasi-linear private values environment is to use

a mechanism in the Groves class of mechanisms. Though efficient, Groves mechanisms are

known to have undesirable features like not being able to cover cost and not maximizing

surplus of participating agents. This is the motivation for studying the set of all incentive

compatible mechanisms in this setting.

In a strategic voting environment, where transfers are precluded, such separability usually

implies decomposition of the mechanism, i.e., we can employ a separate mechanism on each

component that only considers preference information on that component and then the

decisions on various components can be aggregated (Barberà et al., 1991; Barbera et al.,

1993; Le Breton and Sen, 1999; Le Breton and Weymark, 1999; Weymark, 1999; Svensson

and Torstensson, 2008) - usually, these results require additional mild conditions such as

unanimity or onto-ness.

We show that such decomposition is not possible in our setting with transfers. In par-

ticular, in quasi-linear environment with additively separable valuations over components,

an onto dominant strategy implementable allocation rule is not necessarily decomposable.1

This is not surprising because introduction of transfers usually expands the set of incentive

compatible mechanisms, and in the process, we get new mechanisms which are not decom-

1An allocation rule is dominant strategy implementable if there exists a payment function such that the

corresponding mechanism is dominant strategy incentive compatible.

2

posable. Our main result shows that the decomposability result can be restored if we assume

unanimity of the allocation rule. In particular, we show that every dominant strategy im-

plementable and unanimous allocation rule must be a component-wise weighted utilitarian

(CWU). Conversely, every CWU allocation rule is unanimous and implementable under a

mild tie-breaking condition. Unanimity requires that if all the agents have higher valuation

for an alternative than every other alternative, then the allocation rule must choose that

alternative.

A CWU allocation rule specifies for each component a vector of non-negative weights (not

all zero) for the agents. Then, for each component, it computes weighted sum of valuations

of agents and chooses an alternative that maximizes this weighted sum. Because of tie-

breaking issues, this does not give us complete decomposability of the allocation rule but

implies decomposability in a generic sense.

It is worth noting that in strategic voting environment (where transfers are not used),

unanimity and ontoness are equivalent conditions under dominant strategy incentive com-

patibility.2 This is no longer the case in quasilinear type space. This explains that we cannot

get (almost) decomposability of onto dominant strategy implementable allocation rules but

it is possible to decompose unanimous dominant strategy implementable allocation rules. We

give two more conditions on allocation rules, both equivalent to unanimity under dominant

strategy implementability, under which our result goes through: (1) Pareto. this requires

that if there is a pair of alternative a and b such that valuation for every agent is lower for

a then for b, then a should not be chosen;3 (2) neutrality. this requires that valuations of

alternatives are permuted (using a permutation over alternatives), then the outcome at the

permuted valuation profile is the permutation of the outcome at the original profile.

Unanimity is a sufficient condition for our main result - we give an example to show that

there are non-unanimous, onto, and implementable allocation rules that cannot be decom-

posed. We feel that unanimity is a natural condition in the examples we consider. It is

a compelling normative axiom, extensively used in the social choice theory literature (Bar-

bera, 2010). It imposes a minimal form of unbiasedness for the social planner - if the society

agrees to some alternative being the best, then the social planner cannot choose a different

alternative. Of course, unanimity is silent on what a social planner can do if the society can-

not agree on a common best alternative. Potentially, the planner can discriminate among

alternatives (say, based on their costs or other characteristics) at such profiles. Our result

says that no implementable and unanimous allocation rule can do that.

2This result requires some richness of the type space - see for instance Reny (2001).
3We remind that an alternative a here consists of multiple components a1, a2, . . . and the valuation for

an alternative is sum of the valuations over individual components.

3

We also show that for every CWU allocation rule, there is a decomposed payment rule

(i.e., total payment is the sum of the payments of each component) that implements such

CWU allocation rule. Standard revenue equivalence result then pins down the entire class

of payment rules that can implement CWUs - these are payment rules which will differ from

the decomposed payment rule by an additive constant, which does not depend on agent’s

own valuation (Chung and Olszewski, 2007). However, this implies that there may be other

non-decomposable payment rules that may implement a CWU allocation rule. Hence, we

cannot be assured of the decomposition of every dominant strategy incentive compatible

mechanism even though the allocation rule can be decomposed.

Our result contributes to two strands of literature. As discussed earlier, it complements

the literature on decomposition of mechanisms in separable environments without transfers

- for instance, see Barberà et al. (1991) for the case of two alternatives in each component,

Barbera et al. (1993) for multidimensional single-peaked preferences, Le Breton and Sen

(1999) for a general result covering many preference domains, Le Breton and Weymark

(1999) for a model with a continuum of alternatives, Svensson and Torstensson (2008) for

a component-wise dictatorship result when preferences in each component is unrestricted,

and Weymark (1999) for a for a detailed survey with a general result. Probably, the closest

model in this literature is the one of Svensson and Torstensson (2008), who consider the

public good provision problem but do not allow for transfers. As a result, every incentive

compatible and onto mechanism in their model is a component-wise dictatorship - see also

Le Breton and Sen (1999). Our result can be thought as a generalization of their result in

the multiple public good provision model with transfers but with quasilinear utility. Indeed,

transfers are a natural tool for a planner in this environment and our result clarifies the exact

nature of possibility and decomposition in the presence of transfers.

Next, it contributes to a new literature in mechanism design about extending a seminal

result of Roberts (1979). In an important paper, Roberts (1979) showed that every onto

and dominant strategy implementable allocation rule in an unrestricted type space in quasi-

linear utility environment must be an affine maximizer.4 Several authors establish simpler

proofs (Lavi et al., 2009; Dobzinski and Nisan, 2009; Vohra, 2011) or extend his result to other

restricted type space - for instance, Mishra and Sen (2012) show that Roberts theorem holds

in certain bounded type spaces if neutrality is assumed; Carbajal et al. (2013) extend Roberts’

result to infinite set of alternatives; Jehiel et al. (2008) extend it to certain interdependent

valuation environment; Nath and Sen (2015) extend Roberts’ result to a specific private good

4 This result requires at least three alternatives. If there are two alternatives, there are implementable

allocation rules that are not affine maximizers. Marchant and Mishra (2015) provide a complete characteri-

zation for the two-alternatives case.

4

allocation problem assuming an additional condition called non-bossiness. All these papers

find new type spaces where implementability along with other reasonable conditions imply

affine maximization. Mishra and Quadir (2014) provide an analogue of Roberts’ theorem in

the private values single object auction environment. Their result captures a larger class of

allocation rules than just affine maximizers. Similarly, Dobzinski and Nisan (2011) show the

existence of non-affine maximizers in multi-unit auction environment.

The richness of type space required in these papers is absent in the type space we consider.

An important aspect of our type space (due to additive separability) is that altering the

valuation of one alternative involves modifying values for one or more components. This

in turn changes the valuations of many alternatives. As a result, we lose the freedom of

modifying valuations along one of the alternatives without disturbing the valuations of other

alternatives - this is a crucial element of getting to Roberts’ result, which is exploited in the

literature. As a consequence of absence of this richness, we get our new class of implementable

allocation rules - CWU allocation rules. Further, none of the existing results imply our result

and the set of CWU allocation rules captures a larger class of allocation rules than the affine

maximizers satisfying unanimity in Roberts (1979) - we discuss this issue in detail later.

The rest of the paper is organized as follows. We introduce our separable type space

in Section 2 along with a motivating example in Section 2.1. The main result is presented

in Section 3 followed by some remarks in Section 3.2. Section 3.3 introduces a variety of

axioms that can replace unanimity in our main result. The proof of the main result is given

in Section 4. All the missing proofs are provided in an Appendix at the end. We conclude

the paper with some discussions in Section 5.

2 The Separable Type Space

We begin by formally defining our model of separable type space with transfers. Let N =

{1, . . . , n} be the set of agents. Agents need to decide on various kinds of public goods.

Let J = {1, . . . ,m} denote the kinds of public goods. We will also call the elements of J

components. An alternate interpretation of our model is a m-period “planning problem”,

where a planner decides on the public good to provide in each of the 1, . . . ,m periods. Here,

the components are periods and the decision for each of the periods is made simultaneously

before the start of the periods.5

5As will be clear later, if we assume this interpretation of our model, we do not allow for any dynamics

across periods. This is because we will assume that the values of the agents for alternatives in each period

are known. A single decision is taken before the start of the periods about the public good to be provided

in each of the periods.

5

For each component j ∈ J , let Aj be the (finite) set of available public goods of kind j.

We assume that for all j ∈ J , we have |Aj| ≥ 3. A public good along each component must

be chosen. Hence, the set of alternatives is denoted by

A := A1 × . . .× Am.

An alternative a ∈ A will be equivalently denoted as (a1, . . . , am), where for every j, aj ∈ Aj

is the alternative of component j in a.

The type of an agent i ∈ N is a valuation function vi : A → R. We assume that the

valuations of agents are separable in the following sense.

Definition 1 A valuation function vi of agent i is additively separable if there exists a

collection of vectors (v1i , . . . , v
m
i), where vji ∈ R|Aj | for each j ∈ J , such that for every a ∈ A,

vi(a) =
∑
j∈J

vji (a
j).

Here, vji will be referred to as the valuation of agent i for the alternatives in the j-th compo-

nent.

A profile of valuation functions (v1, . . . , vn) will be denoted by v. Further, for every

i ∈ N , we will sometimes denote its valuation vi as (v1i , . . . , v
m
i).

The type space of each agent can be restricted by restricting the values of the valuation

functions along each component. In general, we assume that for every i ∈ N and for every

j ∈ J , the valuations of alternatives in the j-component lie in R++. 6 The space of valuations

for agent i for component j is thus R|A
j |

++ . Hence, the type space of each agent i is given by

V ≡ R|A
1|

++ × . . .× R|A
m|

++ .

It is important to note that because of the additive nature of the valuation, the type space

is a strict subset of R|A|++ - for instance, the following type from R|A|++ can never be in our type

space: for some a ∈ A, vi(a) > M for some large M and vi(b) is arbitrarily close to zero for

all b 6= a. This is because if vi(a) > M , then there is some j ∈ J such that vji (a
j) > M

m
. But,

then there is some b 6= a but bj = aj such that vi(b) >
M
m

, which contradicts the fact that

vi(b) is arbitrarily close to zero.

6We denote the set of non-positive, non-negative and positive real numbers by R−, R+ and R++ respec-

tively. We emphasize that it is not necessary to exclude zero valuations for our results to hold. However,

our proof requires the flexibility to be able to increase the values to an arbitrary amount. In that regard,

the valuations can be drawn from an arbitrary open interval (x,∞), where x ∈ R− ∪ {−∞}. We require the

fact that such intervals are open due to technical reasons.

6

We refer to our type space as separable type space - without using the “additively”

qualifier before separability. Sometimes, we will look at the valuations of all the agents v

restricted to a particular component j. In that case, we will refer this restricted profile along

the j-th component as vj. The separable type space automatically induces a set of such

restricted valuation profiles along the j-th component, which is R|Aj |×n.

We assume quasilinear preferences. Suppose alternative a ≡ (a1, . . . , am) is chosen and

agent i gets a transfer of pi, then the net utility of agent i with valuation vi is∑
j∈J

vji (a
j) + pi.

An allocation rule is a map F : V n → A. At any valuation profile v, the alternative

chosen for component j by the allocation rule F is denoted by F j(v).

A payment function of agent i is a map pi : V n → R. Note that the transfer of agent

i need not be separable across components.

A mechanism is an allocation rule and a collection of payment functions: (F, p1, . . . , pn).

Definition 2 An allocation rule F is implementable (in dominant strategies) if there

exists (p1, . . . , pn) such that for every i ∈ N , for every v−i ∈ ×k 6=iVk, for every vi, v
′
i ∈ V , we

have ∑
j∈J

vji (F
j(vi, v−i)) + pi(vi, v−i) ≥

∑
j∈J

vji (F
j(v′i, v−i)) + pi(v

′
i, v−i).

In this case, we say (F, p1, . . . , pn) is a dominant strategy incentive compatible (DSIC)

mechanism.

From a planner’s perspective, it can have a separate allocation rule for each component

to decide on the alternative of that component. It chooses alternatives in each component

using a marginal allocation rule on that component. Formally, a marginal allocation rule

for component j is a map f j : R|A
j |×n

++ → Aj. The planner can then aggregate the decisions

on each component j using the marginal allocation rule f j. Decomposability of an allocation

rule requires the existence of such marginal allocation rules over each component.

Definition 3 An allocation rule F is decomposable if there exists a collection of marginal

allocation rules (f 1, . . . , fm) such that for all v, we have

F j(v) = f j(vj1, . . . , v
j
n) ∀ j ∈ J.

Given the additive separability of valuations, it is natural to suspect that an imple-

mentable allocation rule may be decomposable. This is the main question we aim to answer:

Is every implementable allocation rule in the separable type space decomposable?

7

2.1 A Motivating Example

We start with an example which shows that implementability need not imply decomposabil-

ity, and this in turn motivates us to ask the same question under an additional condition. Our

example has two agents and two components. Component 1 has alternatives {a1, b1, c1} = A1

and component 2 has alternatives {a2, b2, c2} = A2. Hence, A = A1 × A2. We will define an

implementable allocation rule in this problem which is not decomposable.

Define a map κ : A → R as follows: κ(a1, a2) = 0.95, κ(b1, b2) = 1 and κ(x) = 0 for all

alternatives x /∈ {(a1, a2), (b1, b2)}. Now, at every valuation profile v ≡ (v1, v2),

F (v) ∈ arg max
x∈A

[
v1(x) + v2(x) + κ(x)

]
,

where for every i ∈ N , vi(x) = v1i (x
1) + v2i (x

2). We break ties by using a strict ordering

over the set of alternatives - in particular, in case of multiple alternatives maximizing, we

pick the highest ranked alternative according to this tie-breaking ordering which belongs to

the set of maximizers. Such allocation rules are called affine maximizers (we give a formal

definition later). They are implementable using payment rules which are general versions of

Groves payments (Roberts, 1979).

We argue that such an allocation rule is not decomposable. Indeed, if F was decom-

posable, then the change in valuations in one component would not change the outcome in

the other component. We show that this property is violated. Consider the following pair

of valuation profiles which differs in the valuation in the second component. Denote the

first valuation profile as v ≡ (v1, v2) and the second one as v̄ ≡ (v̄1, v̄2). In particular, all

valuations in both the profiles are arbitrarily close to zero except agent 1’s valuation in v̄1

on alternative a2 of component 2, which is set at

v̄21(a2) = 0.1.

By construction,

F (v) = (b1, b2) and F (v̄) = (a1, a2).

Note that v and v̄ only differ in the valuation in the second component, but the outcome of

F in the first component changed from v to v̄. This shows that F is implementable but not

decomposable. Note that the set of valuation profiles at which F is not decomposable has a

non-negative Lebesgue measure, which hints that the violation of decomposability is not a

result of some particular tie-breaking rule. Also, note that F is onto.

Our main result below shows that in the class of additively separable valuations, if the

allocation rule is unanimous, then implementability implies decomposability in a generic

sense (i.e, except for some tie-breaking issues).

8

3 Component-wise weighted utilitarianism

In this section, we will state our main decomposition result and provide some remarks on it.

The main result will say that implementability along with an additional condition will imply

the following class of allocation rules. Further, these allocation rules are almost decomposable

(modulo tie-breaking).

Definition 4 An allocation rule F is a component-wise weighted utilitarian (CWU)

allocation rule if for every j ∈ J , there exists weight vectors λj ∈ Rn
+ \ {0} such that for all

v, we have

F j(v) ∈ arg max
aj∈Aj

∑
i∈N

λjiv
j
i (a

j).

We now describe the main result after stating the additional condition required for the

result.

3.1 The main result

The additional condition required can be any of the following two axioms. We describe them

next. Later, we provide more equivalent additional conditions which also give our main result.

Unanimity. Unanimity requires that if an alternative has higher value than every other

alternative for all the agents, then it should be chosen. Formally, unanimity requires the

following.

Definition 5 An alternative a is unanimous at a valuation profile v if for every alterna-

tive b 6= a ∑
j∈J

vji (a
j) >

∑
j∈J

vji (b
j) ∀ i ∈ N.

An allocation rule F satisfies unanimity if for every a ∈ A and for every v such that a is

unanimous at v, we have F (v) = a.

Another way to define unanimity is to define it at component-level, i.e., if valuations

of all the agents for an alternative aj ∈ Aj is the highest among all the alternatives in

component j, then aj must be chosen by the allocation rule in that component. Later, we

discuss such component-level unanimity and its connection to unanimity in Definition 5 in

detail.

9

Pareto. Pareto requires that if an alternative a has lower value than some other alternative

b for every agent, then a cannot be chosen. Formally, Pareto requires the following.

Definition 6 An alternative a is dominated at a valuation profile v if there exists an

alternative b 6= a such that ∑
j∈J

vji (a
j) <

∑
j∈J

vji (b
j) ∀ i ∈ N.

An allocation rule F satisfies Pareto if for every a ∈ A and for every v such that a is

dominated at v, we have F (v) 6= a.

It is not difficult to see that Pareto implies unanimity.7

Our main result is the following, whose proof is postponed to Section 4.

Theorem 1 Suppose F is an allocation rule defined on a separable type space. Consider

the following statements.

1. F is implementable and satisfies unanimity.

2. F is implementable and satisfies Pareto.

3. F is a CWU allocation rule.

Statements (1) and (2) are equivalent, and each of them implies Statement (3).

A CWU allocation rule satisfies Pareto and unanimity, but it may fail to be implementable

if ties are not broken carefully. We skip a formal example to illustrate this fact - one can

easily verify that some dictatorships can be manipulated at valuation profiles where the

dictator has more than one highest valued alternative. The issue is similar to the non-

implementability of affine maximizers of Roberts (1979) if ties are not broken carefully - see

detailed discussions in Carbajal et al. (2013). We introduce a mild tie-breaking condition

that ensures implementability of CWU allocation rules.

Definition 7 A CWU allocation rule F with weights {λj}j∈J satisfies independence of

non-influential agents (INA) if for every j ∈ J and for every i ∈ N with λji = 0, we

have F j(v) = F j(v′) if v and v′ differ only in the valuation of agent i.

7The Pareto property of an allocation rule should not be confused with the Pareto efficiency of a mech-

anism in quasilinear settings. Pareto efficiency of a mechanism implies that the underlying allocation rule

must be utilitarian, i.e., a CWU allocation rule with all weights equal to 1. On the other hand, Pareto

property of allocation rule is much weaker than this and covers many allocation rules.

10

Now, we define a payment function that implements a CWU allocation rule satisfying

INA. First, we define a payment function for each component j as follows: for every i ∈ N
and for every v

pji (v) =

{
1

λji

∑
k 6=i λ

j
kv

j
k(F

j(v)) if λji > 0

0 if λji = 0

Now, we can define a payment function for agent i as: for every v,

pi(v) =
∑
j∈J

pji (v).

The lemma below shows that this payment function implements a CWU satisfying INA. The

proof follows standard arguments and is given in the Appendix at the end.

Lemma 1 If F is a CWU allocation rule satisfying INA, then (p1, . . . , pn) implements F .

Unfortunately, a CWU allocation rule is not completely decomposable. The issue is

the existence of multiple maximizers at certain valuation profiles, i.e., how we handle tie-

breaking in the maximization above. Since Theorem 1 cannot pin down how to select an

alternative for a component if there are multiple maximizers, it leaves room for the failure

of decomposability. We give an example to illustrate this.

Consider two agents and two components. The alternatives in component 1 are a1, b1, c1.

Consider a valuation profile whose component 1 has the following valuations:

v11(a1) = 2, v11(b1) = 0, v11(c1) = 1,

v12(a1) = 4, v12(b1) = 5, v12(c1) = 1.

The CWU weights for component 1 are λ11 = 1, λ12 = 2. Both a1 and b1 maximize the

weighted sum in the CWU. By Lemma 1, we can pick either a1 or b1 on this component,

and the CWU will still be implementable (note that the CWU trivially satisfies INA in this

case). In particular, we can choose a1 on component 1 when valuations of other components

is v2 but b1 when valuations of other components is v̄2 6= v2. This will violate our definition

of decomposability. However, we argue that such failure of decomposability happens only in

these kind of valuation profiles which has ties in the CWU maximization, and forms a set of

measure zero over the set of all valuation profiles.

This example motivates us to consider a slightly weaker version of decomposability.

Definition 8 An allocation rule F is decomposable almost everywhere if there exists

a collection of marginal allocation rules (f 1, . . . , fm), where f j : R|A
j |×n

++ → Aj for every

11

j ∈ J , such that for every j ∈ J there exists Xj ⊆ R|A
j |×n

++ with R|A
j |×n

++ \ Xj having zero

measure and for all v−j, we have

F j(vj, v−j) = f j(vj) ∀ vj ∈ Xj.

A simple corollary of Theorem 1 is the following almost decomposability result.

Corollary 1 (Almost Decomposition) Suppose F is an allocation rule defined on a

separable type space. If F is implementable and satisfies unanimity, then it is decomposable

almost everywhere.

Proof : By Theorem 1, for every j ∈ J , there exists weight vectors λj ∈ Rn
+ \ {0} such that

for all v, we have

F j(v) ∈ arg max
aj∈Aj

∑
i∈N

λjiv
j
i (a

j).

Fix a component j ∈ J . Let Xj ⊆ R|A
j |×n

++ be defined as follows:

Xj := {vj ∈ R|A
j |×n

++ : | arg max
aj∈Aj

∑
i∈N

λjiv
j
i (a

j)| = 1}.

Note that R|A
j |×n

++ \Xj has zero (Lebesgue outer) measure. To see this, for any aj, bj ∈ Aj with

aj 6= bj, define I(aj, bj) := {vj :
∑

i∈N λ
j
iv
j
i (a

j) =
∑

i∈N λ
j
iv
j
i (b

j)}. It is clear that I(aj, bj) has

lower dimension than Xj, and hence, has measure zero. Since R|A
j |×n

++ \Xj ⊆
(
∪aj ,bj I(aj, bj)

)
,

we conclude that it has measure zero.

Now, fix any v̄−j, and consider the restriction of F to the j-th component by fixing v̄−j.

In particular, define f j : R|Aj |×n → Aj as follows. For every vj ∈ R|A
j |×n

++ , let

f j(vj) := F j(vj, v̄−j).

By construction, for every vj ∈ Xj and any v−j, v′−j, we have

F j(vj, v−j) = F j(vj, v′−j).

Hence, for all vj ∈ Xj and all v−j, we have

f j(vj) = F j(vj, v−j),

establishing the claim that F is decomposable almost everywhere. �

12

3.2 Remarks

Parallels in strategic voting. Our result can be thought of as a generalization of

decomposability results in strategic voting literature. In the strategic voting models,

allocation rules have to be implemented without transfers, and preferences of agents are

separable orderings over alternatives.8 The main results in that literature say that every onto

and implementable allocation rule is decomposable - see a very general result in (Le Breton

and Sen, 1999).9 As remarked earlier, in those models, ontoness, unanimity, and Pareto

are equivalent conditions under implementability. The example in Section 2.1 showed that

our decomposition result (Corollary 1) is not true if we use ontoness in place of unanim-

ity or Pareto. Hence, Theorem 1 does not hold if we drop unanimity or weaken it to ontoness.

Roberts’ Theorem. Roberts (1979) worked in an environment where each alternative

cannot be separated into components (or alternatively, there is only one component for

every alternative). He showed the following theorem. Notation. Below, when we write

vi(a), we mean valuation of agent i for alternative a, and since alternatives do not have

components in Roberts’ model, this notation is clear.

Fact 1 (Roberts (1979)) Suppose |A| ≥ 3 and type space of each agent is R|A| (i.e., the

set of all possible type vectors), then every onto and implementable allocation rule is an affine

maximizer, i.e., there exists weight vectors w ∈ Rn
+ \ {0} and a map κ : A→ R such that at

every valuation profile v, we have

F (v) ∈ arg max
a∈A

[∑
i∈N

wivi(a) + κ(a)
]
. (1)

Under a mild tie-breaking condition, similar to the INA condition in Definition 7, every affine

maximizer is also implementable (Mishra and Sen, 2012) - see Carbajal et al. (2013) for a

complete characterization.

As we have argued earlier, in our model, type space of every agent is

R|A1|
++ × . . .× R|Am|

++ (R|A|++ (R|A|.

Hence, Roberts’ theorem does not apply to our separable type space. The key restriction

imposed by additive separable valuations is that for every alternative a, changing the value

8 Usually, this literature is concerned with a broader definition of separability that captures additive

separability and other forms of separability.
9Unlike our result, this result in strategic voting model, works under various ordinal restrictions of pref-

erences.

13

of alternative a also changes the values of all alternatives which have some component al-

ternatives common with a. This destroys the richness required to get the affine maximizer

result in Roberts (1979).

A smaller domain means that we get new implementable allocation rules along with the

affine maximizers. For instance, consider the class of rules that we call component-wise

affine maximizers, which is defined by having weights vectors wj ∈ Rn
+ \ {0} for each

component j and a map κj : Aj → R for each j such that at every valuation profile v, we

have

F j(v) ∈ arg max
aj∈Aj

[∑
i∈N

wji v
j
i (a

j) + κj(aj)
]
.

Component-wise affine maximizers and (overall) affine maximizers are not the same. An

affine maximizer need not be decomposable (as we showed in the example in Section 2.1).

But a component-wise affine maximizer is always decomposable (almost everywhere). The

non-decomposability of affine maximizers stem from the fact that their κ maps are not

decomposable along components.

Notice that a unanimous affine maximizer is a CWU allocation rule - unanimity implies

that the κ terms in Equation 1 are all zero, and this gives us a CWU allocation rule where

weights on each component is the same for any agent. However, CWU allocation rule has

more allocation rules than unanimous affine maximizer. This is because a CWU allocation

rule allows us to choose different weights for different components - wji 6= wj
′

i for any j, j′.

We describe these various classes of allocation rules and where the CWU allocation rule

lies using a figure in Figure 1. As it shows, the CWU allocation rules do not capture the entire

set of decomposable allocation rules - component-wise affine maximizers are a larger class of

decomposable allocation rules. The set of decomposable and implementable allocation rules

are shown to be superset of the set of component-wise affine maximizers - we do not know

whether this is a strict superset or not.

Payment decomposition. While Theorem 1 establishes that under unanimity an im-

plementable allocation rule can be almost decomposed, can we also decompose payment

decisions (almost everywhere)? For a unanimous and implementable allocation rule, there

will always exist one almost decomposable payment function that implements it - this was

shown in Lemma 1. Notice that for every j ∈ J , the payment function defined in Lemma 1,

pji depends on the valuation of other components since it is a function of F j(v). But almost

everywhere, F j can be computed by information of component j (Theorem 1). Hence, almost

everywhere, pji only depends on the information of component j. In that sense, the payment

function in Lemma 1 is decomposable almost everywhere.

14

Component-wise
affine maximizers

CWUUnanimous
affine maximizers

All implementable rules (modulo tie-breaking)

Roberts affine
maximizer

Decomposable and im-
plementable rules

Figure 1: Various classes of allocation rules

Standard revenue equivalence formula (Chung and Olszewski, 2007) gives a complete

description of the set of all payment functions that can implement a CWU. These are char-

acterized by a map hi : V−i → R for every agent i. Any payment functions (q1, . . . , qn) that

implements a CWU allocation rule must satisfy for every agent i and every (vi, v−i),

qi(vi, v−i) = pi(vi, v−i) + hi(v−i),

where pi is the payment function identified in Lemma 1. Even though, pi is decom-

posable (almost everywhere), qi need not be decomposable since hi can be chosen in a

non-decomposable manner by making it depend on all the components of other agents.

Other forms of separability. Our result crucially relies on the fact that valuations are

additively separable. The following example shows that other forms of separability may not

give us the result. Suppose there are two agents and two components. Further, suppose the

valuations satisfy

vi(x) = v1i (x
1)v2i (x

2),∀x1 ∈ A1, x2 ∈ A2, i = 1, 2.

Clearly, the domain of valuations is separable in the sense that if at a valuation profile v2

at component 2 agent i prefers alternative x1 over x′1, then she continues to prefer the same

even when the valuation profile at component 2 changes to v′2 (because the valuations are

positive). However, such valuations are clearly not additively separable.

15

As is well known, the following affine maximizer allocation rule is implementable (with a

fixed order over the alternatives in each component to break ties):

F (v) ∈ argmax
x∈A

2∑
i=1

λivi(x) = argmax
x∈A

2∑
i=1

λiv
1
i (x

1)v2i (x
2).

Let λ1 = 3, λ2 = 2. Consider the following two valuations:

A1 A2

v a1 b1 c1 a2 b2 c2

v1 2 3 5 1 2 3

v2 5 2 1 4 2 1

A1 A2

ṽ a1 b1 c1 a2 b2 c2

v1 2 3 5 1 2 3

v2 5 2 1 4 2 100

The allocation at v is (c1, c2), but at ṽ, it is (a1, c2). Even though, the valuations in

component 1 did not change in these two profiles, the outcome changed. This shows that

we cannot hope to get the kind of decomposability we got in Theorem 1 beyond additively

separable valuations.

3.3 Component-wise axioms

Theorem 1 uses unanimity or Pareto in conjunction with implementability. Both these

axioms are imposed on the overall allocation rule. Below, we provide alternate axioms which

are imposed on components. As we show below, they are stronger than the axioms on the

overall allocation rule, but become equivalent to them in the presence of implementability.

Further, they provide a different perspective on our results. Our proof of the main result

uses the fact that these axioms are equivalent to unanimity/Pareto.

We start off by stating the component-wise versions of unanimity and Pareto.

Definition 9 An alternative aj ∈ Aj is unanimous on component j at a valuation

profile v if vji (a
j) > vji (b

j) for all bj 6= aj and for all i ∈ N .

An allocation rule F satisfies component-wise unanimity if for every j ∈ J , for every

aj ∈ Aj, and for every v such that aj is unanimous on component j at v, we have F j(v) = aj.

Component-wise unanimity implies unanimity. Under implementability, component-wise

unanimity and unanimity are equivalent.

Lemma 2 Suppose F is an allocation rule defined on a separable type space.

1. If F satisfies component-wise unanimity, then it satisfies unanimity.

16

2. If F is implementable and satisfies unanimity, then it satisfies component-wise una-

nimity.

Similarly, we can define a component-wise Pareto, which is weaker than the overall Pareto.

Definition 10 An alternative aj ∈ Aj is dominated on component j at valuation profile

v if vji (a
j) < vji (b

j) for some bj 6= aj and for all i ∈ N .

An allocation rule F satisfies component-wise Pareto if for every j ∈ J , for every aj ∈ Aj,
and for every v such that aj is dominated on component j at v, we have F j(v) 6= aj.

Again, under implementability, component-wise Pareto and Pareto are equivalent.

Lemma 3 Suppose F is an allocation rule defined on a separable type space.

1. If F satisfies component-wise Pareto, then it satisfies Pareto.

2. If F is implementable and satisfies Pareto, then it satisfies component-wise Pareto.

The proof of Lemma 3 is similar to Lemma 2, and is skipped - Proof of Lemma 2 is in the

Appendix.

We now state two more component-wise axioms. Both the axioms will use a notation

that we define next. For every j ∈ J , for every aj ∈ Aj, for every v, and for every ε ∈ Rn
++,

define the valuation profile v′ as:

v′k(ak) = vk(ak) ∀ ak ∈ Ak, ∀ k 6= j

v′j(aj) = vj(aj) + ε

v′j(bj) = vj(bj) ∀ bj ∈ Aj \ {aj}.

We denote v′ as (v + 1a
j

ε). For every j ∈ J and for every v, define

CF
j (v) := {aj : F j(v + 1a

j

ε) = aj ∀ ε ∈ Rn
++}.

In words, CF
j (v) are all the alternatives of component j that will be chosen by F if only

valuations of that alternative is increased. In the case of CWU allocation rules, this will

capture all the alternatives that achieve the maximum on component j. We show below that

this set is always non-empty for any implementable F .

Lemma 4 Suppose F is an allocation rule defined on a separable type space. Then

F j(v) ∈ CF
j (v) ∀ j ∈ J ∀ v.

17

We define a neutrality property below using this. For every j ∈ J , let πj be a permutation

of Aj. Given a profile of valuations v, we can permute it along j by applying the permutation

πj - note, we only permute the component j of all the agents. With a small abuse of notation,

we also denote the permutation of the valuation profile induced by the permutation of the

alternative with the same symbol, i.e., πj(v) denotes a valuation profile where the valuations

at πj(aj) ∈ Aj are the same as the valuations in v at aj. For example, suppose that there

are two agents and two components and the alternative sets are A1 = {a1, b1, c1}, A2 =

{a2, b2, c2}. If π1(a1) = b1, π1(b1) = a1, π1(c1) = c1, then an example of v and π1(v) will be:

A1 A2

v a1 b1 c1 a2 b2 c2

v1 2 3 4 7 6 5

v2 5 1 2 8 4 3

A1 A2

π1(v) a1 b1 c1 a2 b2 c2

v1 3 2 4 7 6 5

v2 1 5 2 8 4 3

Note that the separable type space assumption implies that if v is in the type profile space,

then πj(v) is also in the type profile space.

Definition 11 An allocation rule F is neutral if for all j ∈ J , for all permutations πj,

and for all v, we have

CF
j (πj(v)) = πj(CF

j (v))

Neutrality says that if the names of the alternatives are changed along a component, then

the outcome along that component must be changed accordingly.10 It is not difficult to see

that every CWU allocation rule satisfies neutrality.11

Our final component-wise axiom is the following.

Definition 12 An allocation rule F satisfies component-wise equal treatment of

equal alternatives (CETEA) if for every j ∈ J , every aj, bj ∈ Aj, and every v with

vji (a
j) = vji (b

j) for all i ∈ N , we have[
aj ∈ CF

j (v)
]
⇔
[
bj ∈ CF

j (v)
]
.

10A reader may relate this definition of neutrality to a more commonly used definition, where the per-

mutation π : A → A is defined over all alternatives and not restricted to any components. Since any such

permutation π can be constructed by a sequence of component-wise permutations, our definition of neutrality

is equivalent to this definition.
11A more conventional way of defining neutrality would require that for all permutations πj and for all v

with πj(v) 6= v, we have F j(πj(v)) = πj(F j(v)). Because of tie-breaking issues, a CWU allocation rule may

fail to be neutral in this sense. Our definition of neutrality is weaker than this, and it avoids tie-breaking

issues by using the notion of CF
j (·).

18

CETEA requires that if two alternatives on some component are equal (in the sense that

each agent has same valuation for them), then the allocation rule must choose one at slightly

higher valuations if and only if it chooses the other at slightly higher valuations.

We are now ready to state the main result of this section.

Proposition 1 Suppose F is an allocation rule defined on a separable type space. If F is

implementable, the following statements are equivalent.

1. F satisfies neutrality.

2. F satisfies component-wise Pareto.

3. F satisfies component-wise unanimity.

4. F satisfies CETEA.

5. F satisfies Pareto.

6. F satisfies unanimity.

Proposition 1 allows us to read and interpret Theorem 1 and Corollary 1 in a variety of

ways. It also allows us to contrast our results with the Roberts’ theorem (Fact 1) in several

ways.

4 Proof of Theorem 1

We present the proof of Theorem 1 below. Before doing so, we document some results from

the literature and some preliminary results first. These results will be used repeatedly in the

proofs.

4.1 Preparations for the proofs

We now state some elementary results for our proof. Some of these results will be for |J | = 1,

and we will drop the component superscripts/notations for stating those results.

The first result is a well-known necessary condition for implementability.

Fact 2 (2-cycle monotonicity - Rochet (1987)) If F is implementable, then for every

i ∈ N , for every v and v′ with v−i = v′−i and F (v) = a and F (v′) = b we have,

m∑
j=1

[
vji (a

j)− vji (bj)
]
≥

m∑
j=1

[
v′ji (aj)− v′ji (bj)

]
.

19

The proof can be done by adding the pair of incentive constraints for v and v′. A straight-

forward consequence of this necessary result is the following necessary condition for imple-

mentability.

Definition 13 An allocation rule F satisfies component-wise positive association of

differences (CPAD) if for every j ∈ J , every v−j, and every vj, v′j with F j(vj, v−j) = aj,

the following holds:[
v′ji (aj)− v′ji (bj) > vji (a

j)− vji (bj) ∀ bj ∈ Aj \ {aj}, ∀ i ∈ N
]
⇒
[
F j(v′j, v−j) = aj

]
.

When |J | = 1, CPAD collapses to the following condition identified by Roberts (1979),

which he refers to as PAD. Adapted to our setting (|J | ≥ 1), PAD is the following.

Definition 14 An allocation rule F satisfies positive association of differences (PAD)

if for every v and v′ with F (v) = a, the following holds:[∑
j∈J

[
v′ji (aj)− v′ji (bj)

]
>
∑
j∈J

[
vji (a

j)− vji (bj)
]
∀ b ∈ A \ {a}, ∀ i ∈ N

]
⇒
[
F (v′) = a

]
.

Notice that PAD is an “overall” condition and CPAD is a “component-wise” condition. PAD

is necessary for implementability (Roberts, 1979). In the Appendix, we give an example of

an allocation rule which satisfies CPAD but fails PAD. Hence, CPAD does not imply PAD.

We do not know if PAD implies CPAD. However, implementability implies CPAD.

Lemma 5 Every implementable F satisfies CPAD.

Next, we state an important result from the literature that we use in our proof.

Fact 3 (Mishra and Sen (2012)) Suppose |J | = 1 and F is an allocation rule on

(α1, β1)
|A| × . . . × (αn, βn)|A|, where αi < βi for all i ∈ N . Then, the following statements

are equivalent.

1. F satisfies neutrality and PAD.

2. There exist non-negative weights (λ1, . . . , λn), not all equal to zero, such that

F (v) ∈ arg max
a∈A

[∑
i∈N

λivi(a)
]
.

Fact 1, which is the Robert’s theorem, uses ontoness and and Fact 3 uses neutrality. On

the other hand, the type space in Fact 1 is R|A| and it is any |A|-dimensional open interval

in Fact 3.

20

4.2 The proof

Proof of Theorem 1 involves proving an analogue of Fact 3 when |J | > 1 in separable type

space. In particular, we will prove the following theorem.

Theorem 2 Suppose F is an allocation rule defined on a separable type space. Then, the

following statements are equivalent.

1. F is a neutral allocation rule satisfying CPAD.

2. F is a CWU allocation rule.

It is easy to see that Theorem 1 follows from Theorem 2: (i) implementability implies

CPAD (Lemma 5); (ii) Proposition 1 shows that neutrality is equivalent to unanimity/Pareto;

and (iii) Theorem 2 then implies Theorem 1.

Hence, we will only prove Theorem 2. Also, since every CWU allocation rule is neutral,

we only need to show that any allocation rule satisfying neutrality and CPAD is a CWU

allocation rule. We do that below.

Main idea of the proof. In this section, we prove our main result. Before proceeding to

the details of the proof, we give a sketch of the main idea of the proof. In the proof, we fix a

component j and fix two profiles v−j and v′−j. Now, F restricted to this component at these

two profiles gives two marginal allocation rules on component j. These marginal allocation

rules satisfy PAD since F satisfies CPAD. Because of separable type space structure, the

type space restricted to component j satisfies the required richness to invoke Fact 3 for

both the marginal allocation rules. Hence, we get a pair of weight vectors. The crux of

the proof lies in showing that these weight vectors are equivalent, i.e., one is obtained by a

uniform scaling of the other. This establishes the result. The main idea for establishing this

uniform scaling is that if these two weight vectors are not equivalent, then we show that an

inequality implied by Fact 2 can never hold, giving us a contradiction.

We now present the proof of Theorem 2.

Proof : Suppose F is a neutral allocation rule satisfying CPAD. Fix a component j and

consider two profiles v−j and v′−j. Denote the restriction of F to profiles of agents where

components besides j are fixed at v−j and v′−j as f j and f ′j respectively. Note that the

domain of f j and f ′j are V j
1 × . . . × V j

n . Since F satisfies CPAD, f j and f ′j satisfy PAD.

Further, the valuation of each agent i ∈ N for component j lie in R|A
j |

++ and |Aj| ≥ 3.

21

By Fact 3, there exists λj, λ′j ∈ Rn
+ \ {0} such that for all vj ∈ V j,

f j(vj) ∈ arg max
aj∈Aj

∑
i∈N

λjiv
j
i (a

j).

f ′j(vj) ∈ arg max
aj∈Aj

∑
i∈N

λ′ji v
j
i (a

j).

Observation. Notice that it is without loss of generality to assume that λj (and λ′j) is

such that for some agent ` ∈ N , we have λj` = 1. We will use this observation repeatedly at

various points in the proof.

We show that there exists a positive number ρ > 0 such that λjh = ρλ′jh for all h ∈ N . As a

consequence of this, the set of maximizers at every vj is the same for λj and λ′j. Hence, it

is without loss of generality to write

f ′j(vj) ∈ arg max
aj∈Aj

∑
i∈N

λjiv
j
i (a

j).

This will conclude the proof.

We begin by noting that it is without loss of generality to assume that v−j and v′−j differ in

only one agent’s valuation - if they differ in more than one agent’s valuation, we can repeat

this argument to show the desired property. Suppose v−j and v′−j differ in the valuation of

agent i, i.e., for all k 6= j, we have vki 6= v′ki but vkh = v′kh for all h 6= i.

For any alternative a, define a−j as all the alternatives from components other than j-th

component. Define ∆ as follows:

∆ := max
a−j ,b−j∈A−j

∑
k 6=j

([
vki (ak)− vki (bk)

]
−
[
v′ki (ak)− v′ki (bk)

])
.

Now pick any vj and v′j which only differ in valuation of agent i. Denote F (vj, v−j) ≡ a

and F (v′j, v′−j) ≡ b. Since F is implementable and (vj, v−j) and (v′j, v′−j) only differ in the

valuation of agent i, we can apply Fact 2 to get[
vji (a

j) +
∑
k 6=j

vki (ak)
]
−
[
vji (b

j) +
∑
k 6=j

vki (bk)
]

+
[
v′ji (bj) +

∑
k 6=j

v′ki (bk)
]
−
[
v′ji (aj) +

∑
k 6=j

v′ki (ak)
]
≥ 0.

Using the definition of ∆, we get

∆ +
[
vji (a

j)− vji (bj)
]
−
[
v′ji (aj)− v′ji (bj)

]
≥ 0. (2)

22

Note here that this applies to any vj and v′j - below, we choose specific vj and v′j to

reach contradictions.

Notation. In the construction of valuation profiles below, we assign zero valuations in

many cases. Since 0 is not in the type space (to remind, each vji ∈ R|A
j |

++), what we mean is

a valuation arbitrarily close to zero - this is possible since 0 lies in the closure of our type

space. We write 0 only to avoid extra notations.

We also drop the notation for component j completely because the proof only involves

working in that component and it will not create any confusion.

Now, we complete the step in various cases. Assume for contradiction that there is

no ρ > 0 such that λ` 6= ρλ′` for all ` ∈ N . In various cases below, we choose v and v′

appropriately and use Inequality (2) to get a contradiction.

Case 1. For every h ∈ N , λhλ
′
h = 0 (i.e, either λh = 0 or λ′h = 0) - note that by definition

there is at least one ` ∈ N such that λ` > 0 and at least one `′ ∈ N such that λ′`′ > 0.

Without loss of generality, we can assume that λ` = 1 and λ′`′ = 1. Note that (by assumption

for this case), λ′` = λ`′ = 0. We consider some sub-cases.

Case 1a. Suppose λi = λ′i = 0. In that case, we construct two valuation profiles (of

the j-th component) - v and v′ such that v and v′ differ from each other by agent i’s

valuation. Moreover, the valuation of all the agents except agent i and `, `′ are zero for all

the alternatives, i.e., for all c ∈ A we have

vh(c) = v′h(c) = 0 ∀ h ∈ N \ {i, `, `′}.

Now, choose a, b ∈ A and for all c /∈ {a, b}, we have

vi(c) = v′i(c) = v`(c) = v′`(c) = v`′(c) = v′`′(c) = 0.

Finally, choose α, δ, γ, γ′ > 0 with α > δ and K > 0.

vi(a) = K(α− δ), vi(b) = v′i(b) = 0, v′i(a) = Kα.

v`(a) = v′`(a) = γ, v`(b) = v`′(a) = v′`(b) = v′`′(a) = 0, v`′(b) = v′`′(b) = γ′.

The valuations of agent i, `, `′ for alternatives a and b are shown in Table 1.

By construction, f(v) = a and f ′(v′) = b. Now, substituting the values of vi and v′i in

Inequality (2), we get

0 ≤ ∆ +K(α− δ)−K(α) = ∆−Kδ.

23

a b Weights

vi K(α− δ) 0 λi = 0

v` γ 0 λ` = 1

v`′ 0 γ′ λ`′ = 0

v′i Kα 0 λ′i = 0

v′` γ 0 λ′` = 0

v′`′ 0 γ′ λ′`′ = 1

Table 1: Illustration

Equivalently, we get

Kδ ≤ ∆,

which is impossible since K, δ > 0 and K can be chosen arbitrarily large. Hence, we get a

contradiction for this case.

Case 1b. Suppose λi > 0 but λ′i = 0 (alternatively, we can also suppose that λ′i > 0 but

λi = 0). As before, there is some `′ ∈ N such that λ′`′ > 0 but λ`′ = 0. Without loss of

generality, we assume that λ′`′ = λi = 1. In that case, we construct v and v′ very similar to

Case 1a with slight modifications.

For all c ∈ A we have

vh(c) = v′h(c) = 0 ∀ h ∈ N \ {i, `′}.

Now, choose a, b ∈ A and for all c /∈ {a, b}, we have

vi(c) = v′i(c) = v`′(c) = v′`′(c) = 0.

Finally, choose α, δ, γ′ > 0 with α > δ and K > 0.

vi(a) = K(α− δ), vi(b) = v′i(b) = 0, v′i(a) = Kα.

v`′(a) = v′`′(a) = 0, v`′(b) = v′`′(b) = γ′.

Valuations of agent i and `′ for a and b are shown in Table 2.

Now, by construction, f(v) = a and f ′(v′) = b. Substituting the values of vi and v′i in

Inequality (2), we get

0 ≤ ∆ +K(α− δ)−K(α) = ∆−Kδ.

Equivalently, we get

Kδ ≤ ∆,

24

a b Weights

vi K(α− δ) 0 λi = 1

v`′ 0 γ′ λ`′ = 0

v′i Kα 0 λ′i = 0

v′`′ 0 γ′ λ′`′ = 1

Table 2: Illustration

which is impossible since K, δ > 0 and K can be chosen arbitrarily large. Hence, we get a

contradiction for this case.

The contradictions in these two sub-cases imply that Case 1 is impossible.

Case 2. There is some agent ` such that λ` > 0 and λ′` > 0. Without loss of generality, we

assume that λ` = λ′` = 1. Since there is no ρ > 0 such that λh = ρλ′h for all h ∈ N , there is

some `′ 6= ` such that λ`′ 6= λ′`′ . We now consider sub-cases.

Case 2a. Suppose λi 6= λ′i. Clearly, either λi > 0 or λ′i > 0. Assume for contradiction

λi > λ′i - an analogous argument works if λ′i > λi.

Now, we construct two valuation profiles - v and v′ such that v and v′ differ from each

other by agent i’s valuation. Moreover, the valuation of all the agents except agent i and `

are zero for all the alternatives, i.e., for all c ∈ A we have

vh(c) = v′h(c) = 0 ∀ h ∈ N \ {i, `}.

Now, choose a, b ∈ Aj and for all c /∈ {a, b}, we have

vi(c) = v′i(c) = v`(c) = v′`(c) = 0.

Finally, choose α, β, δ > 0 with α > δ and K > 0.

vi(a) = K(α− δ), vi(b) = v′i(b) = 0, v′i(a) = Kα.

v`(a) = v′`(a) = 0, v`(b) = v′`(b) = Kβ.

The valuations of agent i and ` for alternatives a and b are shown in Table 3.

Now, since λi > 0, by construction of v, if we ensure λiK(α− δ) > Kβ or λi(α− δ) > β,

we get f(v) = a. Similarly, if we ensure λ′iKα < Kβ or λ′iα < β, we get f ′(v′) = b. Note

that by choosing α, β, δ appropriately, we can ensure

λi(α− δ) > β > λ′iα,

25

a b Weights

vi K(α− δ) 0 λi > 0

v` 0 Kβ λ` = 1

v′i Kα 0 λi > λ′i
v′` 0 Kβ λ′` = 1

Table 3: Illustration

since λi > λ′i.
12 Now, substituting the values of vi and v′i in Inequality (2), we get

0 ≤ ∆ +K(α− δ)−Kα = ∆−Kδ.

Equivalently, we get

Kδ ≤ ∆,

which is impossible since K, δ > 0 and K can be chosen to be arbitrarily large. This gives

us a contradiction.

Case 2b. Suppose λi = λ′i = 0. Then, choose `′ such that λ`′ 6= λ′`′ . Without loss of

generality, assume that λ`′ > λ′`′ .

Now, we construct two valuation profiles - v and v′ such that v and v′ differ from each

other by agent i’s valuation. Moreover, the valuation of all the agents except agent i, `, `′

are zero for all the alternatives, i.e., for all c ∈ A we have

vh(c) = v′h(c) = 0 ∀ h ∈ N \ {i, `, `′}.

Now, choose a, b ∈ A and for all c /∈ {a, b}, we have

vi(c) = v′i(c) = v`(c) = v′`(c) = v`′(c) = v′`′(c) = 0.

Finally, choose α, δ, γ, γ′ > 0 with α > δ and K > 0.

vi(a) = K(α− δ), vi(b) = v′i(b) = 0, v′i(a) = Kα,

v`(a) = v′`(a) = 0, v`(b) = v′`(b) = γ,

v`′(a) = v′`′(a) = γ′, v`′(b) = v′`′(b) = 0.

The valuations of agent i and ` for alternatives a and b are shown in Table 4.

12A similar argument can be made by switching the roles of v and v′ if λ′i > λi.

26

a b Weights

vi K(α− δ) 0 λi = 0

v`′ γ′ 0 λ`′ > 0

v` 0 γ λ` = 1

v′i Kα 0 λ′i = 0

v′`′ γ′ 0 λ′`′ < λ`′

v′` 0 γ λ′` = 1

Table 4: Illustration

Now, if λ`′γ
′ > γ, we have f(v) = a. Similarly, if λ′`γ

′ < γ, we have f ′(v′) = b. Since

λ`′ > λ′`′ , it is possible to choose γ, γ′ such that

λ`′γ
′ > γ > λ′`γ

′.

Now, substituting the values of vi and v′i in Inequality (2), we get

0 ≤ ∆ +K(α− δ)−Kα = ∆−Kδ.

Equivalently, we get

Kδ ≤ ∆,

which is impossible since K, δ > 0 and K can be chosen to be arbitrarily large. This gives

us a contradiction.

Case 2c. Suppose λi = λ′i = λ > 0. Then, choose `′ such that λ`′ 6= λ′`′ - again, such `′

exists because there is no ρ > 0 such that λh = ρλ′h for all h ∈ N . Without loss of generality,

assume that λ`′ < λ′`′ . Then, define (whenever λ`′ > 0)

µ :=
λ

λ`′
, µ′ :=

λ

λ′`′
.

Note that µ > µ′.

Now, we construct two valuation profiles - v and v′ such that v and v′ differ from each

other by agent i’s valuation. Moreover, the valuation of all the agents except agent i and `′

are zero for all the alternatives, i.e., for all c ∈ A we have

vh(c) = v′h(c) = 0 ∀ h ∈ N \ {i, `′}.

Now, choose a, b ∈ A and for all c /∈ {a, b}, we have

vi(c) = v′i(c) = v`′(c) = v′`′(c) = 0.

27

Finally, choose α, β, δ > 0 with α > δ and K > 0.

vi(a) = K(α− δ), vi(b) = v′i(b) = 0, v′i(a) = Kα.

v`′(a) = v′`′(a) = 0, v`′(b) = v′`′(b) = Kβ.

The valuations of agent i and `′ for alternatives a and b are shown in Table 5.

a b Weights

vi K(α− δ) 0 λi = λ > 0

v`′ 0 Kβ λ`′

v′i Kα 0 λ′i = λ

v′`′ 0 Kβ λ′`′ > λ`′

Table 5: Illustration

Now, if λK(α − δ) > λ`′Kβ, which is trivially possible if λ`′ = 0, or, equivalently,

µ(α − δ) > β, then we have f(v) = a. Similarly, if λKα < λ′`′Kβ or, equivalently, µ′α < β,

then we have f ′(v′) = b. Since µ > µ′, it is possible to satisfy

µ(α− δ) > β > µ′α,

by appropriately choosing α, β, δ with α > δ.

Now, substituting the values of vi and v′i in Inequality (2), we get

0 ≤ ∆ +K(α− δ)−Kα = ∆−Kδ.

Equivalently, we get

Kδ ≤ ∆,

which is impossible since K, δ > 0 and K can be chosen to be arbitrarily large. This gives

us a contradiction.

This exhausts all the cases and we have thus completed the proof. �

5 Discussions

We conclude by discussing some open problems related to our main result.

28

Desirability of unanimity. As discussed earlier, unanimity is a normatively appealing

axiom. Indeed, if an allocation rule violates unanimity, then the social planner must have

strong reasons to discriminate between alternatives, and probably, should not bother about

aggregating private valuations of agents. However, it will be useful to formally show that if

a planner has a particular objective in mind (say, maximizing expected utilities with respect

to some prior over valuations of agents), then he should use a unanimous allocation rule.

Such a result will give a strong foundation to the use of unanimity.

Relaxing unanimity. We do not have an answer how our main result changes if we

replace unanimity by ontoness (as in Roberts’ theorem). A plausible conjecture is that

implementability and ontoness will imply the following class of (non-decomposable) allocation

rules. Informally, these allocation rules partition the set of components J into (J1, . . . , J `).

Inside each Jk, we do an affine maximization, i.e., have weight vector λk and a map κk as

in Roberts’ theorem to find the alternatives to be chosen for components in Jk. If each Jk

contains one component, then we get component-wise affine maximizers and if ` = 1 we get

Roberts’ affine maximizers.13 We leave this issue for future research.

Randomized mechanisms. We have assumed that the mechanisms we consider are de-

terministic mechanisms. The counterpart of Roberts’ theorem is not known if we consider

randomized mechanisms. We do not know how our results generalize with randomized mech-

anisms. A remarkable recent result by Chen et al. (2016) shows that for every Bayesian

incentive compatible randomized mechanism there exists a Bayesian incentive compatible

deterministic mechanism generating the same interim expected utilities/allocation probabil-

ities to agents. This result cannot be applied to our problem directly because: (a) the result

is silent for dominant strategy incentive compatible mechanisms; and (b) it is not clear if

unanimity/Pareto/neutrality can be preserved. We plan to investigate this issue in future

research.

Bayesian incentive compatibility. We have restricted attention to dominant strategy

incentive compatible mechanisms. The literature is silent on an analogue of Roberts’ theorem

when we consider Bayesian incentive compatible mechanisms.14 Finding the extension of

Roberts’ theorem and our main result using Bayesian incentive compatibility remains an

open question.

13 The CWU allocation rules are obtained by setting each |Jk| = 1 and without the κ map.
14By the result in Chen et al. (2016), there is little loss of generality if we consider deterministic mechanisms

when the solution concept is Bayesian incentive compatibility.

29

Applications. Similar to Roberts’ theorem, our result helps us in understanding the scope

and structure of dominant strategy incentive compatible mechanisms. An immediate corol-

lary of our result is that every implementable, unanimous, and anonymous allocation rule

must be utilitarianism (weighted utilitarianism with all weights equal), where anonymity

refers to the usual definition that if agents’ valuations are permuted then the outcome does

not change. Other applications of our results (without imposing anonymity), where one

determines the optimal values of weights of weighted utilitarianism based on some ex-ante

objective of the planner is left as a topic for future research.

30

Appendix: Omitted proofs

Proof of Lemma 1

Proof : Consider (vi, v−i) and (v′i, v−i). Let F be a CWU allocation rule satisfying INA with

weights {λj}j∈J . Further, suppose F (vi, v−i) = a and F (v′i, v−i) = b. Let J̃ be the set of

components such that λji = 0 for all j ∈ J̃ . By INA, aj = bj for all j ∈ J̃ . Then,∑
j∈J

vji (a
j) + pi(vi, v−i) =

∑
j∈J

[
vji (a

j) + pji (vi, v−i)
]

=
∑
j∈J̃

vji (a
j) +

∑
j /∈J̃

[
vji (a

j) +
1

λji

∑
k 6=i

λjkv
j
k(a

j)
]

=
∑
j∈J̃

vji (a
j) +

∑
j /∈J̃

1

λji

[∑
k∈N

λjkv
j
k(a

j)
]

≥
∑
j∈J̃

vji (b
j) +

∑
j /∈J̃

1

λji

[∑
k∈N

λjkv
j
k(b

j)
]

(Using the definition of CWU and the fact that aj = bj for all j ∈ J̃)

=
∑
j∈J

vji (b
j) +

∑
j /∈J̃

[1

λji

∑
k 6=i

λjkv
j
k(b

j)
]

=
∑
j∈J

[
vji (b

j) + pji (v
′
i, v−i)

]
,

which is the desired inequality for DSIC. �

Proof of Lemma 2

Proof : Proof of (1). Suppose F satisfies component-wise unanimity. Consider a val-

uation profile v which is unanimous at an alternative a ≡ (a1, . . . , am). Fix an arbitrary

component j and an arbitrary agent i. Denote V −ji :=
∑

k 6=j v
k
i (ak). Notice that for every

alternative bj ∈ Aj, (a−j, bj) is an alternative and since a is unanimous at v, we have

V −ji + vji (a
j) > V −ji + vji (b

j).

This implies that vji (a
j) > vji (b

j). Since i and j were arbitrary, we conclude that v is

unanimous on component j at aj for every j ∈ J . Using component-wise unanimity on each

component, we get F (v) = a. Hence, F satisfies unanimity.

31

Proof of (2). Suppose F satisfies unanimity. Consider a valuation profile v which is

unanimous on component j at aj. Assume for contradiction F j(v) 6= aj. Suppose F (v) = b

with bj 6= aj. Consider a valuation profile v′ as follows. Choose ε > 0 but arbitrarily close

to zero and let

v′ki (ck) = ε ∀ k ∈ J \ {j}, ∀ ck ∈ Ak \ {bk}, ∀ i ∈ N
v′ji (cj) = ε ∀ cj ∈ Aj \ {aj, bj}, ∀ i ∈ N
v′ki (bk) = vki (bk) ∀ k ∈ J, ∀ i ∈ N
v′ji (aj) = vji (a

j)− ε ∀ i ∈ N

Notice that v′ is unanimous at (b−j, aj), and hence, F (v′) = (b−j, aj). However, values of all

alternatives except b decrease from v to v′. Hence, PAD implies that F (v′) = b, which is a

contradiction. �

We now give a proof of Lemma 5 before giving the subsequent missing proofs.

Proof of Lemma 5

Proof : Suppose F is an implementable allocation rule. Fix j ∈ J , v−j. Without loss of

generality, consider vj and v′j that differ in the valuation of just one agent, say i, i.e., vji 6= v′ji
but vjk = v′jk for all k 6= i. Further, suppose F (vj, v−j) = a ≡ (a1, . . . , am) and

v′ji (aj)− v′ji (bj) > vji (a
j)− vji (bj) ∀ bj 6= aj. (3)

Suppose F (v′j, v−j) = c ≡ (c1, . . . , cm).

By 2-cycle monotonicity (Fact 2)∑
6̀=j

[
v`i (a

`)− v`i (c`)
]

+
[
vji (a

j)− vji (cj)
]
≥
∑
`6=j

[
v`i (a

`)− v`i (c`)
]

+
[
v′ji (aj)− v′ji (cj)

]
.

Hence, we get
[
vji (a

j)− vji (cj)
]
≥
[
v′ji (aj)− v′ji (cj)

]
. By Inequality 3, we get cj = aj.

If vj and v′j differ in more than one agents’ valuation, then we can repeatedly apply this

argument. �

Proof of Lemma 4

Proof : By Lemma 5, an implementable F satisfies CPAD. Hence, by CPAD, for every v

and every j ∈ J , F j(v) ∈ CF
j (v). �

32

Proof of Proposition 1

Proof : We first show equivalence of (1), (2), (3), (4). Since by Lemma 2 and 3, (5) is

equivalent to (2) and (6) to (3), we will be done.

For establishing the equivalence of (1), (2), (3), and (4), we first assume that |J | = 1.

Hence, we drop any notation involving components. Further, we denote the one component

allocation rule as f . Note that f satisfies (C)PAD by Lemma 5. We prove each implication

one by one.

(1)⇒ (2). Suppose f neutral. Consider a type profile v and a ∈ A such that v(b) > v(a) for

some b 6= a. Assume for contradiction f(v) = a. Hence, a ∈ Cf (v). Consider v′ such that

v′(a) = v(b), v′(b) = v(a) + ε, where ε ∈ Rn
++ but arbitrarily close to 0, and v′(c) = v(c).

Since ε is arbitrarily close to 0, by PAD, f(v′) = a. Hence, b /∈ Cf (ρ(v)), where ρ is the

permutation satisfying ρ(a) = b, ρ(b) = a, and ρ(x) = x for all x /∈ {a, b}. This contradicts

neutrality because a ∈ Cf (v).

(2)⇒ (3). This is trivial.

The next two implications will use the following fact.

Fact 4 (Proposition 1 in Mishra and Sen (2012)) Suppose f : (α, β)|A|×n → A sat-

isfies PAD. Consider two type profiles v,v′ such that v′(a) = v(a), v′(b) = v(b) for some

a, b ∈ A. Then, the following are true.

1. Suppose a, b ∈ Cf (v). Then,
[
a ∈ Cf (v′)

]
⇔
[
b ∈ Cf (v′)

]
.

2. Suppose a ∈ Cf (v), b /∈ Cf (v). Then, b /∈ Cf (v′).

The proof of this fact follows from PAD - though simple, the arguments are somewhat

tedious.

(3) ⇒ (4). Suppose f satisfies unanimity. Assume for contradiction that it fails ETEA.

Then, there is some profile v with v(a) = v(b) for some a, b ∈ A such that a ∈ Cf (v)

but b /∈ Cf (v). Consider a valuation profile v′ such that v′(a) = v(a) = v′(b) = v(b) and

v′(c) = α + ε for all c /∈ {a, b}, where ε ∈ Rn
++ but arbitrarily close to 0.

The two profiles v and v′ are shown in Table 6. Notice that by unanimity, a, b ∈ Cf (v′).

This immediately contradicts (1) in Fact 4.

33

Valuations a b c

v v(a) v(b) = v(a) v(c)

v′ v′(a) = v(a) v′(b) = v(a) v′(c) = α + ε

Table 6: Type profiles v and v′.

(4)⇒ (1). Suppose f satisfies ETEA. Pick a pair of alternatives a, b ∈ A and a permutation

ρ such that ρ(a) = b, ρ(b) = a, ρ(c) = c for all c /∈ {a, b}. Such permutations are called trans-

positions, and it is well known that every permutation can be written as product/composition

of transpositions. Hence, it is enough to establish neutrality for such transpositions.

Fix a type profile v and denote v′ ≡ ρ(v). We do the proof in couple of steps.

Step 1. Pick any c /∈ {a, b}. We first show that if c ∈ Cf (v), then c ∈ Cf (v′). Assume for

contradiction c /∈ Cf (v′). This means, there is ε ∈ Rn
++ such that f(v′ + 1cε) = x 6= c. We

consider two cases.

Case 1. Suppose x /∈ {a, b}. Consider the following type profile v′′:

v′′(x) = v(x), v′′(c) = v(c), v′′(y) = α + ε′ ∀ y /∈ {x, c},

where ε′ ∈ Rn
++ but arbitrarily close to 0. Type profiles v,v′,v′′ are shown in Table 7.

Valuations a b c x y /∈ {a, b, c, x}
v v(a) v(b) v(c) v(x) v(y)

v′ v′(a) = v(b) v′(b) = v(a) v′(c) = v(c) v′(x) = v(x) v′(y) = v(y)

v′′ v′′(a) = α + ε′ v′′(b) = α + ε′ v′′(c) = v(c) v′′(x) = v(x) v′′(y) = α + ε′

Table 7: Type profiles v,v′, and v′′.

Since f(v′+ 1cε) = x, PAD implies that there is ε′′ < ε such that f(v′′+ 1cε′′) = x - notice

that from v′ + 1cε to v′′ + 1cε′′ , valuations of all alternatives decrease except x, and hence,

PAD can be applied. But c ∈ Cf (v), implies that for some ε̂ < ε′′, we have f(v + 1cε̂) = c.

Using PAD again, we get f(v′′ + 1cε′′) = c, which is a contradiction.

Case 2. Suppose x ∈ {a, b} - without loss of generality, suppose x = a. Then, a ∈ Cf (v′).

Consider the following type profile v′′:

v′′(c) = v(c), v′′(y) = v(b) ∀ y 6= c.

34

Valuations a b c y /∈ {a, b, c}
v v(a) v(b) v(c) v(y)

v′ v′(a) = v(b) v′(b) = v(a) v′(c) = v(c) v′(y) = v(y)

v′′ v′′(a) = v(b) v′′(b) = v(b) v′′(c) = v(c) v′′(y) = v(b)

Table 8: Type profiles v,v′, and v′′.

Type profiles v,v′,v′′ are shown in Table 8.

Notice that if c /∈ Cf (v′′), then ETEA implies that for every y 6= c, we have y ∈ Cf (v′′).

Now, we considering v and v′′ and using c ∈ Cf (v), we get a contradiction to (2) of Fact 4.

Hence, c ∈ Cf (v′′).

Similarly, considering v′′ and v′, and using a ∈ Cf (v′), c /∈ Cf (v′), we get a contradiction

to (2) of Fact 4.

Combining these two cases, we get that if c ∈ Cf (v), then c ∈ Cf (v′). If c /∈ Cf (v)

and c ∈ Cf (v′), then we can swap the roles of v and v′ in the above argument to get a

contradiction. Hence, [
c ∈ Cf (v)

]
⇔
[
c ∈ Cf (v′)

]
.

Step 2. Now, we will show that for every x ∈ {a, b},[
x ∈ Cf (v)

]
⇔
[
ρ(x) ∈ Cf (v′)

]
.

Pick x = a - the case x = b can be done similarly. Suppose a ∈ Cf (v) but assume for

contradiction that b /∈ Cf (v′). We consider two cases.

Case 1. Suppose a ∈ Cf (v′). We consider three type profiles u,u′,u′′ as follows:

u(b) = v(b), u(y) = v(a) ∀ y 6= b

u′(a) = u′(b) = v(b), u(y) = v(a) ∀ y /∈ {a, b}
u′′(a) = v(b), u(y) = v(a) ∀ y 6= a

Type profiles v,v′,u,u′,u′′ are shown in Table 9.

We first argue that every x 6= b, we have x ∈ Cf (u). If that is not the case, then ETEA

implies every x 6= b, we have x /∈ Cf (u). But that will mean that Cf (u) = {b}. Hence, we

have b ∈ Cf (u) and a /∈ Cf (u) but a ∈ Cf (v). This contradicts (2) of Fact 4.

Hence, for every x 6= b, we have x ∈ Cf (u). Next, we argue that for every x /∈ {a, b}, we

have x ∈ Cf (u′). If that is not the case, ETEA will imply that every x /∈ {a, b}, we have

35

Valuations a b y /∈ {a, b}
v v(a) v(b) v(y)

u u(a) = v(a) u(b) = v(b) u(y) = v(a)

u′ u′(a) = v(b) u′(b) = v(b) u′(y) = v(a)

u′′ u′′(a) = v(b) u′′(b) = v(a) u′′(y) = v(a)

v′ v′(a) = v(b) v′(b) = v(a) v′(y) = v(y)

Table 9: Type profiles v,v′, u, u′ and u′′.

x /∈ Cf (u′). Further, ETEA implies that Cf (u′) = {a, b}. But then for some x /∈ {a, b}, we

have b ∈ Cf (u′), x /∈ Cf (u′), but x ∈ Cf (u). This is a contradiction to (2) of Fact 4.

Hence, for every x /∈ {a, b}, we have x ∈ Cf (u′). Next, we argue that for all x 6= a, we

have x ∈ Cf (u′′). If that is not the case, ETEA will imply that Cf (u′′) = {b}. But for some

x /∈ {a, b}, b ∈ Cf (u′′), x /∈ Cf (u′′) and x ∈ Cf (u′). This contradicts (2) of Fact 4.

Hence, for all x 6= a, we have x ∈ Cf (u′′). But then, a ∈ Cf (v′), b /∈ Cf (v′) and

b ∈ Cf (u′′). This contradicts (2) of Fact 4 and concludes the proof for this case.

Case 2. Suppose a /∈ Cf (v′). Then, there is some x /∈ {a, b} such that x ∈ Cf (v′). By Step

1, we have x ∈ Cf (v). In this case, we consider one more type profile v′′:

v′′(a) = v′′(b) = v(a), v′′(y) = v(y) ∀ y /∈ {a, b}.

Type profiles v,v′,v′′ are shown in Table 10.

Valuations a b y /∈ {a, b}
v v(a) v(b) v(y)

v′′ v′′(a) = v(a) v′′(b) = v(a) v′′(y) = v(y)

v′ v′(a) = v(b) v′(b) = v(a) v′(y) = v(y)

Table 10: Type profiles v,v′, and v′′.

Assume for contradiction a /∈ Cf (v′′). By ETEA, b /∈ Cf (v′′). So, some y /∈ {a, b} will

satisfy y ∈ Cf (v′′). But this will contradict Fact 4 since a ∈ Cf (v). So, using ETEA,

a, b ∈ Cf (v′′). Since x ∈ Cf (v), (1) of Fact 4 implies that x ∈ Cf (v′′). But x ∈ Cf (v′)

along with (1) of Fact 4 implies that b ∈ Cf (v′). This is a contradiction.

This concludes the proof that for every x ∈ {a, b}, we have x ∈ Cf (v) implies ρ(x) ∈ Cf (v′).

If x /∈ Cf (v) but ρ(x) ∈ Cf (v′), then we can just replace the roles of v and v′ along with x

36

and ρ(x) in the above argument to get a similar contradiction. Hence, for every x ∈ {a, b},[
x ∈ Cf (v)

]
⇔
[
ρ(x) ∈ Cf (v′)

]
.

We will now argue that this equivalence argument goes through even when |J | > 1 with

some additional notation. We only illustrate the argument for (1) ⇒ (2), and the rest of

the implications are similar. Suppose F is implementable and neutral. Suppose it fails

component-wise Pareto. Then, there exists some j ∈ J and some v−j such that for all i ∈ N ,

vji (b
j) > vji (a

j) for some bj, aj ∈ Aj and F j(v) = aj. Define the marginal allocation rule

f : R|Aj |×n
++ → Aj as follows: f(v′j) = F j(v′j, v−j) for all v′j ∈ R|A

j |×n
++ . Notice that since f

defines a one-component allocation rule. Further, since F satisfies CPAD, f satisfies PAD

and since F satisfies neutrality, f satisfies neutrality. Hence, our earlier equivalence implies

that f satisfies Pareto. This is a contradiction since f(vj) = aj. �

CPAD does not imply PAD

We give an example of an allocation rule which satisfies CPAD but not PAD. Suppose

N = {1} and J = {1, 2} with A1 = {a1, b1} and A2 = {a2, b2} - the example can be easily

extended to have more than one agent. At any valuation profile v, the allocation rule chooses

F 1(v) =

{
a1 if v11(a1) > v11(b1)

b1 otherwise

For component 2,

F 2(v) =

{
a2 if v21(a2)− v21(b2) > v11(a1)− v11(b1)

b2 otherwise

Notice that the choice in component 2 depends on the valuations of component 1. It is

also not difficult to see that this allocation rule satisfies CPAD: if a particular alternative

is picked on a component, and its difference with respect to the other alternative increases

(keeping the values on other component fixed), the same alternative will be picked on this

component. However, this allocation rule violates PAD. Consider two valuations of agent 1

as shown below in Table 11. Verify that F (v1) = (a1, a2) and F (v′1) = (a1, b2). Hence, PAD

is violated.

References

Barbera, S. (2010): “Strategy-proof Social Choice,” in Handbook of Social Choice and

Welfare, ed. by K. J. Arrow, A. K. Sen, and K. Suzumura, North-Holland, 441–449.

37

a1 b1 a2 b2

v1 5 4 6 4

v′1 10 4 7 4

Table 11: Valuations of agent 1

Barbera, S., F. Gul, and E. Stacchetti (1993): “Generalized Median Voter Schemes

and Committees,” Journal of Economic Theory, 61, 262–289.

Barberà, S., H. Sonnenschein, and L. Zhou (1991): “Voting by committees,” Econo-

metrica, 595–609.

Carbajal, J. C., A. McLennan, and R. Tourky (2013): “Truthful Implementation

and Aggregation in Restricted Domains,” Journal of Economic Theory, 148, 1074–1101.

Chen, Y.-C., W. He, J. Li, and Y. Sun (2016): “Equivalence of stochastic and deter-

ministic mechanisms,” Working paper, National University of Singapore.

Chung, K.-S. and W. Olszewski (2007): “A Non-Differentiable Approach to Revenue

Equivalence,” Theoretical Economics, 2, 1–19.

Dobzinski, S. and N. Nisan (2009): “A Modular Approach to Roberts’ Theorem,” in

In Proceedings of the 2nd International Symposium on Algorithmic Game Theory (SAGT

2009), Springer (Lecture Notes in Computer Science).

——— (2011): “Multi-Unit Auctions: Beyond Roberts,” in Forthcoming, Proceedings of 12th

ACM Conference on Electronic Commerce, ACM Press.

Jehiel, P., M. M. ter Vehn, and B. Moldovanu (2008): “Ex-Post Implementation

and Preference Aggregation via Potentials,” Economic Theory, 37, 469–490.

Lavi, R., A. Mualem, and N. Nisan (2009): “Two Simplified Proofs of Roberts’ Theo-

rem,” Social Choice and Welfare, 32, 407–423.

Le Breton, M. and J. A. Weymark (1999): “Strategy-proof social choice with contin-

uous separable preferences,” Journal of Mathematical Economics, 32, 47–85.

Le Breton, M. L. and A. Sen (1999): “Separable preferences, strategyproofness, and

decomposability,” Econometrica, 67, 605–628.

38

Marchant, T. and D. Mishra (2015): “Mechanism design with two alternatives in quasi-

linear environments,” Social Choice and Welfare, 44, 433–455.

Mishra, D. and A. Quadir (2014): “Non-bossy single object auctions,” Economic Theory

Bulletin, 2, 93–110.

Mishra, D. and A. Sen (2012): “Roberts’ Theorem with Neutrality: A Social Welfare

Ordering Approach,” Games and Economic Behavior, 75, 283–298.

Nath, S. and A. Sen (2015): “Affine maximizers in domains with selfish valuations,” ACM

Transactions on Economics and Computation, 3, 26.

Reny, P. (2001): “Arrow’s Theorem and the Gibbard-Satterthwaite Theorem: A Unified

Approach,” Economics Letters, 70, 99–105.

Roberts, K. (1979): The Characterization of Implementable Choice Rules, North Holland

Publishing, chap. Aggregation and Revelation of Preferences, 321–348, editor: J-J. Laffont.

Rochet, J. C. (1987): “A Necessary and Sufficient Condition for Rationalizability in a

Quasi-linear Context,” Journal of Mathematical Economics, 16, 191–200.

Svensson, L.-G. and P. Torstensson (2008): “Strategy-proof allocation of multiple

public goods,” Social Choice and Welfare, 30, 181–196.

Vohra, R. V. (2011): Mechanism Design: A Linear Programming Approach, Cambridge

University Press.

Weymark, J. A. (1999): “Decomposable Strategy-Proof Social Choice Functions,”

Japanese Economic Review, 50, 343–355.

39

	Introduction
	The Separable Type Space
	A Motivating Example

	Component-wise weighted utilitarianism
	The main result
	Remarks
	Component-wise axioms

	Proof of Theorem 1
	Preparations for the proofs
	The proof

	Discussions

