
Game Theory - Midterm Examination, 2

Date: October 14, 2017

Total marks: 30

Duration: 10:00 AM to 1:00 PM

Note: Answer all questions clearly using pen. Please avoid unnecessary discussions. In all

questions, an incomplete description of a strategy or equilibrium will be considered an

incorrect answer.

1. There are two agents who want to complete a task. Each agent can either work or

shirk. So, the possible set of actions for each agent is {0, 1}, where 0 corresponds to

shirking and 1 corresponds to working. The task can be completed if any agent works.

Working is costly - each agent i ∈ {1, 2} incurs a cost ci if he works. If the two agents

choose actions (x1, x2), where xi ∈ {0, 1} for each i ∈ {1, 2}, then the utility of each

agent i ∈ {1, 2} is given by

ui(x1, x2) =

{

1− xici if x1 + x2 > 0

0 if x1 + x2 = 0

(a) Suppose the cost of agent 1 is publicly known and assume that c1 > 0. On the

other hand, suppose cost of agent 2 is his private information, but it is commonly

known that c2 is drawn from [0.5, 1.5] using uniform distribution.

i. Describe all Bayes Nash equilibria of this game. (4 marks)

Answer. A strategy for agent 1 is s1 ∈ {0, 1}. A strategy for agent 2 is a

map s2 : [0.5, 1.5] → {0, 1}. If s1 = 1, then all types of agent 2 must choose

s2(c2) = 0 as a best response (since c2 > 0). Hence, if (s1 = 1, s2) is a Bayes

Nash equilibrium, then, the expected payoff of agent 1 is 1 − c1. Expected

payoff of agent 1 by choosing strategy 0 is 0 - this is because all types of agent

2 chooses zero in s2. As a result choosing, s1 = 1 is a best response if c1 ≤ 1.

So, one Bayes Nash equilibrium is when

c1 ≤ 1 : s1 = 1, s2(c2) = 0 ∀ c2.

If s1 = 0, then agent 2 gets positive payoff if 1 − c2 ≥ 0 or c2 ≤ 1. So,

s2(c2) = 1 if c2 < 1 and s2(c2) = 0 if c2 > 1 is a best response. If c2 = 1,

then agent 2 can choose either action. So, any Bayes Nash equilibrium with

s1 = 0 must have this strategy for agent 2. Hence, expected payoff of agent
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1 from s1 = 0 is 1

2
× 1 = 1

2
, where 1

2
is the probability with which agent 2 is

likely to choose 1. Agent 1’s expected payoff from choosing 1 is 1− c1. So, if

s1 = 0 is a Bayes Nash equilibrium, then 1 − c1 ≤ 1

2
or c1 ≥ 1

2
. So, another

Bayes Nash equilibrium is when

c1 ≥
1

2
: s1 = 0, s2(c2) = 1 ∀ c2 ∈ [0.5, 1), s2(c2) = 0 ∀ c2 ∈ (1, 1.5].

ii. Are there values of c1 for which all Bayes Nash equilibria involve Player 2

shirking at all types? (2 marks)

Answer. See previous part: if c1 < 0.5, all equilibria must involve s1 = 1

and s2(c2) = 0 for all c2.

(b) Suppose the costs of both the agents are their respective private information.

Further, each agent’s cost is drawn from [0.5, 1.5] using a uniform distribution.

Call a strategy of an agent i a cutoff strategy if there is a number c∗i ∈ [0.5, 1.5]

such that for all types with cost less than c∗i , i chooses one action and for all types

with cost greater than c∗i , he chooses the other action.

i. Show that every Bayes Nash equilibrium has cutoff strategies for both the

agents. (4 marks)

Answer. Fix a strategy of agent i: si : [0.5, 1.5] → {0, 1}. Let π(si) denote

the probability that agent i uses si(ci) = 1. Formally, because ci is uniformly

distributed,

π(si) := L({ci : si(ci) = 1}),

where L assigns the probability measure using the uniform distribution on

[0.5, 1.5].

Consider the payoff of the other agent j 6= i by following a strategy sj :

[0.5, 1.5] → {0, 1}. If the cost of agent j is cj, then using sj(cj) = 0 gives a

payoff equal to π(si). On the other hand using sj(cj) = 1 gives a payoff equal

to 1 − cj (independent of si). Hence, sj(cj) = 1 is a best response to si if

1− cj ≥ π(si) and sj(cj) = 0 is a best response to si if 1− cj ≤ π(si). Hence,

if we set c∗j = 1− π(si), then the best response to si is a cutoff strategy with

respect to c∗j .

ii. Compute all Bayes Nash equilibria of this game. (4 marks)

2



Answer. From the earlier part, every Bayes Nash equilibria must involve

cutoff strategies. Let (s1, s2) be a Bayes Nash equilibria with cutoffs (c∗1, c
∗

2).

Then, π(si) = c∗i −
1

2
for each i ∈ {1, 2}. The best response condition requires

that agent i should be indifferent between choosing 1 or 0 at ci = c∗i :

1− c∗i = π(sj) = c∗j −
1

2
.

That is: c∗1 + c∗2 =
3

2
.

Hence, every Bayes Nash equilibria are with cutoff strategies (c∗1, c
∗

2) with

c∗1, c
∗

2 ∈ [0.5, 1.5], c∗1 + c∗2 = 1.5.

Finally, we verify that each of them is indeed a Bayes Nash equilibrium. To

see this, take agent i ∈ {1, 2}. His expected payoff at ci < c∗i by choosing 1:

1 − ci ≥ 1 − c∗i = c∗j − 0.5. But c∗j − 0.5 is the payoff of choosing 0. Hence,

choosing 1 is best response. Similarly, if ci > c∗i , identical argument shows

that choosing 0 is a best response. At ci = c∗i , both are best responses. This

completes the proof.

2. Consider only pure strategies in the following Bertrand game. Two firms are setting

prices in [0, 1]. If firms set prices (p1, p2), then demand for each firm i ∈ {1, 2} is

Di(p1, p2) := 1− 2pi + pj,

where j 6= i is the other firm. The utility of firm i ∈ {1, 2} at prices (p1, p2) is

ui(p1, p2) = piDi(p1, p2).

(a) Compute all the never best response strategies of each firm. (3 marks)

Answer. Fix strategy (price) of firm j and note that utility of firm i 6= j is

ui(pi, pj) = pi(1− 2pi + pj).

This is a strictly concave function in pi. So, the first order condition gives

pi =
1

4
(1 + pj).

Since value of pj ∈ [0, 1], the best response prices lie in [1
4
, 1

2
]. So, never best

response strategies are [0, 1

4
) and (1

2
, 1].
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(b) Carry out iterative elimination of never best response strategies. For instance,

both the firms delete their never best response strategies in the original game.

Then, they find out the never best response strategies in the new game and delete

those. This process is carried out forever (possibly infinite times). Do you converge

to a strategy profile after infinite rounds of elimination? If you converge, can you

verify if the strategy profile that survived this iterative elimination is a Nash

equilibrium? (3 marks)

Answer. First round of elimination gives [1
4
, 1

2
] that survive. Second round of

elimination gives [ 5

16
, 3

8
], third round of elimination gives [21

64
, 11

32
], fourth round of

elimination gives [ 85

256
, 43

128
].

So, the lower bound limit is the following:

1

4
,
5

16
,
21

64
,
85

256
, . . . ,

40 + . . .+ 4n−1

4n
, . . .

So, a generic element of this sequence is 40+...+4n−1

4n
, which converges to 1

4
× 4

3
= 1

3
.

as n tends to ∞.

The upper bound of the limit is the following:

1

2
,
3

8
,
11

32
,
43

128
, . . . ,

20 + 21 + . . .+ 22n−3

22n−1
, . . . .

So, a generic term is 20+21+...+22n−3

22n−1 which converges to 1

4
× 4

3
= 1

3
as n tends to ∞.

So, we converge to (1
3
, 1

3
) after infinite rounds of elimination of never best re-

sponses. It is easily checked that 1

3
is a best response if pj =

1

3
. Hence, this is also

a Nash equilibrium.

3. A food chain F has shops in two different cities {1, 2}. In each city i ∈ {1, 2}, there is a

local firm ℓi which is trying to open a shop. But they make these decisions sequentially.

(a) First, ℓ1 decides whether to open or not open.

(b) If ℓ1 decides to open the shop, the food chain F either slashes prices or does not

slash prices in city 1. Else, F takes no action.

(c) Then, firm ℓ2 observes the choices of ℓ1 and F , and decides to open or not open.

(d) If ℓ2 decides to open the shop, the food chain F either slashes prices or does not

slash prices in city 2. Else, F takes no action.

If a firm ℓi decides not to open the store, then ℓi gets 1 payoff and F gets 5 payoff in

city i. If firm ℓi opens the store and F slashes prices, both ℓi and F receive a payoff
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of 0. If firm ℓi opens the store and F does not slash the price, both ℓi and F receive a

payoff of 2. Payoff of F is the sum of its payoffs in all cities.

(a) Write the extensive form of this game (via a game tree figure). (2 marks)

(b) What are the (pure) strategies of each player in this game? (2 marks)

(c) Compute the subgame perfect equilibria of this game. (3 marks)

(d) Write down the reduced strategic form of this game. Is there a pure strategy

Nash equilibrium which produces a different outcome than the subgame perfect

equilibrium? (3 marks)

Answer. The extensive form game and the subgame perfect equilibrium (using back-

ward induction) is shown in Figure 1.

O NO

S DS

NO O

DSS

NO O

S DSO NO

S DS

`1

`2

F`2

F

F

`2

F

(0; 0; 0) (0; 2; 2)

(0; 1; 5) (2; 0; 7)

(2; 0; 2) (2; 2; 4)

(1; 1; 10)

(1; 0; 5) (1; 2; 7)

Figure 1: Subgame perfect equilibrium

Store ℓ1 has one decision vertex. So, its strategy is either to open (O) or not open

(NO). Store ℓ2 has 3 decision vertices but at each vertex it can choose from {O,NO}.

So, its strategy is a vector from:

{O,NO} × {O,NO} × {O,NO}.

The firm has four decision vertices with two actions: Slash (S) or not slash (NS) prices.

So F has sixteen pure strategies chosen from:

{S,NS} × {S,NS} × {S,NS} × {S,NS}.

The reduced strategic form game is defined by these strategies and corresponding

payoffs (given in Figure 1). A Nash equilibrium of this game is the following:

(NO, (NO,NO,NO), (S, S, S, S)).
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This is Nash equilibrium because if local stores are choosing NO, then irrespective of

what action F takes, he gets payoff 10 - so S is a best response. Local store ℓ1 by

choosing O gets you to O → S → NO path giving him a payoff of zero. Hence, NO is

a best response for ℓ1. Local store ℓ2 can change his payoff only if it chooses a different

action at decision vertex after ℓ1 has chosen NO. In that case, ℓ2 choosing O gives us

the path NO → O → S, which gives ℓ2 a payoff of 0. Hence, (NO,NO,NO) is a best

response for ℓ2.
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