
1 Games in Strategic Form

A game in strategic form or normal form is a triple Γ ≡ (N, {Si}i∈N , {ui}i∈N) in which

• N = {1, 2, . . . , n} is a finite set of players,

• Si is the set of strategies of player i, for every player i ∈ N - the set of strategy profiles

is denoted as S ≡ S1 × . . .× Sn,

• ui : S → R is a utility function that associates with each profile of strategies s ≡
(s1, . . . , sn), a payoff ui(s) for every player i ∈ N .

Here, the set of strategies can be finite or infinite. The assumption is that players choose

these strategies simultaneously in the game, i.e., no player observes the strategies played by

other players before playing his own strategy. Here, simultaneous only means they choose

their strategies independently without observing each others strategies - one can think of

a situation where each player writes down the possible course of action for every possible

contingencies in the future and submit it to the game. A strategy profile of all the players

will be denoted as s ≡ (s1, . . . , sn) ∈ S. A strategy profile of all the players excluding a

Player i will be denoted by s−i. The set of all strategy profiles of players other than a Player

i will be denoted by S−i.

We give two examples to illustrate games in strategic form.

1. The first game is the game of Prisoner’s Dilemma. Suppose N = {1, 2}. These players

are prisoners. Because of lack of evidence, they have been questioned in separate

rooms and made to confess their crimes. If they both confess, then they each achieve

a payoff of 1. If both of them do not confess, then they can achieve higher payoffs of 2

each. However, if one of them confesses, but the other one does not confess, then the

confessed player gets a payoff of 3 but the player who does not confess gets a payoff of

0.

What are the strategies in this game? For both the players, the set of strategies is

{Confess (C), Do not confess (D)}. The payoffs from the four strategy profiles can be

written in a matrix form. It is shown in Table 1.

2. Now, consider an example of an auction. There are two bidders in an auction. Each

bidder i ∈ {1, 2} has a value vi for the object being sold. Each bidder reports a bid in

the auction. The highest bidder wins and pays an amount equal to his bid - in case of

ties, both win the object with equal probability. The payoff of the bidder from winning
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c d

C (1, 1) (3, 0)

D (0, 3) (2, 2)

Table 1: The Prisoner’s Dilemma

is his value minus his bid - in case of ties, 1
2
times this value. The payoff of the bidder

from losing is zero. The strategy of each player in this game in any non-negative real

number. If strategy bi is used by player i ∈ {1, 2}, then fi(bi, b−i) be the probability

of winning for bidder i - this is 1 if bi > b−i and zero if bi < b−i and
1
2
otherwise. The

utility of the bidder i is just (vi−bi)fi(bi, b−i) at a strategy profile (bi, b−i). Notice that

the set of strategies for each bidder is the set of all non-negative real numbers in this

case - an infinite set.

The strategy of a game is a powerful tool for representation. It can potentially represent

many situations. It provides a complete description of actions that need to be taken in all

possible contingencies. As an example, suppose two individuals work every day together on

some project for 2 days. Based on the effort put by the individuals on these days, they

realize payoffs at the end of two days. Here, a strategy is an effort level in Day 1 and an

effort level in Day 2. Players choose such strategies (a combination of effort levels for two

days) and that results in payoffs. Later, we will show that many strategic interactions can

be reduced to such strategic form by specifying the strategies appropriately.

2 Beliefs of Players

The objective of game theory is to provide predictions of games. To arrive at reasonable

predictions for normal form games, let us think how agents will behave in these games. One

plausible idea is each agent forms a belief about how other agents will play the game and

play his own strategy accordingly. For instance, in the Prisoner’s Dilemma game in Table 1,

Player 1 may believe that Player 2 will play c with probability 3
4
and play d with probability

1
4
. In that case, he can compute his payoffs (using expected utility) from both the strategies:

• from playing C: 3
4
1 + 1

4
3 = 6

4
,

• from playing D: 3
4
0 + 1

4
2 = 2

4
.

Clearly, playing C is better under this belief. Hence, Player 1 will play D given his belief.
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Formally, each player i forms a belief µi ∈ ∆S−i, where ∆S−i is the set of all probability

distributions over S−i. Given these beliefs, it computes his utility given his beliefs as:

Ui(si, µi) :=
∑

s−i∈S−i

ui(si, s−i)µi(s−i) ∀ si ∈ Si.

Then it chooses a strategy s∗i such that Ui(s
∗
i , µi) ≥ Ui(si, µi) for all si ∈ Si.

There are two reasons why this may not work. First, beliefs may not be formed, i.e.,

where do beliefs come from? Second, beliefs may be incorrect. Even if agent i believes

certain strategies will be played by others, other agents may not play them. In game theory,

there are two kinds of solution concepts to tackle these issues: (a) solution concepts that

work independent of beliefs and (b) solution concepts that assume correct beliefs. The former

is sometimes referred to as a non-equilibrium solution concept, while the latter is referred to

as an equilibrium solution concept.

3 Domination

The idea of domination is probably the strongest possible prediction of a game. Dominance

is a concept that uses strategies whose performance is good irrespective of the beliefs.

Definition 1 A strategy si ∈ Si for Player i is strictly dominant if for every s−i ∈ S−i,

we have

ui(si, s−i) > ui(s
′
i, s−i) ∀ s′i ∈ Si \ {si}.

Similarly, a strategy si ∈ Si for Player i is weakly dominant if for every s−i ∈ S−i, we

have

ui(si, s−i) ≥ ui(s
′
i, s−i) ∀ s′i ∈ Si \ {si}.

It is fairly clear that the idea of domination requires a strategy to be optimal for a player

irrespective of what he believes other players are doing. The following lemma formalizes it.

Lemma 1 A strategy si for Player i is strictly dominant if and only if for all beliefs µi

Ui(si, µi) > Ui(s
′
i, µi) ∀ s′i ∈ Si \ {si}.

A strategy si for Player i is strictly dominant if and only if for all beliefs µi

Ui(si, µi) ≥ Ui(s
′
i, µi) ∀ s′i ∈ Si \ {si}.
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Proof : We do the proof for strictly dominant strategies - the weak dominance part follows

similarly. Suppose si is a strictly dominant strategy for Player i. Fix a belief µi. Now, note

the following:

Ui(si, µi) =
∑

s−i

ui(si, s−i)µi(s−i)

>
∑

s−i

ui(s
′
i, s−i)µi(s−i) (By definition of strict dominance)

= Ui(s
′
i, µi).

For the other direction, suppose si is an optimal strategy for Player i for all beliefs µi.

Now, choose some s−i and consider the belief that µi(s−i) = 1. Then, it follows that

ui(si, s−i) = Ui(si, µi) > Ui(s
′
i, µi) = ui(s

′
i, s−i).

�

In the Prisoner’s Dilemma game in Table 1, the strategy C (or c) is a strictly dominant

strategy for each player.

If we assume a modest amount of rationality in players, we must believe that players

must play strictly dominant strategies (whenever they exist). Here, rationality requires that

every player plays a strategy that maximizes his utility given his belief about other players’

strategies. However, many games do not have a strictly dominant strategy for both the

players. For instance, in the game in Table 2, there is no strictly dominant strategy for

either of the players.

L C R

T (2, 2) (6, 1) (1, 1)

M (1, 3) (5, 5) (9, 2)

B (0, 0) (4, 2) (8, 8)

Table 2: Domination

However, irrespective of the strategy played by Player 2, Player 1 always gets less payoff

in B than in M . In such a case, we will say that Strategy B is strictly dominated.

Definition 2 A strategy si ∈ Si for Player i is strictly dominanted if there exists s′i ∈ Si

such that for every s−i ∈ S−i, we have

ui(si, s−i) < ui(s
′
i, s−i).

In this case, we say that s′i strictly dominates si.
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A belief based definition is also possible: irrespective of beliefs of Player i, playing si is

worse than playing s′i.

A rational player will never play a strictly dominated strategy. But does that imply we

can forget about a strictly dominated strategy? The main issue is removing a strategy of

Player i influences the support of the belief of other players. So, unless we assume something

about the knowledge level of other players, it is not clear whether we can remove a strategy

from Player i.

To see this, consider the example in Table 2. Strategy B is strictly dominated by Strategy

M for Player 1. Hence, if Player 1 is rational, then he will not play B. Suppose Player 2

knows that Player 1 is rational. Then, he can conclude that Player 1 will not play B

ever. As a result, his belief on what Player 1 can play must put probability zero on B. In

that case, his Strategy R is strictly dominated by Strategy L. So, he will not play R. Now, if

Player 1 knows that Player 2 is rational and Player 1 knows that Player 2 knows

that Player 1 is rational, then he will not play M because it is now strictly dominated

by T . Continuing in this manner, we will get that Player 2 does not play C. Hence, the only

strategy profile surviving such elimination is (T, L).

The process we just described is called iterated elimination of strictly dominated strategies.

It requires more than rationality.

Definition 3 A fact is common knowledge among players in a game if for any finite

chain of player (i1, . . . , ik) the following holds:

Player i1 knows that Player i2 knows that Player i3 knows that . . . Player ik knows the

fact.

Iterated elimination of strictly dominated strategies require the following assumption.

We will provide a more formal treatment later in this course.

Definition 4 Common Knowledge of Rationality (CKR): The fact that all players

are rational is common knowledge.

Let us consider another example in Table 3. Strategy R is strictly dominated by Strategy

M for Player 2. If Player 2 is rational, he does not play R. If Player 1 knows that Player 2 is

rational and he himself is rational, then he will assume that R is not played, and T strictly

dominates B after removing R. So, he will not play B. If Player 2 knows that Player 1 is

rational and Player 2 knows that Player 1 knows Player 2 is rational, then he will not play

L. So, iteratively deleting all strictly dominated strategies lead to a unique prediction of

(T,M).
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L M R

T (1, 0) (1, 2) (0, 1)

B (0, 3) (0, 1) (2, 0)

Table 3: Domination

In many games, iterated elimination of strictly dominated strategies lead to a unique

outcome of the game. In those case, we call it a solution of the game. However, absence of

strictly dominated strategies will imply that no strategies can be eliminated. In such case,

iterated elimination of strictly dominated strategies result in no solution. However, the order

in which we eliminate strictly dominated strategies does not matter. A formal proof of this

fact will be presented later.

In some games, there may not exist any strictly dominated strategy. In such a case, the

following weaker notion of weak domination is considered.

Definition 5 Strategy si of Player i is weakly dominated if there exists another strategy

ti of Player i such that for all s−i ∈ S−i, we have

ui(si, s−i) ≤ ui(ti, s−i),

with strict inequality holding for at least one s−i ∈ S−i. In this case, we say that ti weakly

dominates si.

There is no foundation for eliminating (iteratively or otherwise) weakly dominated strate-

gies. Indeed, if we remove weakly dominated strategies iteratively, then the order of elimi-

nation matters. This is illustrated in the following example in Table 4.

L C R

T (1, 2) (2, 3) (0, 3)

M (2, 2) (2, 1) (3, 2)

B (2, 1) (0, 0) (1, 0)

Table 4: Order of elimination of weakly dominated strategies

The game in Table 4, there are two weakly dominated strategies for Player 1: {T,B}.
Suppose Player 1 eliminates T first. Then, strategies in {C,R} are weakly dominated for

Player 2. Suppose Player 2 eliminates R. Then, Player 1 eliminates the weakly dominated

strategy B. Finally, Player 2 eliminates Strategy C to leave us with (M,L).

Now, suppose Player 1 eliminates B first. Then, both L and C are weakly dominated.

Suppose Player 2 eliminates L first. Then, T is weakly dominated for Player 1. Eliminating

T , we see that C is weakly dominated for Player 2. So, we are left with (M,R).
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3.1 An Auction Example

However, in some games, weakly dominant strategies give striking prediction. One such

example is given below.

The Vickrey Auction. An indivisible object is being sold. There are n buyers

(players). Each buyer i has a value vi for the object, which is completely known to the

buyer. Each buyer is asked to report or bid a non-negative real number - denote the bid

of buyer i as bi. The highest bidder wins the object but asked to pay an amount equal to

the second highest bid. In case of a tie, all the highest bidders get the object with equal

probability and pay the second highest bid, which is also their bid amount in this case. Any

buyer who does not win the object pays zero. If a buyer i wins the object and pays a price

pi, then his utility is vi − pi.

Lemma 2 In the Vickrey auction, it is a weakly dominant strategy for every buyer to bid his

value.

Proof : Suppose for all j ∈ N \{i}, buyer j bids an amount bj . If buyer i bids vi, then there

are two cases to consider.

Case 1. vi > maxj 6=i bj . In this case, the payoff of buyer i from bidding vi is vi−maxj 6=i bj >

0. By bidding something else, if he is not the unique highest bidder, then he either does

not get the object or he gets the object with lower probability and pays the same amount.

In the first case, his payoff is zero and in the second case, his payoff is strictly less than

vi −maxj 6=i bj . Hence, bidding vi is a weakly dominant strategy.

Case 2. vi ≤ maxj 6=i bj . In this case, the payoff of buyer i from bidding vi is zero. If he bids

an amount smaller than vi, then he does not get the object and his payoff is zero. If he bids

an amount larger than vi, then he gets the object with probability one and pays maxj 6=i bj ,

and hence, his payoff is vi −maxj 6=i bj ≤ 0. Hence, bidding vi is a weakly dominant strategy

for buyer i. �

4 Mixed Strategies

We now consider a game with a finite set of strategies. Sometimes, it is natural to assume that

players play different strategies with different probabilities - the idea of belief was already

reflecting this.
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Formally, for any finite set A, we denote by ∆A, the set of all probability distributions

over A: ∆A := {p : A → [0, 1] :
∑

a∈A p(a) = 1}. For any finite strategy set Si of Player

i, every σi ∈ ∆Si is a mixed strategy of Player i. In this case Si is called the set of

pure strategies of Player i. A mixed strategy profile is σ ≡ (σ1, . . . , σn) ∈ ∏

i∈N ∆Si.

Under mixed strategy, players are assumed to randomize independently, i.e., how a player

randomizes does not depend on how others randomize.

Often, a finite normal form game Γ ≡ (N, {Si}i∈N , {ui}i∈N) may be given. The mixed

extension of Γ is given by (N, {∆Si}i∈N , {Ui}i∈N), where for all i ∈ N , for all σ ∈ ∏

i∈N ∆Si,

we have

Ui(σ) =
∑

s≡(s1,...,sn)∈S
ui(s)σ1(s1) . . . σn(sn).

Note that the mixed extension of a game is an infinite game - it includes all possible lotteries

over pure strategies of a player. Further, the utility function is a linear extension of the

utility function of the original pure strategy game.

Consider the following game in Table 5. Suppose Player 1 plays the mixed strategy A

with probability 3
4
and B with probability 1

4
. Suppose Player 2 plays a with probability 1

4

and b with probability 3
4
. Then, the mixed strategy profile is

σ ≡ (σ1, σ2) =
(

(σ1(A), σ1(B)), (σ2(a), σ2(b))
)

=
(

(
3

4
,
1

4
), (

1

4
,
3

4
)
)

.

a b

A (3, 1) (0, 0)

B (0, 0) (1, 3)

Table 5: Mixed strategies

From this, the probability with which each pure strategy profile is played can be computed

(using independence). These probabilities are shown in Table 6. A player computes the

utility from a mixed strategy profile using expected utility. The mixed strategy profile σ
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gives players payoffs as follows:

U1(σ) = u1(A, a)σ1(A)σ2(a) + u1(A, b)σ1(A)σ2(b) + u1(B, a)σ1(B)σ2(a) + u1(B, b)σ1(B)σ2(b)

= 3
3

16
+ 0 + 0 + 1

3

16

=
3

4

U2(σ) = u2(A, a)σ1(A)σ2(a) + u2(A, b)σ1(A)σ2(b) + u2(B, a)σ1(B)σ2(a) + u2(B, b)σ1(B)σ2(b)

= 1
3

16
+ 0 + 0 + 3

3

16

=
3

4
.

a b

A 3
16

9
16

B 1
16

3
16

Table 6: Mixed strategies - probability of all pure strategy profiles

4.1 Domination

Nothing changes in strict dominance if we consider mixed strategies. We make the following

observations.

• Amixed strategy that puts positive probability on more than one pure strategies cannot

be strictly dominant. To see this, suppose it puts positive probability on si and ti. But

then, the utility from such a mixed strategy cannot exceed max(ui(si), ui(ti)). This

contradicts the fact that it is a strictly dominant strategy.

• If a pure strategy is a strictly dominant strategy in a finite normal game with pure

strategies, then it is also a strictly dominant strategy in its mixed extension. This is

because if a pure strategy dominates all other pure strategies, it must dominate any

lottery involving those pure strategies and itself.

• A pure strategy that is not dominated by any pure strategy may be dominated by

a mixed strategy. To see this, consider the example in Table 7. Strategy C is not

dominated by any pure strategy for Player 1. However, the mixed strategy 1
2
A and 1

2
B
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a b

A (3, 1) (0, 4)

B (0, 2) (3, 1)

C (1, 0) (1, 2)

Table 7: Mixed strategies may dominate pure strategies

strictly dominates the pure strategy C. Hence, C is a strictly dominated strategy for

Player 1 in the mixed extension of the game described in Table 7.

• If a pure strategy is strictly dominated, then any mixed strategy which has this pure

strategy in its support is also strictly dominated. This is because if a pure strategy si

is strictly dominated by σi. Then, in any mixed strategy with si in its support, we can

transfer the probability on si to σi to increase its utility, and this will dominate the

mixed strategy. For instance, in the example in Table 7, C is strictly dominated by the

mixed strategy 1
2
A+ 1

2
B. Hence, the mixed strategy 2

3
B+ 1

3
C is strictly dominated by

the mixed strategy 2
3
B + 1

3

(

1
2
A + 1

2
B
)

≡ 1
6
A + 5

6
B.

• Even if a group of pure strategies are not strictly dominated, a mixed strategy with

only these strategies in its support may be strictly dominated. To see this, consider

the game in Table 8. The pure strategies A and B are not strictly dominated. But the

mixed strategy 1
2
A + 1

2
B is strictly dominated by pure strategy C.

a b

A (3, 1) (0, 4)

B (0, 2) (3, 1)

C (2, 0) (2, 2)

Table 8: Mixed strategies may be dominated

5 Nash Equilibrium

One of the problems with the idea of domination is that often there are no dominated

strategies. Hence, it fails to provide any prediction about many games. For instance, consider

the game in Table 9. No pure strategy in this game is dominated.

We may now revisit the strong requirement of domination that a strategy is best irre-

spective of the beliefs we have about what others are playing. In many cases, games are
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a b

A (3, 1) (0, 4)

B (0, 2) (3, 1)

Table 9: No dominated strategies

results of repeated outcomes. For instance, if two firms are interacting in a market, they

have a good idea about each other’s cost and technology. As a result, they can form accurate

beliefs about what other player is playing. The idea of Nash equilibrium takes this accuracy

to the limit - it assumes that each player has correct belief about what others are playing

and responds optimally given his (correct) beliefs.

Definition 6 A strategy profile (s∗1, . . . , s
∗
n) in a strategic form game Γ ≡ (N, {Si}i∈N , {ui}i∈N)

is a Nash equilibrium of Γ if for all i ∈ N

ui(s
∗
i , s

∗
−i) ≥ ui(si, s

∗
−i) ∀ si ∈ Si.

The game Γ can be a mixed extension of another game. In that case, the strategy profile

under consideration in the above definition may be a mixed strategy profile. Similarly, the

game Γ in the above definition may be a finite or an infinite game.

The idea of a Nash equilibrium is that of a steady state, where each player is responding

optimally given the strategies of the other players - no unilateral deviation is possible. It

does not argue how this steady state is reached. It has a notion of stability - if a player finds

certain unilateral deviation profitable, then such a steady state cannot be sustained.

An alternate definition using the idea of best response is often useful. A strategy si of

Player i is a best response to the strategy s−i of other players if

ui(si, s−i) ≥ ui(s
′
i, s−i) ∀ s′i ∈ Si.

The set of all best response strategies of Player i given the strategies of other players is

denoted by Bi(s−i). This definition can be written in terms of beliefs as well - s−i is a belief

over the strategies of other players.

Now, a strategy profile (s∗1, . . . , s
∗
n) is a Nash equilibrium if for all i ∈ N ,

s∗i ∈ Bi(s
∗
−i).

The following observation is immediate.

Claim 1 If si is a strictly dominant strategy of Player i, then {si} = Bi(s−i) for all s−i ∈
S−i. Hence, if (s1, . . . , sn) is a unqiue Nash equilibrium.

11



It is extremely important to remember that Nash equilibrium assumes correct beliefs

and best responding with respect to these correct beliefs of other players. There are other

interpretations of Nash equilibrium. Consider a mediator who offers the players a strategy

profile to play. A player agrees with the mediator if (a) he believes that others will agree

with the mediator and (b) strategy proposed to him by the mediator is a best response to

the strategy proposed to others. This is precisely the idea behind a Nash equilibrium.

5.1 Examples (Pure Strategies)

We give various examples of games where a Nash equilibrium (in pure strategies) exist.

In Table 10, we consider the Prisoner’s Dilemma game. We claim that (A, a) is a Nash

equilibrium of this game - if Player 1 plays A, the best response of Player 2 consists of only

strategy a and if Player 2 plays a, the best response of Player 1 consists of only strategy A.

Note that this is also the outcome in strictly dominant strategies.

a b

A (1, 1) (5, 0)

B (0, 5) (4, 4)

Table 10: Nash equilibrium in Prisoner’s Dilemma

Consider now the game (called the coordination game) in Table 11. The game is called

coordination game since if players do not coordinate in this game they both get zero payoff.

If they coordinate, then they get the same payoff but (A, a) is worse than (B, b) for both the

players. If Player 2 plays a, then B1(a) = {A} and if Player 1 plays A, then B2(A) = {a}.
So, (A, a) is a Nash equilibrium. Now, if Player 2 plays b, then B1(b) = {B} and if Player 1

plays B, then B2(B) = {b}. Hence, (B, b) is another Nash equilibrium. This example shows

you that there may be more than one Nash equilibrium in a game.

a b

A (1, 1) (0, 0)

B (0, 0) (3, 3)

Table 11: Nash equilibrium in the Coordination game

Another game that has more than one Nash equilibrium is the Battle of the sexes. A

man and a woman are deciding which movie to go between two movies {X, Y }. Man wants

to see movie X and woman wants to see movie Y . However, if both of them go to separate
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movies, then they get zero payoff. Their preferences are reflected in Table 12. If Woman

plays x, then Man’s best response is {X} and if Man plays X , then Woman’s best response

is {x}. Hence, (X, x) is a Nash equilibrium. Using a similar logic, we can compute (Y, y) to

be a Nash equilibrium. These are the only Nash equilibria of the game.

x y

X (2, 1) (0, 0)

Y (0, 0) (1, 2)

Table 12: Nash equilibrium in the Battle of the Sexes game

Now, we discuss a game with infinite number of strategies. This game is called the the

Cournot Duopoly game. Two firms {1, 2} produce the same product in a market where

there is a common price for the product. They simultaneously decide how much to produce

- denote by q1 and q2 respectively the quantities produced by firms 1 and 2. If the total

quantity produced by both the firms is q1 + q2, then the product price is assumed to be

2 − q1 − q2. Suppose the per unit cost of productions are: c1 > 0 for firm 1 and c2 > 0 for

firm 2. We will assume that q1, q2, c1, c2 ∈ [0, 1]. We will now compute the Nash equilibrium

of this game.

This is a two player game. Each player’s strategy is the quantity it produces. If firms 1

and 2 produce q1 and q2 respectively, then their payoffs are given by

u1(q1, q2) = q1(2− q1 − q2)− c1q1

u2(q1, q2) = q2(2− q1 − q2)− c2q2.

Given q2, firm 1 can maximize its payoff my maximizing u1 over all q1. To do so, we take

the first order condition for u1 to get

2− 2q1 − q2 − c1 = 0.

This simplifies to

q1 =
1

2
(2− c1 − q2).

Similarly, we get

q2 =
1

2
(2− c2 − q1).

Solving these two equations we get

q∗1 =
2− 2c1 + c2

3
, q∗2 =

2− 2c2 + c1
3

.
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These are necessary conditions for optimality. We need to verify that it is a Nash equilibrium.

For this, first note that

u1(q
∗
1, q

∗
2) = (q∗1)

2

u2(q
∗
1, q

∗
2) = (q∗2)

2

Now, given firm 2 sets q∗2, let us find the utility when firm 1 sets q1:

u1(q1, q
∗
2) =

q1
3

[

4 + 2c2 − 4c1 − 3q1
]

.

= 2q1q
∗
1 − (q1)

2

≤ (q∗1)
2

= u1(q
∗
1, q

∗
2).

A similar calculation suggests

u2(q
∗
1, q2) ≤ u2(q

∗
1, q

∗
2).

Hence, (q∗1, q
∗
2) is a Nash equilibrium. This is also a unique Nash equilibrium (why?).

We now consider an example of a two-player game where payoffs of both the players add

up to zero. This particular game is called the matching pennies. Two players toss two coins.

If they both turn Heads or Tails, then Player 1 is paid by Player 2 Rs. 1. Else, Player 1

pays Player 2 Rs. 1. The payoff of each player is the money he receives (or the negative of

the money he pays). The payoffs are shown in Table 13. For the moment assume that, what

turns up in the coin is in the control of the players - for instance, a player may choose to

show Heads in his coin.

The Matching Pennies game has no Nash equilibrium. To see this, note that when Player

2 plays h, then the unique best response of Player 1 is H . But when Player 1 plays H , the

unique best response of Player 2 is t. Also, when Player 2 plays t the unique best response

of Player 1 is T , but when Player 1 plays T the unique best response of Player 2 is h.

h t

H (1,−1) (−1, 1)

T (−1, 1) (1,−1)

Table 13: The Matching Pennies game

14



6 The Maxmin Value

Consider a game shown in Table 14. There is a unique Nash equilibrium of this game: (B,R)

- verify this. But, will Player 1 play strategy B? What if Player 2 makes a mistake in his

belief and plays L? Then, Player 1 will get −100 by playing B. Thinking this, Player 1 may

like to play safe, and play a strategy like T that guarantees him a payoff of 2. For Player 2

also, strategy R may be bad if Player 1 decides to play T . On the other hand, strategy L

can guarantee him a payoff of 0.

L R

T (2, 1) (2,−20)

M (3, 0) (−10, 1)

B (−100, 2) (3, 3)

Table 14: The Maxmin idea

The main message of the example is that sometimes players may choose to play strategy

to guarantee themselves some safe level of payoff without assuming anything about the

rationality level of other players. In particular, we consider the case where every player

believes that the other players are adversaries and are here to punish him - this is a very

pessimistic view of the opponents. In such a case, what can a player guarantee for himself?

If Player i chooses a strategy si ∈ Si in a game, then the worst payoff he can get is

min
s−i∈S−i

ui(si, s−i).

Of course, we are assuming here that the strategy sets and the utility functions are such that

a minimum exists - else, we can define an infimum.

Definition 7 Themaxmin value for Player i in a strategic form game (N, {Si}i∈N , {ui}i∈N)
is given by

vi := max
si∈Si

min
s−i∈S−i

ui(si, s−i).

Any strategy that guarantees Player i a value of vi is called a maxmin strategy.

Note that if si is a maxmin strategy for Player i, then it satisfies

min
s−i∈S−i

ui(si, s−i) ≥ min
s−i∈S−i

ui(s
′
i, s−i) ∀ s′i ∈ Si.

This also means that ui(si, s−i) ≥ vi for all s−i ∈ S−i.

15



In the example in Table 14, we see that v1 = 2 and v2 = 0. Strategy T is a maxmin

strategy for Player 1 and strategy L is a maximin strategy for Player 2. Hence, when players

play their maxmin strategy, the outcome of the game is (2, 1). However, there can be more

than one maxmin strategies in a game, in which case no unique outcome can be predicted.

Consider the example in Table 15. The maxmin strategy for Player 1 is B. But Player 2

has two maxmin strategies {L,R}, both giving a payoff of 1. Depending on which maxmin

strategy Player 2 plays the outcome can be (2, 3) or (1, 1).

L R

T (3, 1) (0, 4)

B (2, 3) (1, 1)

Table 15: More than one maxmin strategy

It is clear that if a player has a weakly dominant strategy, then it is a maxmin strategy

- it guarantees him the best possible payoff irrespective of what other agents are playing.

Hence, if every player has a weakly dominant strategy, then the vector of weakly dominant

strategies constitute a vector of maxmin strategies. This was true, for instance, in the

example involving the second-price sealed-bid auction. Further, if there are strictly dominant

strategies for each player (note such strategy must be unique for each player), then the vector

of strictly dominant strategies constitute a unique vector of maxmin strategies.

The following theorem shows that a Nash equilibrium of a game guarantees the maxmin

value for every player.

Theorem 1 Every Nash equilibrium s∗ of a strategic form game satisfies

ui(s
∗) ≥ vi ∀ i ∈ N.

Proof : For any Player i and for every si ∈ Si, we know that

ui(si, s
∗
−i) ≥ min

s−i∈S−i

ui(si, s−i).

By definition, ui(s
∗
i , s

∗
−i) = maxsi∈Si

ui(si, s
∗
−i). Combining with the above inequality, we get

ui(s
∗
i , s

∗
−i) = max

si∈Si

ui(si, s
∗
−i) ≥ max

si∈Si

min
s−i∈S−i

ui(si, s−i) = vi.

�
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6.1 Elimination of Dominated Strategies

We now describe the effect on maxmin value by eliminating dominated strategies. Though

elimination of dominated strategies require extreme assumptions on rationality compared to

maxmin strategies, the relation between the outcomes in both the cases is interesting. As a

consequence, we will see that the relationship between the set of Nash equilibria of a game

and the set of Nash equilibria of a game that survives iterated elimination of dominated

strategies.

Theorem 2 Let Γ = (N, {Si}i∈N , {ui}i∈N) be a finite game in strategic form and Γ′ be the

game generated by removing a weakly dominated strategy s′j of Player j from Γ. Then, the

maxmin value of Player j in Γ′ is equal to his maxmin value in Γ.

Proof : Let sj be a strategy that weakly dominates s′j for Player j in Γ. Then, uj(sj , s−j) ≥
uj(s

′
j, s−j) for all s−j. Hence,

min
s−j∈S−j

uj(sj , s−j) ≥ min
s−j∈S−j

uj(s
′
j, s−j)

Now, note that

max
tj∈Sj ,tj 6=s′j

min
s−j∈S−j

uj(tj , s−j) ≥ min
s−j∈S−j

uj(sj, s−j) ≥ min
s−j∈S−j

uj(s
′
j , s−j).

This implies that

vj = max
tj∈Sj

min
s−j∈S−j

uj(tj , s−j)

= max
(

max
tj∈Sj ,tj 6=s′j

min
s−j∈S−j

uj(tj , s−j), min
s−j∈S−j

uj(s
′
j, s−j)

)

= max
tj∈Sj ,tj 6=s′j

min
s−j∈S−j

uj(tj, s−j)

= v′j ,

where vj and v
′
j are the maxmin values of Player j in games Γ and Γ′ respectively. �

Note that elimination of weakly or strictly dominated strategy of Player j does not have

any effect on the maxmin value of Player j but it may increase (though never decrease) the

maxmin value of other players - this follows from the fact that eliminating strategies of other

players only increases your worst payoff for every strategy, and hence, increases your maxmin

value.

The next result states that if we eliminate some strategies (dominated or not) of a player,

then every Nash equilibrium of the original game that survived this elimination continues to

be a Nash equilibrium of the new game.
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Theorem 3 Let Γ be a finite game in strategic form and Γ′ be a game derived from Γ by

eliminating some of the strategies of each player. If s∗ is a Nash equilibrium of Γ and s∗ is

available in Γ′, then s∗ is a Nash equilibrium in Γ′.

Proof : Let S ′
i be the set of strategies remaining for each player i in Γ′ and Si be the set of

original strategies in Γ for each player i. By definition,

ui(s
∗) ≥ ui(si, s

∗
−i) ∀ si ∈ Si.

But S ′
i ⊆ Si implies that ui(s

∗) ≥ ui(si, s
∗
−i) ∀ si ∈ S ′

i. Hence, s
∗ is also a Nash equilibrium

of Γ′. �

Note that eliminating arbitrary strategies though will not eliminate original Nash equi-

libria, it may introduce new Nash equilibria. The following theorem shows that this is not

possible if weakly dominated strategies are eliminated.

Theorem 4 Let Γ be a finite game in strategic form and sj be a weakly dominated strategy

for Player j in this game. Denote by Γ′ the game derived by eliminating strategy sj from Γ.

Then, every Nash equilibrium of Γ′ is also a Nash equilibrium of Γ.

Proof : Let s∗ be a Nash equilibrium of Γ′. Consider a player i 6= j. By definition,

ui(s
∗) = maxsi∈Si

ui(si, s
∗
−i). Since the set of strategies of i is the same in both the games,

this establishes that i cannot unilaterally deviate. For Player j, we note that sj is weakly

dominated, say by strategy tj . Then,

uj(sj, s
∗
−j) ≤ uj(tj , s

∗
−j) ≤ max

s′j∈Sj :s′j 6=sj
uj(s

′
j , s

∗
−j) = uj(s

∗
j , s

∗
−j),

where the last equality follows since s∗ is a Nash equilibrium of Γ′. This shows that

uj(s
∗
j , s

∗
−j) ≥ uj(s

′
j , s

∗
−j) for all s

′
j ∈ Sj . Hence, s

∗ is also a Nash equilibrium of Γ. �

The above theorem implies that if we iteratively eliminate weakly dominated strategies

and look at the Nash equilibria of the resulting game, they will also be Nash equilibria of

the original game. However, we may lose some of the Nash equilibria of the original game.

Consider the game in Table 16. Suppose Player 2 eliminates L and then Player 1 eliminates

B. We are then left with (T,R). However, (B,L) is a Nash equilibrium of the original game.

Note that (T,R) is also a Nash equilibrium of the original game (implied by Theorem 4).

However, this cannot happen if we eliminate strictly dominated strategies.

Theorem 5 Let Γ be a finite game in strategic form and sj be a strictly dominated strategy

for Player j in this game. Denote by Γ′ the game derived by eliminating strategy sj from Γ.

Then, the set of Nash equilibria in Γ and Γ′ are the same.
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L R

T (0, 0) (2, 1)

B (3, 2) (1, 2)

Table 16: Elimination may lose equilibria

Proof : By Theorem 4, we need to show that if s∗ is a Nash equilibrium of Γ, then s∗ is

also a Nash equilibrium of Γ′. Note that the strategy profile s∗ is still available to all the

agents in Γ′ since only a strictly dominated strategy is eliminated for Player j. Formally, for

Player j, there exists a strategy tj such that uj(tj , s
∗
−j) > uj(sj, s

∗
−j). Hence, uj(s

∗
j , s

∗
−j) ≥

uj(tj , s
∗
−j) > uj(sj, s

∗
−j). So, s

∗
j 6= sj . Since s

∗ is available in Γ′, by Theorem 3, s∗ is a Nash

equilibrium of game Γ′. �

This theorem leads to some interesting corollaries. First, a strictly dominated strategy

cannot be part of a Nash equilibrium. Second, if elimination of strictly dominated strategies

lead to a unique outcome, then that outcome is the unique Nash equilibrium of the original

game. In other words, to compute the Nash equilibrium or maxmin value, we can iteratively

eliminate all strictly dominated strategies of the players.

7 Existence of Nash Equilibrium in Finite Games

As we have seen that not all games have a Nash equilibrium. This section is devoted to

results that describe sufficient conditions on games for a Nash equilibrium to exist. We

start from the celebrated theorem of Nash and end with some theorems on existence of pure

strategy Nash equilibrium. All the theorems have one theme in common - existence of Nash

equilibrium is equivalent to establishing existence of a fixed point of an appropriate map.

In this section, instead of talking about mixed extension of a game, we will refer to the

mixed strategies of a player in a game explicitly. Before establishing the main theorem, we

provide a useful lemma.

Lemma 3 (Indifference Principle) Suppose σi ∈ Bi(σ−i) and σi(si) > 0. Then, si ∈
Bi(σ−i).

Proof : Suppose σi ∈ Bi(σ−i). Let Si(σi) := {si ∈ Si : σi(si) > 0}. If |Si(σi)| = 1, then

the claim is obviously true. Else, pick si, s
′
i ∈ Si(σi). We argue that ui(si, σ−i) = ui(s

′
i, σ−i).

First note that the net utility from playing σi is given by
∑

s′′i ∈Si(σi)

ui(s
′′
i , σ−i)σi(s

′′
i ).
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Suppose ui(si, σ−i) > ui(s
′
i, σ−i). Then, transferring the probability on s′i to si in σi increases

the net utility of agent i, contradicting the fact that σi is best response to σ−i. This shows

that

ui(si, σ−i) = ui(s
′
i, σ−i) ∀ si, s′i ∈ Si(σi).

This also means that Ui(σi, σ−i) = ui(si, σ−i) for all si ∈ Si(σi). Hence, si ∈ Bi(σ−i) for all

si ∈ Si(σi). �

Now, we prove Nash’s seminal theorem.

Theorem 6 (Nash) Every finite game has a Nash equilibrium in mixed strategies.

Proof : We do the proof in several steps.

Step 1. For each profile of mixed strategy σ, for each player i ∈ N , and for each pure

strategy sji ∈ Si, we define

gji (σ) := max
(

0, Ui(s
j
i , σ−i)− Ui(σ)

)

,

where Ui is the net payoff function agent i from playing a mixed strategy, which is derived

using the von-Neumann-Morgenstern expected utility.

The interpretation of gji (σ) is that it is zero if Player i does not find deviating to sji from

σ profitable. Else, it captures the increase in payoff of Player i from (σ) to (sji , σ−i). Note

that Player i can profitably deviate from σ if and only if it can profitably deviate from σ

using a pure strategy - Lemma 3. This implies that σ is a Nash equilibrium if and only if

gji (σ) = 0 for all i ∈ N and for all j ∈ {1, . . . , |Si|}.

Step 2. Now, we show that for each i and each j, gji is a continuous function. To see this

note that Ui is continuous in σ and σ−i. As a result, Ui(s
j
i , σ−i) − Ui(σ) is a continuous

function. The max of two continuous functions is continuous. Hence, gji is continuous.

Step 3. Using gji , we define another map f j
i in this step. For every i ∈ N , for every sji ∈ Si,

and for every σ, define

f j
i (σ) :=

σi(s
j
i ) + gji (σ)

1 +
∑

k g
k
i (σ)

.

The amount f j
i (σ) is supposed to hint that if σi is not a better response to σ−i, then how

much probability on sji should be increased - thus, it gives another improved mixed strategy.
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Also, it is easy to see that for each i and each j, f j
i (σ) ≥ 0. Further,

|Si|
∑

j=1

f j
i (σ) =

|Si|
∑

j=1

σi(s
j
i ) + gji (σ)

1 +
∑

k g
k
i (σ)

=

∑|Si|
j=1 σi(s

j
i ) + gji (σ)

1 +
∑

k g
k
i (σ)

=
1 +

∑|Si|
j=1 g

j
i (σ)

1 +
∑

k g
k
i (σ)

= 1.

Hence, fi(σ) ≡ (f 1
i (σ), . . . , f

|Si|
i (σ)) is another mixed strategy of Player i. Further, f j

i is

a continuous function since both numerator and denominator are non-negative continuous

functions. Hence, f(σ) ≡ (f1(σ), . . . , fn(σ)) is also a continuous function.

Step 4. In this step, we introduce the idea of a fixed point of a function and use it to show

a result.

Definition 8 Let F : X → X be a function defined on X. If F (x) = x for some x ∈ X,

then x is called a fixed point of F .

We show that if f(σ) = σ, i.e., σ is a fixed point of f , then for all i ∈ N and for all j,

gji (σ) = σi(s
j
i )
∑

k

gki (σ).

To see this, using the fixed point property and the definition of f j
i , we see that

f j
i (σ) = σi(s

j
i )

=
σi(s

j
i ) + gji (σ)

1 +
∑

k g
k
i (σ)

.

Rearranging, we get the desired equality.

Step 5. In this step of the proof, we show that if σ is a fixed point of f , then σ is a

Nash equilibrium. Suppose σ is not a Nash equilibrium. Then, for some Player i, there is a

strategy sji such that gji (σ) > 0. As a result
∑

k g
k
i (σ) > 0. From the previous step, we know

that σi(s
k
i ) > 0 if and only if gki (σ) > 0.
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Now, note that Ui(σ) =
∑

k σi(s
k
i )Ui(s

k
i , σ−i). Hence,

0 =
∑

k

σi(s
k
i )
(

Ui(s
k
i , σ−i)− Ui(σ)

)

=
∑

k:σi(ski )>0

σi(s
k
i )
(

Ui(s
k
i , σ−i)− Ui(σ)

)

=
∑

k:σi(ski )>0

σi(s
k
i )g

k
i (σ)

> 0,

where the last equality and the strict inequality follows from our earlier observation that

gki (σ) > 0 if and only if σi(s
k
i ) > 0.

Step 6. This leads to the last step of the theorem. In this step, we show that a fixed point

of f exists. For this, we use the following fixed point theorem due to Brouwer.

Theorem 7 (Brouwer’s fixed point theorem) Let X be a convex and compact set in

R
k and let F : X → X be a continuous function. Then, there exists a fixed point of F .

Now, we have already argued that f is a continuous function. The domain of f is the

set of all strategy profiles. Since this is the set of all mixed strategies of a finite set of pure

strategies, it is a compact and convex set. Finally, the range of f belongs to the set of

strategy profiles. Hence, by Brouwer’s fixed point theorem, there exists a fixed point of f .

By the previous step, such a fixed point corresponds to the Nash equilibrium of the finite

game. �

Some comments about the proof of Nash’s theorem. Simpler proofs are possible using a

stronger version of fixed point theorem - due to Kakutani. This proof is the original proof of

Nash, where he uses the Brouwer’s fixed point theorem. The Brouwer’s fixed point theorem

is not simple to proof, but you are encouraged to look at its proof. In one-dimension, the

Brouwer’s fixed point theorem is the intermediate value theorem.

7.1 Computing Mixed Strategy Equilibrium - Examples

In general, computing mixed strategy equilibrium of a game is computationally difficult.

However, couple of thumb-rules make it easier for finding the set of all Nash equilibria.

First, we should iteratively eliminate all strictly dominated strategies. As we have learnt,

the set of Nash equilibria remains the same after iteratively eliminating strictly dominated
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strategies. The second is a crucial property that we have already established - the indifference

principle in Lemma 3.

We start off by a simple example on how to compute all Nash equilibria of a game.

Consider the game in Table 17.

L R

T (8, 8) (8, 0)

B (0, 8) (9, 9)

Table 17: Nash equilibria computation

First, note that no strategies can be eliminated as strictly dominated. It is easy to verify

that (T, L) and (B,R) are two pure strategy Nash equilibria of the game. To compute mixed

strategy Nash equilibria, suppose Player 1 plays T with probability p and B with probability

(1− p), where p ∈ (0, 1). Then, by playing L, Player 2 gets

8p+ 8(1− p) = 8.

By playing R, Player 2 gets

9(1− p).

L is best response to pT + (1 − p)B if and only if 8 ≥ 9(1 − p) or p ≥ 1
9
. Else, R is a best

response. Note that Player 2 is indifferent between L and R when p = 1
9
- this follows from

the indifference lemma that we have proved. Hence, if Player 2 mixes, then Player 1 must

play 1
9
T + 8

9
B. But, when Player 2 plays qL + (1 − q)R, then Player 1 gets 8 by playing

T and 9(1 − q) by playing B. For Player 1 to mix, Player 2 must make him indifferent

between playing T and B, which happens at q = 1
9
. Thus, (1

9
T + 8

9
B, 1

9
L+ 8

9
R) is also a Nash

equilibrium of this game. Note that the payoff achieved by both the players by playing this

strategy profile is 8.

There are some strategies of a player which are not strictly dominated, but which can

still be eliminated before computing the Nash equilibrium. These are strategies which are

never best responses.

Definition 9 A strategy σi ∈ ∆Si is never a best response for Player i if for every

σ−i ∈ ∆S−i,

σi /∈ Bi(σ−i).

The following claim is a straightforward observation.

Claim 2 If a strategy is strictly dominated, then it is never a best response.
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The next claim says that we can remove all pure strategies that are not best responses to

compute Nash equilibrium.

Lemma 4 If a pure strategy si ∈ Si is never a best response, then any mixed strategy σi with

σi(si) > 0 is not a Nash equilibrium strategy.

Proof : Suppose si ∈ Si is never a best response but there is a mixed strategy Nash equi-

librium σ with σi(si) > 0. By the Indifference Lemma (Lemma 3), si is also a best response

to σ−i, contradicting the fact si is never a best response. �

The connection between never best response strategies and strictly dominated strategies

is deeper. Indeed, in two-player games, a strategy is strictly dominated if and only if it is

never a best response. We will come back to this once we discuss zero-sum games. We will

now use Lemma 4 to compute Nash equilibria efficiently.

Consider the two player game in Table 18. Computing Nash equilibria of such a game

can be quite tedious. However, we can be smart in avoiding certain computations.

L C R

T (3, 3) (0, 0) (0, 2)

M (0, 0) (3, 3) (0, 2)

B (2, 2) (2, 2) (2, 0)

Table 18: Nash equilibria computation

In two player 3-strategy games, we can draw the best response correspondences in a 2-d

simplex - Figure 1 represents the simplex of Player 1’s strategy space for the game in Table 18.

Any point inside the simplex represents a probability distribution over the three strategies

of Player 1, and these probabilities are given by the lengths of perpendiculars to the three

sides. To see this suppose we pick a point in the simplex with lengths of perpendiculars to

sides (T,B), (T,M), (M,B) as pm, pb, pt respectively. The following fact from Geometry is

useful.

Fact 1 For every point inside an equilateral triangle with lengths of perpendiculars (pm, pb, pt),

the sum of pm + pb + pt equals to
√
3a/2, where a is the length of sides of the equilateral

triangle.

This fact can be proved easily by using the fact the sum of three triangles generated by

any point is the same -
√
3a2/4 = 1

2
a(pm + pt + pb). Hence, without loss of generality, we

will scale the lengths of the sides of the simplex to 2√
3
. As a result, pm + pt + pb = 1 and the
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numbers pm, pt, pb reflect a probability distribution. We will follow this term to represent

strategies in two player 3-strategy games.

B

T

M

pt

pb
pm

Figure 1: Representing probabilities on a 2d-simplex

Now, let us draw the best response correspondence of Player 1 for various strategies of

Player 2: B1(σ2) will be drawn on the simplex of strategies of Player 2 - see Figure 2. For

this, we fix a strategy σ2 = (αL+βC+(1−α−β)R) of Player 2. We now identify conditions

on α and β to identify pure strategy best responses of Player 1. By the Indifference Lemma,

the mixed strategy best responses happen at the intersection of these pure strategy best

response regions. We consider three cases:

Case 1- T . T ∈ B1(σ2) if

3α ≥ 3β

3α ≥ 2.

Combining these conditions together, we get α ≥ 2
3
and α ≥ β. The second condition holds

if α ≥ 2
3
. So, we deduce that the best response region of T are all mixed strategies where L

is played with at least 2
3
probability. This is shown in Figure 2.

Case 2 - M . M ∈ B1(σ2) if

3β ≥ 3α

3β ≥ 2.

This gives us a similar condition to Case 1: β ≥ 2
3
. The best response region of M is shown

in the simplex of Player 2’s strategies in Figure 2.
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Case 3 - B. Clearly B ∈ B1(σ2) in the remaining regions and at all the boundary points

where B and T are indifferent and B and M are indifferent. This is shown in Figure 2 in

the simplex of Player 2’s strategy.

R

L

C

2

3
L + 1

3
R 2

3
L + 1

3
C

2

3
C + 1

3
R

2

3
C + 1

3
L

M

B

T

Figure 2: Best response map of Player 1

Once the best response map of Player 1 is drawn, we conclude that no best response

involves mixing T and M together. So, every mixed strategy best response involves mixing

B.

We now draw the best response map of Player 2. For this we consider a mixed strategy

αT + βM + (1− α − β)B of Player 1. For L to be a best response of Player 2 against this

strategy, we must have

3α+ 2(1− α− β) ≥ 3β + 2(1− α− β)

3α + 2(1− α− β) ≥ 2(α + β).

This gives us

α ≥ β

2 ≥ α + 4β.

The line α = β is shown in Figure 2. To draw 2 = α+ 4β, we pick two points: (i) α = 0

and β = 1
2
and (ii) α+β = 1 and β = 2

3
. The line joining these two points depict 2 = α+4β.

Now, the entire best response region of L is shown in Figure 2.

An analogous argument shows that for C to be a best response we must have

β ≥ α

2 ≥ β + 4α.
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The best response region of strategy C is shown in Figure 3. The remaining area is the best

response region of strategy R (including the borders with L and C).

B

T

M

1

2
T + 1

2
M

R

2

3
T + 1

3
M

1

2
M + 1

2
B

C

2

3
T + 1

3
M

1

2
T + 1

2
B L

Figure 3: Best response map of Player 2

Computing Nash equilibria. To compute Nash equilibria, we see that there is no best

response of Player 1 where T and M are mixed. Further, R is a best response of Player 2

when T and M are mixed. Hence, there cannot be a Nash equilibrium (σ1, σ2) such that

σ2(R) > 0. So, in any Nash equilibrium, Player 2 either plays L or C or mixed L and C but

puts zero probability on R.

Since no mixing of T andM is possible for Player 1 in Nash equilibrium, we must look at

the best response map of Player 2 when mix of T and B and mix ofM and B is played. That

corresponds to the two edges of the simplex corresponding to (T,B) and (M,B) in Figure

3. In that region, mixture of L and C is a best response when B is played with probability

1. So, in any Nash equilibrium where L and C is mixed Player 1 plays B for sure. But

then looking into the best response map of Player 1 in Figure 2, we see that Player 1 best

responds B for sure if Player 2 mixes αL+(1−α)C with α ∈ [1
3
, 2
3
]. The other pure strategy

Nash equilibria are (T, L) and (M,C).

So, we can enumerate all the Nash equilibria of the game in Table 18 now:

(T, L), (M,C), (B, αL+ (1− α)C),

where α ∈ [1
3
, 2
3
].
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7.2 Two Player Zero-Sum Games

The two player zero-sum games occupy a central role in game theory because of variety of

reasons. First, they were the first set of games to be theoretically analyzed by von-Neumann

and Morgenstern when they came up with the theory of games. Second, the zero-sum games

are ubiquitous - examples include any real game where one player’s loss is another player’s

gain. Formally, a zero-sum game is defined as follows.

Definition 10 A finite zero-sum game of two players is defined as N = {1, 2} and

(S1, S2), (u1, u2) with the restriction that for all (s1, s2) ∈ S1 × S2, we have

u1(s1, s2) + u2(s1, s2) = 0.

Because of this restriction, we can define a zero-sum two player game by a single utility

function u : S1 × S2 → R, where u(s1, s2) represents utility of Player 1 and −u(s1, s2)
represents the utility of Player 2.

h t

H (1,−1) (−1, 1)

T (−1, 1) (1,−1)

Table 19: Matching pennies

Consider the two player zero-sum game in Table 19. It is called the matching pennies

game - the strategies are sides of a coin, if the sides match then Player 1 wins and pays

Player 2 Rs. 1, else Player 2 wins and pays Player 1 Rs. 1. There is no pure strategy Nash

equilibrium of this game. To compute mixed strategy Nash equilibrium, suppose Player 2

plays αh+ (1− α)t. To make Player 1 indifferent between H and T , we see that

α + (−1)(1− α) = −α + (1− α).

This gives us α = 1
2
. A similar calculation suggests that if Player 2 has to mix in best

response, Player 1 must play 1
2
H + 1

2
T . Hence, (1

2
H + 1

2
T, 1

2
h + 1

2
t) is the unique Nash

equilibrium of this game. Note that the payoff achieved by both the players in this Nash

equilibrium is zero.

Now, suppose Player 1 plays 1
2
H + 1

2
T , the worst payoff that he can get from Player 2’s

strategies can be computed as follows. If Player 2 plays h or t Player 1 gets a payoff of

0. Hence, his worst payoff is 0. As a result, the maxmin value of Player 1 is at least zero.

We know (by Theorem 1) that the Nash equilibrium payoff is at least the maxmin value. 1

1Theorem 1 continues to hold even we allow for mixed strategies.
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Hence, the maxmin value is also zero. A similar calculation suggests that the maxmin value

of Player 2 is also zero. We show that this is true for any finite two player zero-sum game.

The maxmin value of Player 1 in a zero sum game is denoted by

v1 := max
σ1∈∆S1

min
σ2∈∆S2

u(σ1, σ2).

The maxmin value of Player 2 in a zero sum game is denoted by

v2 := max
σ2∈∆S2

min
σ1∈∆S1

−u(σ1, σ2) = − min
σ2∈∆S2

max
σ1∈∆S1

u(σ1, σ2).

We denote by v := maxσ1∈∆S1
minσ2∈∆S2

u(σ1, σ2) and v̄ := minσ2∈∆S2
maxσ1∈∆S1

u(σ1, σ2).

Note that v1 = v and v2 = −v̄.

Definition 11 A finite two player zero-sum game has a value if v = v̄. In that case, v = v̄

is called the value of the game, and is denoted by v. Any maxmin and minmax strategies of

Player 1 and Player 2 respectively are called optimal strategies.

The main result for two person zero-sum game is the following.

Theorem 8 If a finite two player zero-sum game has a value v and if σ∗
1 and σ∗

2 are optimal

strategies of the two players, then σ∗ ≡ (σ∗
1 , σ

∗
2) is a Nash equilibrium with payoff (v,−v).

Conversely, if σ∗ ≡ (σ∗
1 , σ

∗
2) is a Nash equilibrium of a finite two player zero-sum game, then

the game has a value v = u(σ∗
1, σ

∗
2), and strategies σ∗

1 and σ∗
2 are optimal strategies.

Proof : Suppose a two player zero-sum game has a value v and if σ∗
1 and σ∗

2 are optimal

strategies of the two players. Then, since σ∗
1 is optimal for Player 1, we get

u(σ∗
1, σ

∗
2) = v = min

σ2∈∆S2

u(σ∗
1, σ2).

Hence, for all σ2 ∈ ∆S2,

u(σ∗
1, σ

∗
2) ≤ u(σ∗

1, σ2).

This gives us for all σ2 ∈ ∆S2, u2(σ
∗
1, σ

∗
2) ≥ u2(σ

∗
1 , σ2). Further, since σ

∗
2 is optimal for Player

2, we get

u(σ∗
1, σ

∗
2) = v = max

σ1∈∆S1

u(σ1, σ
∗
2).

Hence, for all σ1 ∈ ∆S1,

u1(σ
∗
1 , σ

∗
2) ≥ u1(σ1, σ

∗
2).

This establishes that (σ∗
1, σ

∗
2) is a Nash equilibrium. Clearly, the payoffs are (v,−v).
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For the other direction, suppose (σ∗
1, σ

∗
2) is a Nash equilibrium. Then, for all σ1 ∈ ∆S1,

we have u(σ∗
1, σ

∗
2) ≥ u(σ1, σ

∗
2). Hence,

u(σ∗
1, σ

∗
2) = max

σ1∈∆S1

u(σ1, σ
∗
2) ≥ min

σ2∈∆S2

max
σ1∈∆S1

u(σ1, σ2) = v̄.

Note that by Theorem 1, −u(σ∗
1 , σ

∗
2) ≥ −v̄ or v̄ ≥ u(σ∗

1, σ
∗
2). Hence, we have

u(σ∗
1, σ

∗
2) = v̄.

Next, for all σ2 ∈ ∆S2, we have −u(σ∗
1 , σ

∗
2) ≥ −u(σ∗

1, σ2). Hence,

u(σ∗
1, σ

∗
2) = min

σ2∈∆S2

u(σ∗
1, σ2) ≤ max

σ1∈∆S1

min
σ2∈∆S2

u(σ1, σ2) = v.

By Theorem 1, u(σ∗
1, σ

∗
2) ≥ v. Hence, we get

v̄ = u(σ∗
1, σ

∗
2) = v.

Hence, the game has a value v = u(σ∗
1, σ

∗
2) and σ

∗
1 and σ∗

2 are optimal strategies. �

An immediate corollary using Nash theorem is the following.

Corollary 1 Every two player zero-sum game has a value v. The payoff from any Nash

equilibrium correspond to (v,−v).

Proof : Every finite game has a Nash equilibrium. By Theorem 8, a value of a two player

zero sum game exists and the value corresponds to the payoff of Player 1 and negative of

payoff of Player 2. �

7.3 Interpretations of Mixed Strategy Equilibrium

Considering mixed strategies guarantee existence of Nash equilibrium in finite games. How-

ever, it is not clear why a player will randomize in the precise way prescribed by a mixed

strategy Nash equilibrium, specially given the fact he is indifferent between the pure strate-

gies in the support of such a Nash equilibrium. There are no clear answers to this question.

However, following are some arguments to validate that mixed strategies can be part of Nash

equilibrium play.

• Players some times randomize deliberately. For instance, in zero-sum games with two

players, players randomize to play their max min strategies. In games like Poker,

players have been shown to randomize.
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• Mixed strategy equilibrium can be thought to be a belief system - if σ∗ is a Nash

equilibrium, then σ∗
i describes the belief that opponents of Player i have on Player

i’s behavior. This means that Player i may not actually randomize but his oppo-

nents collectively believe that σ∗
i is the strategy he will play. Hence, a mixed strategy

equilibrium is just a steady state of beliefs.

• One can think of a strategic form game being played over time repeatedly (payoffs

and actions across periods do not interact). Suppose players choose a best response

in each period assuming time average of plays of past (with some initial conditions

on how to choose strategies). In particular, they observe that opponents have been

playing a strategy A for 3
4
times and another strategy B for the remaining time. So,

they optimally respond by forming this as their belief. It has been shown that such

plays eventually converge to a steady state where the average play of each player is

some mixed strategy.

• Another interpretation that is provided by Nash himself interprets Nash equilibrium

as population play. There are two pools of large population. We draw a player at

random from each pool and pair them against each other. The strategy of that player

will reflect the expected strategy played by the population and will represent a mixed

strategy. So, Nash equilibrium represents some kind of stationary distribution of pure

strategies in such these population.

8 Existence of Pure Strategy Nash Equilibrium

In many games pure strategy Nash equilibria exist. Whenever it exists, it provides more

compelling prediction of a game than a mixed strategy Nash equilibrium. Further, the

mixed strategy Nash equilibrium existence theorem of Nash only applies to finite games. In

this section, we investigate settings under which a pure strategy Nash equilibrium exists in

a game (finite or infinite). Typically, in these games we need to assume certain topological

and geometrical properties about the strategy sets of players and their utility functions.

8.1 Continuity and Convexity Assumptions

The first such existence theorem is a generalization of the ideas found in Nash’s theorem.

Theorem 9 Suppose Γ ≡ (N, {Si}i∈N , {ui}i∈N ) is a game in strategic form such that for

each i ∈ N
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1. Si is a compact and convex subset of RKi for some integer Ki.

2. ui(si, s−i) is continuous in s−i.

3. ui(si, s−i) is continuous and concave in si.
2

Then, Γ has a pure strategy Nash equilibrium.

Proof : The proof of this theorem is done using Kakutani’s fixed point theorem.

Theorem 10 (Kakutani’s Fixed Point Theorem) Let A be a non-empty subset of a

finite dimensional Euclidean space. Let f : A → 2A be a map which satisfies the following

properties.

1. A is compact and convex.

2. f(x) is a non-empty subset of A for each x ∈ A.

3. f(x) is a convex subset of A for each x ∈ A.

4. f(x) has a closed graph for each x ∈ A, i.e., if {xk, yk} → {x, y} with yk ∈ f(xk) for

each k, then y ∈ f(x).

Then, there exists x ∈ A such that x ∈ f(x).

We use Theorem 10 in a straightforward manner to establish existence of Nash equilib-

rium. For every strategy profile s, define

B(s) = {s′ : s′i ∈ Bi(s−i) ∀ i ∈ N}.

Note that s is a Nash equilibrium if and only if s ∈ B(s). We show that B satisfies all the

conditions of Theorem 10.

1. Since each Si is compact and convex, the set of strategy profiles is also compact and

convex.

2. For every s and for every i ∈ N ,

Bi(s−i) = {s′i ∈ Si : ui(s
′
i, s−i) = max

s′′i ∈Si

ui(s
′′
i , s−i)}.

This set is non-empty because of ui is continuous in s′′i and Si is compact - so, by

Weirstrass theorem a maximum of the function exists. As a result B(s) is also non-

empty.

2A concave function is continuous in the interior of the domain. Requiring continuity here makes it

continuous even at the boundary points.
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3. Next, we show that B(s) is convex. Pick, t, t′ ∈ B(s) and λ ∈ (0, 1). Define t′′ ≡
λt + (1 − λ)t′. We show that for every i ∈ N , t′′i ∈ Bi(s−i). Since ti, t

′
i ∈ Bi(s−i), we

get

ui(ti, s−i) = ui(t
′
i, s−i) = max

s′i

ui(s
′
i, s−i).

But then concavity of ui implies that

ui(t
′′
i , s−i) ≥ λui(ti, s−i) + (1− λ)ui(t

′
i, s−i) = max

s′i

ui(s
′
i, s−i).

Hence, t′′i ∈ Bi(s−i), and this implies that B(s) is convex.

4. Finally, we show that B has a closed graph. To see this, assume for contradiction

that B does not have a closed graph. Then, for some sequence (tk, t̄k) → (t, t̄) with

t̄k ∈ B(tk), we have t̄ /∈ B(t). This means, for some i ∈ N , t̄i /∈ Bi(t−i). This implies

that there exists some s′i ∈ Si and ǫ > 0 such that

ui(s
′
i, t−i) > ui(t̄i, t−i) + ǫ.

By the continuity of ui, we get that there is some k such that tk and t are close enough

such that

ui(s
′
i, t

k
−i) ≥ ui(s

′
i, t−i)−

ǫ

2
.

Combining these two inequalities we get

ui(s
′
i, t

k
−i) > ui(t̄i, t−i) +

ǫ

2
≥ ui(t̄

k
i , t

k
−i) +

ǫ

4
,

where we used continuity of ui in the second inequality. This is a contradiction because

t̄ki ∈ Bi(t
k
−i) implies ui(t̄

k
i , t

k
−i) ≥ ui(s

′
i, t

k
−i).

Now, we apply Kakutani’s fixed point theorem (Theorem 10) to conclude that there exists

s such that s ∈ B(s). This implies that s is a pure strategy Nash equilibrium. �

Notice that the Nash’s theorem is an immediate corollary of Theorem 9. To see how

Theorem 9 can and cannot be applied, consider the following location game. Two shops

(players) are locating on the line segment [0, 1] which has a uniform distribution of customers.

Once the shops are located, customers go to the nearest shop with tie broken with equal

probability. The utility of a shop is the mass of customers that go there. So, strategy sets

of both the players are S1 = S2 = [0, 1], a convex and compact set. If the shops locate

themselves at (s1, s2) with s1 ≤ s2, then the utilities of the shops are

u1(s1, s2) =
s1 + s2

2
, u2(s1, s2) = 1− s1 + s2

2
.
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Hence, fixing s2 as s1 approaches s2, we see that u1(s1, s2) approaches s2 but as s1 crosses

s2 for values arbitrarily close to s2 it has a value of 1− s2. Hence, u1 is not continuous in s1.

So, Theorem 9 cannot be applied here. But we know that pure strategy Nash equilibrium

exists in such games.

Second, consider the Cournot duopoly game with two firms. When firms produce q1 and

q2, the price in the market is 2− q1− q2 and unit costs of the firms are c1 and c2 respectively.

Then, the utility function of each firm i is

ui(q1, q2) = qi(2− q1 − q2)− ciqi.

This is continuous in both qi and q−i. Further, it is concave in qi. Hence, it satisfies all

the conditions of Theorem 9. Further, if we assume that the allowable quantities are some

closed interval in the non-negative real line, then the strategy set of each firm is compact

and convex. Theorem 9 guarantees that a pure strategy Nash equilibrium exists.

8.2 Supermodular Games

The concavity assumption made in Theorem 9 does not hold in many games. We now dis-

cuss a class of games where we provide a different set of sufficient conditions that guarantee

existence of pure strategy Nash equilibrium. These are called supermodular games. Super-

modular games capture the idea that strategies of players are complements of each other.

The main idea of a supermodular game is that the marginal utility of one player’s utility is

non-decreasing in the strategies of the other players.

To define supermodularity, we need to introduce the mathematical structure of lattice.

For each x, y ∈ R
K , define x∧y ∈ R

K (meet) and x∨y ∈ R
K (join) as: (x∧y)i = min(xi, yi)

for all i and (x ∨ y)i = max(xi, yi) for all i.

Definition 12 A set X ⊆ R
K is a lattice if (x ∨ y), (x ∧ y) ∈ X for all x, y ∈ X.

Lattice is more general than what this definition suggests. This definition is a particular

type of lattice which is a subset of a finite dimensional Euclidian space.

Consider the following two examples of lattice: (a) an interval [0, 1] and (b) {x ∈ R
K :

xi ≥ xi+1 ∀ i ∈ {1, . . . , K − 1}}. The set of points inside a circle on R
2 is not a lattice but

inside a square is a lattice.

We say a point x∗ in a lattice X is the greatest element of X if x∗ ≥ x for all x ∈ X .

Similarly, x∗ ∈ X is the least element of X if x∗ ≤ x for all x ∈ X . 3 It is an easy exercise

to verify the following fact.

3Here, when we say y ≥ z, we mean yi ≥ zi for all i.
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Fact 2 If X ⊆ R
K is a compact set and a lattice, then it has a greatest and a least element.

This fact is easily observed by minimizing or maximizing over all x ∈ X the sum
∑K

i=1 xi.

Since this is a continuous function and X is compact, a minimum and a maximum exists.

Further, such a minimum (and maximum) must be unique because of the lattice property of

X .

One easy fixed point theorem to prove is by Tarski. We state a weak variant of this fixed

point theorem.

Theorem 11 (Tarski’s Fixed Point Theorem) Let X ⊆ R
K be a compact lattice and

f : X → X be a monotone function (i.e., f(x) ≥ f(y) for all x ≥ y). Then, f has a fixed

point.

The Tarski’s fixed point theorem works for arbitrary compact lattices (not necessary that

the lattice is a subset of a Euclidean space). We give a proof below assuming continuity of

f .

Proof : Since X is a compact lattice, there is a least element of X , denote this by x∗. Start

from x1 := x∗. Let y1 := f(x1). If y1 = x1, then we are done. Since x∗ is the least element

of X , y1 ≥ x∗ = x1. Then, set x2 := y1 > x1. By monotonicity of f , f(x2) ≥ f(x1). By

setting y2 := f(x2), we see that y2 ≥ y1 = x2. We now iterate this process - at every stage

xk+1 := yk ≥ xk. By monotonicity, yk+1 := f(xk+1) ≥ f(xk) = yk = xk+1. If yk+1 = xk+1,

then we are done. Else, yk+1 > xk+1. Since xk+2 = yk+1, we see that xk+2 ≥ xk+1. Hence, the

sequences {xk}k and {yk}k are monotone sequences in X with the property that xk+1 = yk

and yk ≥ xk for every k. In particular we get sequences {xk}k ≡ (x1, x2, x3, . . . , xk, . . .)

and {yk}k ≡ (x2, x3, . . . , xk, . . .). Since X has a greatest element, these sequences converge.

Further since the sequence {yk}k is just {xk+1}k, both the sequences converge to the same

point - denote this limit as x (note that the proof does not end here since we still have to

show that f(x) = x).

Since f is continuous limk f(x
k) = f(x). But f(xk) = xk+1 for each k. Hence, limk f(x

k) =

limk x
k+1 = x. This implies that x = f(x). �

Now, we define the increasing differences property. Suppose X ⊆ R
K and Y ⊆ R

L be two

compact lattices. It is easy to verify that X × Y is also a compact lattice RK+L. Consider a

function f : X × Y → R, where X and Y are compact lattices as mentioned above. Then,

f will be said to have the increasing differences property if marginal value from elements in

X is increasing with increase in elements from Y .
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Definition 13 Let X ⊆ R
K and Y ⊆ R

L be two lattices. A function f : X × Y → R

satisfies increasing differences in (x, y) if for all x, x′ ∈ X with x′ ≥ x and for all y, y′ ∈ Y

with y′ ≥ y, we have

f(x′, y′)− f(x, y′) ≥ f(x′, y)− f(x, y).

To understand increasing differences, consider a function f : R2 → R and note that R2

is a lattice. Suppose f(x, y) = x(1− y). Now, f(1, 1)− f(0, 1) = 0 and f(1, 0)− f(0, 0) = 1.

Hence, such a function does not satisfy increasing differences - increasing y decreases the

marginal value of x. However, f(x, y) = x(1 + y) satisfies increasing differences.

A closely related concept is supermodularity.

Definition 14 Let X ⊆ R
K be a lattice. A function f : X → R is supermodular if for

all x, x′ ∈ X, we have

f(x ∨ x′) + f(x ∧ x′) ≥ f(x) + f(x′).

We state (without proof) some elementary facts about supermodularity and increasing

differences. We assume X and Y are two lattices below.

1. A function f : X → R is supermodular if and only if for every i, j ∈ {1, . . . , K}, and
every x−ij f(xi, xj, x−ij) satisfies increasing differences for all xi, xj .

2. A function f : X × Y satisfies increasing differences in (x, y) if and only if f satisfies

increasing differences for any pair (xi, yj) given any (x−i, y−j).

3. If f is twice continuously differentiable on X = R
K , f is supermodular if and only if

∂2f

∂xi∂xj
≥ 0 for all xi, xj .

The following is an important result regarding monotone comparative statics on lattices.

Theorem 12 (Topkis Monotone Comparative Statics) Let X ⊆ R
K be a compact lat-

tice and T ⊆ R
L be a lattice. Suppose f : X × T → R is supermodular and continuous on X

for every t ∈ T and satisfies increasing differences in (x, t). Define for every t ∈ T ,

x∗(t) := {x ∈ X : f(x, t) ≥ f(x′, t) ∀ x′ ∈ X}.

Then, the following are true:

1. for every t ∈ T , x∗(t) ⊆ X is a non-empty compact lattice.
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2. for every t, t′ ∈ T with t′ > t and for every x ∈ x∗(t) and x′ ∈ x∗(t′), we have

x ∨ x′ ∈ x∗(t′) and x ∧ x∗ ∈ x∗(t).

3. for every t, t′ ∈ T with t′ > t we have

x̄∗(t′) ≥ x̄∗(t) and x∗(t′) ≥ x∗(t),

where for every t′′ ∈ T , x̄∗(t′′) and x∗(t′′) are the greatest and least elements of the

lattice x∗(t′′) respectively.

Proof : For every t ∈ T , x∗(t) is non-empty and compact by the Weierstrass theorem. For

any x, x′ ∈ x∗(t), we know that

f(x ∨ x′, t) + f(x ∧ x′, t) ≥ f(x, t) + f(x′, t).

Either f(x∨x′, t) ≥ f(x∧x′, t) or f(x∨x′, t) ≤ f(x∧x′, t). Suppose f(x∨x′, t) ≥ f(x∧x′, t).
Since x, x′ ∈ x∗(t), we get f(x, t) = f(x′, t), and hence, f(x∨x′, t) ≥ f(x, t). Since x ∈ x∗(t),

x∨x′ ∈ x∗(t). This implies that f(x∨x′, t) = f(x, t) = f(x′, t). But then, f(x∧x′, t) ≥ f(x, t),

implying that x ∧ x′ ∈ x∗(t). A similar proof works if f(x ∨ x′, t) ≤ f(x ∧ x′, t). This shows
that x∗(t) is a compact lattice.

Now pick t, t′ ∈ T with t′ > t and x, x′ ∈ X with x′ ∈ x∗(t′) and x ∈ x∗(t). We know

that f(x, t) − f(x ∧ x′, t) ≥ 0. By increasing differences, we get f(x, t′) − f(x ∧ x′, t′) ≥ 0.

By supermodularity, we get f(x′ ∨ x, t′) − f(x′, t′) ≥ 0. Hence, x′ ∨ x ∈ x∗(t′). Hence, for

any x ∈ x∗(t) and x′ ∈ x∗(t′), we have x ≤ x′ ∨ x ≤ x̄∗(t′). Hence, x̄∗(t) ≤ x̄∗(t′).

Also, f(x ∨ x′, t′)− f(x′, t′) ≤ 0. By increasing differences, f(x∨ x′, t)− f(x′, t) ≤ 0. By

supermodularity, f(x, t)−f(x∧x′, t) ≤ 0. Since x ∈ x∗(t), we see that x∧x′ ∈ x∗(t). Hence,

for any x ∈ x∗(t) and x′ ∈ x∗(t′), we have x′ ≥ x ∧ x′ ≥ x∗(t). Hence, x∗(t) ≤ x∗(t′). �

This leads us to the definition of the supermodular game.

Definition 15 A game (N, {Si}i∈N , {ui}i∈N) is supermodular if for every i ∈ N ,

• Si ⊆ R
Ki is a compact lattice,

• ui is continuous and supermodular in si for every s−i,

• ui satisfies increasing differences in (si, s−i).
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Note that a supermodular game does not assume continuity of ui with respect to other

players strategies s−i. It also does not assume concavity of ui with respect to si. For

instance, if Si ⊆ R for every i, then ui is vacuously supermodular in si for every s−i. Hence,

we will only need continuity of ui in si (contrast this to concavity requirement in Theorem

9). Another important point: all the lattice-theoretic results we proved for lattices in R
K

can also be proved for finite lattices with a greatest element and a least element - this is

a general definition of a compact lattice. Hence, supermodular games can also be defined

when Si for each i is finite and a compact lattice. The result below will apply to such a case

also.

Now, we state the main result of this section.

Theorem 13 Every supermodular game has a pure strategy Nash equilibrium.

Proof : Pick any strategy profile s. For every i ∈ N and for every s−i ∈ S−i, define

Bi(s−i) = {si : ui(si, s−i) ≥ ui(s
′
i, s−i) ∀ s′i}.

Since Si and S−i are compact lattices, by Theorem 12, Bi(s−i) is a non-empty compact

lattice. Now, we define B̄i(s−i) as the greatest element of Bi(s−i) - note that this is a

strategy in Si. Now, we can define for every strategy profile s,

B̄(s) := (B̄1(s−1), . . . , B̄n(s−n)).

Hence, B̄ : S1 × . . .× Sn → S1 × . . .× Sn. By Theorem 12, if s′ ≥ s, then B̄i(s
′
−i) ≥ B̄i(s−i)

for all i ∈ N . Hence, B̄ is a monotone function defined on a compact lattice. By Theorem

11, a fixed point of B̄ exists. But such a fixed point is a Nash equilibrium, which completes

the proof. �

We now do an example to illustrate the usefulness of supermodular games. Consider the

classic Bertrand game, where two firms are producing the same good. Each firm chooses a

price: say p1 for firm 1 and p2 for firm 2. Suppose the prices lie in [0,M ] for some positive

real number M . The demand for firm i for a pair of prices pi, pj is given by

Di(pi, pj) = gi(pi) + pj ,

where gi some continuous and decreasing function of pi. If the marginal cost of production

is c for both the firms, the utility of firm i is

ui(pi, pj) = (pi − c)(g(pi) + pj).
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Note that ui is continuous and supermodular in pi for every pj (supermodularity is vac-

uously satisfied). For increasing differences, we pick p′i > pi and p
′
j = pj + δ for δ > 0. So,

we have

ui(p
′
i, p

′
j)− ui(pi, p

′
j) = (p′i − c)(gi(p

′
i) + p′j)− (pi − c)(gi(pi) + p′j)

= (p′i − c)(gi(p
′
i) + pj + δ)− (pi − c)(gi(pi) + pj + δ)

= (p′i − c)δ − (pi − c)δ + ui(p
′
i, pj)− ui(pi, pj)

= (p′i − pi)δ + ui(p
′
i, pj)− ui(pi, pj)

≥ ui(p
′
i, pj)− ui(pi, pj).

By Theorem 13, a pure strategy Nash equilibrium exists in this Bertrand game.

The existence of pure strategy equilibrium in supermodular game is an interesting result

because it does not require some concavity and continuity assumptions of Theorem 9. How-

ever, there are even more striking results one can establish for supermodular games. Below,

we show how we can compute a pure strategy Nash equilibria of a supermodular game.

Theorem 14 Suppose Γ ≡ (N, {Si}i, {ui}i) is a supermodular game and ui is continuous

in s−i for every i ∈ N . Suppose s̄ and s are the greatest and least pure strategy profiles that

survive iterated strict dominance in pure strategies. Then, s̄ and s are the greatest and the

least Nash equilibrium profiles of Γ.

Proof : We iterate through the best response map by successively eliminating strictly dom-

inated strategies. Initially, we set S0
i = Si for all i ∈ N . Let S0 ≡ (S0

1 , . . . , S
0
n). Denote by

s0 ≡ (s01, . . . , s
0
n) the greatest element of the lattice S.

Now, for every i ∈ N , choose

s1i = B̄i(s
0
−i) and S1

i = {si ∈ S0
i : si ≤ s1i }.

The first claim is that any si > s1i (i.e., si /∈ S1
i ) is strictly dominated by s1i . To see this, for

all s−i ∈ S−i, we have

ui(si, s−i)− ui(s
1
i , s−i) ≤ ui(si, s

0
−i)− ui(s

1
i , s

0
−i)

< 0,

where the first inequality followed from increasing differences and the second strict inequality

from the fact that s1i = B̄i(s
0
−i) and si /∈ Bi(s

0
−i).

Note that s1i ≤ s0i . We now inductively define a sequence. Having defined Sk−1
i and sk−1

i

for all i ∈ N , we define

ski = B̄i(s
k−1
−i ) and Sk

i = {si ∈ Sk−1
i : si ≤ ski }.
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As before, we note that for all si ∈ Sk−1
i \ Sk

i , si is strictly dominated by ski for all strategies

s−i ∈ Sk−1
−i . To see this, pick si ∈ Sk−1

i and s−i ∈ Sk−1
−i \ Sk

−i, and note that

ui(si, s−i)− ui(s
k
i , s−i) ≤ ui(si, s

k−1
−i )− ui(s

k
i , s

k−1
−i )

< 0,

where the first inequality followed from increasing differences and the second strict inequality

from the fact that ski = B̄i(s
k−1
−i ) and si /∈ Bi(s

k−1
−i ). Thus, {Sk

i }i defines a new game where

players eliminate strictly dominated strategies from the previous stage game with strategies

{Sk−1
i }i.
Further, note that if sk ≤ sk−1, then for every i ∈ N ,

sk+1
i = B̄i(s

k
−i) ≤ B̄i(s

k−1
−i ) = ski ,

where the inequality followed from the monotone comparative statics result of Topkis. This

implies that the sequence {sk}k is a non-increasing sequence which is bounded from below.

Hence, it has a limit point - denote this limit as s̄.

We now show that s̄ is a Nash equilibrium. To see this, we show that for all i ∈ N and

for all si ∈ Si, we have

ui(s
k+1
i , sk−i) ≥ ui(si, s

k
−i).

First ui(s
1
i , s

0
−i) ≥ ui(si, s

0
−i) for all si ∈ Si. Now assume that ui(s

k
i , s

k−1
−i ) ≥ ui(si, s

k−1
−i )

for all si ∈ Si. Now, choose si ∈ Si \ Sk
i . By definition ski ≤ si. Since s

k
−i ≤ sk−1

−i increasing

differences imply that

ui(s
k
i , s

k
−i) ≥ ui(si, s

k
−i).

But, sk+1
i = B̄i(s

k
−i). Hence, ui(s

k+1
i , sk−i) ≥ ui(s

k
i , s

k
−i) ≥ ui(si, s

k
−i). This shows that for all

si ∈ Si \ Sk
i ,

ui(s
k+1
i , sk−i) ≥ ui(si, s

k
−i).

Since sk+1
i = B̄i(s

k
−i), we know that for all si ∈ Sk

i ,

ui(s
k+1
i , sk−i) ≥ ui(si, s

k
−i).

This completes the argument that for all si ∈ Si, we have

ui(s
k+1
i , sk−i) ≥ ui(si, s

k
−i).

Taking limit, and using the fact that ui is continuous, we get

ui(s̄i, s̄−i) ≥ ui(si, s̄−i).
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Hence, s̄ is a Nash equilibrium of the original game.

Suppose there is another Nash equilibrium s̄′ such that s̄′i > s̄i for some i. Then, there is

a stage k of iterated elimination with sk as the greatest strategy profile. An sk can be chosen

such that s̄′i > ski > s̄i. We know that a Nash equilibrium of the original game is also a Nash

equilibrium of this game (strict iterated elimination preserves the set of Nash equilibrium -

Theorem 5). But s̄′i is strictly dominated in this game. Hence, it cannot be part of a Nash

equilibrium. This is a contradiction.

Similarly, we can start with s0 ≡ (s01, . . . , s
0
n) as the least element in S and identify the

limit point of an non-decreasing sequence as s. Using a similar proof technique, we can show

that s is also a Nash equilibrium. This will correspond to the least Nash equilibrium. �

We now apply the idea of Theorem 14 to a Bertrand game. Suppose there are two firms

producing the same good. Both the firms choose prices in [0, 1]. Depending on prices p1, p2,

the demand of firm 1 is

Di(p1, p2) = 1− 2pi + pj .

Suppose the marginal cost is zero for both the firms. Then, utility of firm i is

ui(p1, p2) = pi(1− 2pi + pj).

Set S0
i = [0, 1]. The greatest element strategy profile is (1, 1). If one firm sets price equal

to 1, then ui(pi, 1) = 2pi(1 − pi). There is a unique best response to it - pi =
1
2
. Now, we

set S1
i = [0, 1

2
] and s1i =

1
2
for each i. Then, ui(pi,

1
2
) = pi(

3
2
− 2pi). This gives a unique best

response of 3
8
. So, we set S2

i = [0, 3
8
] and s2i =

3
8
. So, we get a sequence (1, 1

2
, 3
8
, 11
32
, . . .). Note

that this sequence is (1, 1
2
, 1
4
+ 1

4
1
2
, 1
4
+ 1

4
3
8
, . . .). Hence, the k-th term is

1

4
+

1

16
+ . . .+

1

4k
+
s0i
4k

As k tends to infinity, this becomes 1
3
. Hence, the greatest Nash equilibrium is (1

3
, 1
3
).

Now, we start from the least strategy profile (0, 0). Then, ui(pi, 0) = pi(1− 2pi). Hence,

the unique best response is pi =
1
4
. So, S1

i = [1
4
, 1] and s1i = 1

4
for each i. Then, ui(pi,

1
4
) =

pi(
5
4
− 2pi). Unique best response is 5

16
. Hence, we get a sequence (0, 1

4
, 1
4
+ 1

4
1
4
, . . .). Hence,

the k-th term is
1

4
+

1

16
+ . . .+

1

4k
+
s0i
4k
,

whose limit is the same 1
3
. Hence, the least Nash equilibrium is also (1

3
, 1
3
). So, (1

3
, 1
3
) is the

only Nash equilibrium.
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Important Note: As we saw in this example, the strategy space of players in many

games is a subset of R. In that case, the every compact subset of R will be a compact

lattice. Hence, the lattice requirement is vacuously satisfied. Further, supermodularity is

also vacuously satisfied. The only restriction that supermodular games impose is increasing

differences in (si, s−i) and continuity with respect to si. Theorem 14 also makes use of

continuity in s−i.

9 Correlated Equilibrium

Consider the following game - usually called the game of “chicken”. There are two players

- N = {1, 2}. Player 1 has two pure strategies S1 = {T,B} and Player 2 has two pure

strategies S2 = {L,R}. The payoffs are shown in Table 20. The story that accompanies this

game is that two drivers are racing towards each other on a single lane. Each driver can

either stay on or move away from the road. If both move away, then they get a payoff of

6 each. If both stay on, then they get a payoff of 0. If one of them stays on but the other

moves away, then the one who stays on gets a payoff of 7 but the other one gets a payoff of

2.

L R

T (6, 6) (2, 7)

B (7, 2) (0, 0)

Table 20: Game of chicken

There are three Nash equilibria of this game: (T,R), (B,L),
(

2
3
T + 1

3
B, 2

3
L+ 1

3
R
)

. Now,

consider the following “extended” game. There is an outside observer. The observer rec-

ommends each player privately a pure strategy to play. Note that no player observes the

recommendation of the other player. Given his own recommended strategy, a player forms

belief about the recommended strategy of the other player, assuming that the other player

follows the recommendation. He follows his recommended strategy if and only if it is a best

response given his belief about other player’s recommended strategy.

Two natural confusions arise - (a) How does the observer recommend? and (b) How

do the players form beliefs? It is assumed that the observer has access to a randomization

device which is public, i.e., players know the distribution from which the recommendations

are derived. Given the distribution of recommendation, players form beliefs by using Bayes’

rule - they compute conditional probabilities.

In the game in Table 20, suppose the observer recommends pure strategy profiles in Nash
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equilibrium: (T,R) and (B,L) with probability p and (1−p). Then, given his recommended

strategy each player can uniquely infer the recommended strategy of the other player. Player

1 gets a recommendation of T means, Player 2 must have received a recommendation of R.

So, Player 1 forms a belief that Player 2 plays R with probability 1. But (T,R) is a Nash

equilibrium means, T is a best response to R. A similar logic shows that Player 1 will also

accept B if it is recommended. Same argument applies to Player 2. Hence, any convex

combination of pure strategy Nash equilibrium can be sustained as a correlated equilibrium

of this extended game. In particular p(T,R)+(1−p)(B,L) for any p is an equilibrium of this

game. The set of payoffs that can be obtained are convex combination of (7, 2) and (2, 7).

Can we get other equilibrium? Suppose the observer recommends (T,R), (B,L), and

(T, L) with probability 1
3
each. Then, if Player 1 observes T as a recommendation, then

he can infer that Player 2 will have R as recommendation with probability 1
2
and L as

recommendation with probability 1
2
. Hence, he forms belief that Player 2 plays 1

2
R + 1

2
L.

Is T a best response of Player 1 to this strategy? Playing T gives him 4 and playing B

gives him 3.5. So, T is a best response, and Player 1 accepts the recommendation. If Player

1 receives B as a recommendation, then he forms a belief that Player 2 must receive L as

recommendation. Since (B,L) is a Nash equilibrium, B is a best response to L. For Player

2, if he receives R as a recommendation, then he infers Player 1 must have received T and

that being a Nash equilibrium, he accepts the recommendation. If Player 2 receives L as a

recommendation, then he believes Player 1 must have received T as recommendation with

probability 1
2
and B as recommendation with probability 1

2
. Indeed, L is a best response to

this strategy. Hence, both the players agree to accept the recommendations of the observer

using this randomization device. The equilibrium payoff of both players from this is (5, 5)

which could not be obtained if we just randomize over Nash equilibria. Hence, an observer

using a public randomizing device allows players to get payoff outside the convex hull of

Nash equilibrium payoffs.

As the previous example illustrated, using public randomization allowed the players to

avoid the worst payoff (0, 0) by putting zero probability on that profile. This is impossible

in a mixed strategy - independent randomization. To be able to play strategy profile (T,R),

Player 2 must play R with some probability and that will mean playing (B,R) with some

probability.

9.1 Correlated Strategies

A crucial assumption in mixed strategies is that players randomize independently. Each of

them have access to a randomizing device (say, a coin to toss or a random number generating
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computer program) and these devices are independent. In some circumstances, players may

have access to the same randomizing device. For instance, players observe some common

event in the nature and decide to play their strategies based on this common event - say

weather in a particular area.

Consider the same example in Table 5. Suppose Player 1 plays A and Player 2 plays

a if it rains and Player 1 plays B and Player 2 plays b if it does not rain. Suppose the

probability of rain is 1
2
. This means that the strategy profiles (A, a) and (B, b) is played

with probability 1
2
each but other strategy profiles are played with zero probability. There is

strong correlation between the strategies played by both the players. Formally, a correlated

strategy ρ is a map ρ : S → [0, 1] with
∑

s∈S ρ(s) = 1. The correlated strategy discussed

above is shown in Table 21.

a b

A 1
2

0

B 0 1
2

Table 21: Correlated strategies - probability of all pure strategy profiles

An important fact to note is that a correlated strategy may not be obtained from a mixed

strategy. For instance, consider the correlated strategy in Table 21. If Player 1 and Player 2

play mixed strategies that generates the same distribution over strategy profile as in Table

21, then either 1 must put zero weight on A or 2 must put zero weight on b. This implies

that we cannot get the distribution in Table 21.

In general, the correlated strategy ρ ∈ ∆
(

∏

i∈N Si

)

and a mixed strategy σ ∈ ∏

i∈N ∆Si.

Every mixed strategy generates a correlated strategy. Hence, the set of distributions over

strategy profiles that can be obtained by correlated strategy is larger than the set of dis-

tributions generated by mixed strategies. Player i evaluates a correlated strategy ρ using

expected utility:

Ui(ρ) =
∑

s∈S
ui(s)ρ(s).

9.2 Formal Definition

We will now define a correlated equilibrium based on the notion of correlated strategies. Let

Γ ≡ (N, {Si}i∈N , {ui}i∈N) be a finite strategic form game. To avoid confusion, we will refer

to strategies in Si for each i as actions of Player i.

For every probability vector (correlated strategy) p over S ≡ S1× . . .×Sn, an extended

game of Γ is defined as:
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• An outside observer chooses a profile of pure actions s ∈ S using the correlated strategy

p.

• It reveals to each player i, his recommendation si but not s−i.

• Each player i chooses an action s′i ∈ Si after receiving his recommendation.

We denote this extended game as Γ(p). Hence, formally a strategy in this extended game

is a different object compared to the strategy in a strategic form game.

Definition 16 A strategy of Player i in the extended game Γ(p) is a map ψi : Si → Si,

i.e., giving an action for every possible recommended action.

One strategy is the obedient strategy map - for every si ∈ Si, ψ
∗
i (si) = si for each i.

Below, we show the mathematical implication of the fact that ψ∗ is a Nash equilibrium of

Γ(p). What does it mean to say that ψ∗ is a Nash equilibrium of Γ(p)? It means that given

that everyone else is playing the strategy ψ∗, payoff of an agent i is maximized by playing

ψ∗. Since there is uncertainty about the recommendation of other players, payoff of agent i

has to be computed by taking expectation over all possible recommendations.

Theorem 15 The strategy profile ψ∗ is a Nash equilibrium of Γ(p) if and only if for every

i ∈ N , for every si, s
′
i ∈ Si, we have

∑

s−i∈S−i

p(si, s−i)ui(si, s−i) ≥
∑

s−i∈S−i

p(si, s−i)ui(s
′
i, s−i)

Proof : The strategy profile ψ∗ is a Nash equilibrium if and only if no player i can unilaterally

deviate from his recommended action. If Player i receives recommendation si, then his

conditional belief that other players received recommendation s−i is

p(si, s−i)
∑

t−i
p(si, t−i)

,

where the denominator is positive from the fact that p(si, s−i) > 0. Then, his expected

payoff from following ψ∗
i (si) = si (given others are following recommendation) is

∑

s−i∈S−i

p(si, s−i)
∑

t−i
p(si, t−i)

ui(si, s−i).

His expected payoff from playing s′i (given others are following recommendation) is

∑

s−i∈S−i

p(si, s−i)
∑

t−i
p(si, t−i)

ui(s
′
i, s−i).
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Since the denominator is positive, we can say that si is best response if and only if

∑

s−i∈S−i

p(si, s−i)ui(si, s−i) ≥
∑

s−i∈S−i

p(si, s−i)ui(s
′
i, s−i).

�

This leads to the definition of a correlated equilibrium.

Definition 17 A correlated strategy p over S is a correlated equilibrium if for every

i ∈ N , for every si, s
′
i ∈ Si,

∑

s−i∈S−i

p(si, s−i)ui(si, s−i) ≥
∑

s−i∈S−i

p(si, s−i)ui(s
′
i, s−i).

In other words, a correlated strategy p over S is a correlated equilibrium if the strategy

profile ψ∗ is a Nash equilibrium of the extended game Γ(p).

This shows that the set of correlated equilibria are solutions to a finite set of inequalities

in a finite game. As result, they form a convex and compact set (in particular, a polytope,

defined by a system of linear inequalities).

Every Nash equilibrium σ∗ of Γ induces a probability distribution pσ∗ , where for every

(s1, . . . , sn),

pσ∗(s1, . . . , sn) = σ∗
1(s1)× . . .× σ∗

n(sn).

Below, we formally show that every Nash equilibrium induces a distribution over strategy

profiles that is a correlated equilibrium.

Theorem 16 For every Nash equilibrium σ∗ of Γ, the induced correlated strategy pσ∗ is a

correlated equilibrium of Γ(pσ∗).

Proof : Note that pσ∗(s) > 0 if and only if for every i ∈ N , si is in the support of σ∗. Pick

agent i, si, s
′
i ∈ Si. We see that

∑

s−i∈S−i

pσ∗(si, s−i)ui(si, s−i) =
∑

s−i∈S−i

σ∗
1(s1)× . . .× σ∗

n(sn)ui(si, s−i) = σ∗
i (si)Ui(si, σ

∗
−i).

Further,

∑

s−i∈S−i

pσ∗(si, s−i)ui(s
′
i, s−i) =

∑

s−i∈S−i

σ∗
1(s1)× . . .× σ∗

n(sn)ui(s
′
i, s−i) = σ∗

i (si)Ui(s
′
i, σ

∗
−i).
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Since si is in the support of Nash equilibrium at σ∗, it implies that σ∗
i (si) > 0. Further, by

the indifference lemma, si is a best response to σ∗
−i, and hence,

ui(si, σ
∗
−i) ≥ ui(s

′
i, σ

∗
−i).

This gives us that

∑

s−i∈S−i

pσ∗(si, s−i)ui(si, s−i) ≥
∑

s−i∈S−i

pσ∗(si, s−i)ui(s
′
i, s−i),

as required. �

10 Correlated Rationalizability

In this section, we introduce the idea of correlated rationalizability. Here, we entertain

beliefs of players that allow strategies of other players to be correlated. Formally, belief of

player i in a game is a probability distribution over S−i - it specifies a probability of each

of the strategy profile s−i being played. Such probabilities need not be computed using

independence of strategies of other players. So, belief of player i is a map µi : S−i → [0, 1],

with
∑

s−i
µi(s−i) = 1. Note that a mixed strategy profile σ induces a belief for every player

i: µi(s−i) := ×j 6=iσj(sj) for all s−i. These beliefs are generated by independent probabilities

of each player j 6= i. In general, beliefs may allow correlations.

A strategy si ∈ Si is a best response with respect to a belief µi if

∑

s−i

ui(si, s−i)µi(s−i) ≥
∑

s−i

ui(s
′
i, s−i)µi(s−i) ∀ s′i ∈ Si.

Definition 18 A strategy si ∈ Si is rationalizable in the strategic form game (N, {Si}i∈N , {ui}i∈N)
if for every j ∈ N there is a strategy set Zj ⊆ Sj such that

• si ∈ Zi

• every sj ∈ Zj is a best response (over all strategies in Sj) with respect to some belief

µj of Player j whose support is a subset of Z−j.

The set of all strategies that are rationalizable for a player are called his rationalizable

strategies.

Note that the strategies in Zj for each j are only used to form beliefs - strategy profiles

involving strategies outside them get zero probability. The best response is with respect to

all the strategies.
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Consider the example in Table 22. ({A}, {a}) is not a set of rationalizable strategies.

This is because here there is only one degenerate belief: Player 1 must believe Player 2 plays

a and Player 2 must believe that Player 1 plays A. But a is not a best response if Player

1 plays A. On the other hand, ({A,C}, {a, b}) is a set of rationalizable strategies. How do

we verify this? A is a best response if a is played and C is a best response if b is played.

Similarly, for Player 2, a is a best response if C is played and b is a best response if A is

played.

a b c

A (6, 2) (0, 6) (4, 4)

B (2, 12) (4, 3) (2, 5)

C (0, 6) (10, 0) (2, 2)

Table 22: Two Player Game

Also, note that if a set of strategies S ′
i ⊆ Si is rationalizable with respect to {Zj}j and

another set of strategies S ′′
i ⊆ Si is rationalizable with respect to {Z ′

j}j , then S ′
i ∪ S ′′

i is also

rationalizable with respect to {Zj ∪ Z ′
j}j . Hence, the set of rationalizable strategies is the

largest collection of {Zj}j that can be rationalized.

An immediate claim is the following.

Lemma 5 Every strategy in the support of a Nash equilibrium is rationalizable.

Proof : Suppose si is a strategy of Player i in the support Nash equilibrium σ∗. Now for

every j, Zj are all the strategies in the support of the Nash equilibrium σ∗ and the belief µj

is the product

×k 6=jσ
∗
k(sk) ∀ s−j.

By the definition of Nash equilibrium and the indifference lemma, each sj in the support of

σ∗
j is a best response of j with respect to the belief µj. �

One can also show that strategies used with positive probability in a correlated equilib-

rium are also rationalizable. In general, finding the set of rationizable strategies can be quite

cumbersome. Below, we provide an easy method with the help of a cute result.

10.1 Never Best Responses and Strict Domination

We define the notion of never best response using correlated beliefs now.
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Definition 19 A strategy si ∈ Si is a never-best response in the strategic form game

(N, {Si}i∈N , {ui}i∈N) if it is not a best response with respect to any belief µi.

Clearly, if a strategy is a never-best response, it cannot be rationalized. We show that

for finite games, the set of rationalizable strategies can be found by iteratively eliminating

strictly dominated strategies.

We remind the definition of a strictly dominated strategies.

Definition 20 A strategy si ∈ Si is a strictly dominated strategy in the strategic form

game (N, {Si}i∈N , {ui}i∈N) if there is a mixed strategy of σi ∈ ∆Si such that

ui(si, s−i) < ui(σi, s−i) ∀ s−i.

We prove the following.

Theorem 17 A strategy of a player in a strategic game is a never-best response if and only

if it is strictly dominated.

Proof : Clearly, every strictly dominated strategy is a never-best response strategy. For

the other direction, fix a player j in a strategic form game Γ ≡ (N, {Si}i∈N , {ui}i∈N) and a

strategy s∗j ∈ Sj . Consider the reduced game in which there are two players j and −j. The
set of strategies available to Player j is S ′

j := Sj \ {s∗j} and to Player −j is S−j. The utility

of Player j is:

vj(sj , s−j) = uj(sj, s−j)− uj(s
∗
j , s−j).

The payoff to Player −j is negative of payoff to Player j - hence, it is a zero-sum game.

Denote this game as Γ′.

Now, notice that a mixed strategy of Player −j corresponds to a correlated belief of

Player j in the original game. Hence, strategy s∗j is a never-best response implies for every

mixed strategy σ−j of Player −j, there exists a strategy sj such that vj(sj, σ−j) > 0. This

implies that

min
σ−j

max
sj

vj(sj, σ−j) > 0.

The maximization in the second part can also be done with respect to all the mixed strategies,

and by linearity of expected utility the value of maximum will not change. Hence, s∗j is a

never-best response implies

min
σ−j

max
σj

vj(σj , σ−j) > 0.

But by the max-min value theorem for zero-sum games, this is equivalent to

max
σj

min
σ−j

vj(σj , σ−j) > 0.
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This implies there is a mixed strategy σ∗
j such that vj(σ

∗
j , σ−j) > 0 for all σ−j . This implies

that uj(σ
∗
j , σ−j) > uj(s

∗
j , σ−j) for all σ−j. Since σ−j is a belief over the strategies of players

other than j, this means that σ∗
j dominates s∗j for all possible beliefs of Player j. Hence, s∗j

is strictly dominated. �

Notice that this equivalence is only valid if we allow for correlated beliefs - of course, for

two-player games these correlated belief is same as independent belief. But, for more than

two player games, using only independent beliefs does not lead to Theorem 17.

10.2 A Formal Definition of Iterated Elimination Procedure

We now formally introduce the notion of iterated elimination of strictly dominated strategies.

Definition 21 The set X ⊆ S of strategy profiles survives iterated elimination of

strictly dominated strategies if X ≡ ×j∈NXj and there is a collection ({X t
j}j∈N)T0 of

sets that satisfy for each j ∈ N the following:

• X0
j = Sj and XT

j = Xj,

• X t+1
j ⊆ X t

j for each t < T ,

• for each t < T , every strategy inX t
j\X t+1

j is strictly dominated in the game (N, {X t
i}i, {uti}i),

where uti is the restriction of ui to strategy profiles in this game.

• No strategy in XT
j is strictly dominated.

Note that the definition does not require you to eliminate all the strictly dominated

strategies in a stage of elimination.

Theorem 18 The set of rationalizable strategies of a player is the set of strategies available

after iterated elimination of strictly dominated strategies.

Proof : Suppose si is rationalizable for Player i. Let {Zj}j be the profile of strategies that

supports si. When we run the iterated elimination of strictly dominated strategies, in Stage

t, each strategy in Zj is a best response to some belief over Z−j, and by Theorem 17, it is

not strictly dominated. Hence, Zj ⊆ X t
j for each t. So, si ∈ Xi.

Now, for the converse, pick si ∈ Xi. By definition every strategy in Xi is not strictly

dominated in the game with strategy sets Xi. So, by Theorem 17, every strategy in Xi is a

best response among strategies in Xi to some belief over X−i. We need to argue that every
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strategy in Xi is a best response among strategies in Si to some belief over X−i. Suppose

strategy si ∈ Xi is not a best response among strategies in Si to some belief over X−i. Then,

there must exist some stage t where si is a best response among X t
i to some belief over X−i

but it is not a best response among X t+1
i to some belief over X−i. Then, there is a strategy

s′i ∈ X t+1
i \ X t

i that is a best response among X t+1
i to some belief over X−i. By Theorem

17, such a strategy is not strictly dominated. Hence, s′i cannot be eliminated in this stage,

which is a contradiction. �

Since the procedure we defined for iterated elimination did not specify any order of

elimination, this also implies that order of elimination of strictly dominated strategies does

not matter.

11 Bayesian Games

Often, the strategic form game depends on some external factor. These factors may be

known to some agents with varying certainty. To make ideas clear, consider a situation in

which two agents are deciding where to meet. Each agent privately observes the weather in

his city but does not know the weather of the other agent’s city. Based on the weather in

the city, an agent has a set of actions available to him, and his utility will depend on the

weather in both the cities and the actions chosen by both the agents. Here, the weather

in each city is a signal that is privately observed by the player. The signal determines the

action set of the strategic game. The utility in the strategic form game is determined by the

signals realized by all the agents and the actions taken.

The kind of uncertainty in this example is about the weather in the cities. Each agent

uses a common prior to evaluate uncertainty using expected utility. In this example, there

is a probability distribution about the weather in both the cities. Note that since an agent

only observes weather in his own city, he can use Bayes rule to update the conditional

probabilities.

Note that the strategy of a player and his payoff functions are complicated objects in this

environment because (a) it depends on the signals players receive and (b) there is uncertainty

about the signals of other players. Harasanyi was the first to formally define an analogue of

a strategic game in this uncertain environment.

Definition 22 A game of incomplete information is defined by (N, {Ti}i∈N , p, {Γt}t∈×i∈NTi
),

where

• N is a finite set of players,
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• Ti is a set of types (signals) for player i, and T = ×i∈NTi is the set of type vectors,

• p is a probability distribution (belief or prior) over T with the restriction that
∑

t−i∈T−i
p(ti, t−i) >

0 for each ti ∈ Ti and for each i ∈ N ,

• For each t ∈ T , a strategic form game Γt ∈ S ≡ (N, {Ai(ti)}i∈N , {ui(t)}i∈N).

A game of incomplete information proceeds in a sequence where some of the associated

uncertainties are resolved.

• The type vector t ∈ T is chosen (by nature) using the probability distribution p.

• Each player i ∈ N observes his own type ti but does not know the types of other agents.

• After observing their types, each player i plays an action ai ∈ Ai(ti).

• Each player i receives an utility equal to ui(t, (a1, . . . , an)) when the type vector realized

is t and the action vector is (a1, . . . , an).

Because of uncertainty, the players do not even know the action set available to other

players. So, they do not know which strategic form game is being played. Note that the

action set depends on the type of the player. Further, the utility depends on the type vector

realized and the actions taken by all the players.

Strategies in such games are complicated objects. To remind, a strategy must describe

the action to be taken for every possible contingency. Hence, here also, a strategy must

describe what action to take for every signal/type that the player receives.

A pure strategy of Player i in a Bayesian game is a map si : Ti → ∪ti∈Ti
Ai(ti) such

that si(ti) ∈ Ai(ti) for all ti ∈ Ti. Thus, a pure strategy prescribes one action for every

type. However, one can also chose a probability distribution over the set of actions - this

will be the analogue of the mixed strategy. 4 This is called a behavior strategy. Formally,

a mixed strategy of Player i is a map σi : Ti → ∪ti∈Ti
∆Ai(ti) such that for every ti ∈ Ti,

σi(ti) ∈ ∆Ai(ti).

What is the payoff of Player i from a strategy profile σ? There are two ways to think

about it: ex-ante payoff, which is computed before realization of the type, and interim payoff,

which is computed after realization of the type. Ex-ante payoff from strategy profile σ is

Ui(σ) :=
∑

t∈T
p(t)Ui(t; σ) =

∑

t∈T
p(t)

∑

a∈A(t)

ui(t, a)σ1(t1; a1)× . . .×σn(tn; an) ≡
∑

t∈T
p(t)Ui(t; σ).

4We will come back to this point later.
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The interim payoffs are computed by updating beliefs after realizing the types. In particular,

once Player i knows his type to be ti ∈ Ti, he computes his conditional probabilities as follows.

For every t−i ∈ T−i,

p(t−i|ti) :=
p(ti, t−i)

∑

t′
−i∈T−i

p(ti, t′−i)
,

where we will denote p(ti) ≡
∑

t′
−i∈T−i

p(ti, t
′
−i) and note that it is positive by our assumption.

The interim payoff of Player i with type ti from a strategy profile σ is thus

Ui(σ|ti) :=
∑

t−i∈T−i

p(t−i|ti)Ui(t; σ).

If the beliefs are independent, then observing own type gives no extra information to the

players. Hence, no updating of prior belief is required by the players.

Note: The above expressions are for finite type spaces, but similar expressions (using

integrals) can also be written with infinite type spaces. We will discuss them when we do

particular applications with infinite type spaces later.

11.1 An Example

We give an informal description of a Bayesian game before describing the equilibrium con-

cepts. This Bayesian game is in the context of an auction - a popular subfield of economic

theory where game theory has been applied successfully in practice and theory. There is

an indivisible object for sale to a set of buyers (players). Each buyer has a value vi for the

object. The value is the type of the object, and hence, every buyer only knows his own value

but not the value of others. The values are drawn using a distribution p over the set of all

value profiles.

The set of actions available to a player in this game is the set of all non-negative real

numbers. Such actions are called bids in auction literature. A bid specifies the amount a

buyer is willing to pay. The buyer with the highest bid (ties broken with equal probability)

wins the object. If a buyer i with value vi wins the object by bidding bi, then his utility

is vi − bi times the probability of winning. A losing buyer gets zero utility. Note that the

amount a biddder bids may depend on his type. Whether a buyer wins or not depends on

the bids of all the players. The utility of a player depends on this probability of winning and

his own type.

To be a little more specific, let us study strategies which are commonly referred to

as symmetric monotone bidding strategies. Assume that type space Ti = R+. A

symmetric monotone strategy is a map b : Ti → R+. Note that every bidder is using the same
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bid function (strategy). We further assume that b is strictly increasing and differentiable.

Suppose each bidder draws his type independently from Ti using a distribution F (identical

distribution for all bidders). If types of all the buyers are (v1, . . . , vn), the the probability of

this type vector is F (v1) × . . . × F (vn). Since bids are monotone functions, a bidder with

type vi wins when everyone follows this strategy if vi > maxj 6=i vj . The probability of this

event is F (vi)
n−1. The interim payoff of Player i with type vi from this strategy is

F (vi)
n−1(vi − bi(vi)).

Hence, the ex-ante payoff from of Player i with type vi from this strategy is

∫

vi

F (vi)
n−1(vi − bi(vi))f(vi)dvi,

where f is the density function. Note that this expression is independent of the uncertainty

about other players’ types. This is because of the particular strategies (symmetric and

monotone) strategies that we are considering.

11.2 Bayesian Equilibrium

As we saw, there are two points at which a player may evaluate his utility: ex-ante or interim.

Depending on that the notion of equilibrium can be defined. The ex-ante notion coincides

with the idea of a Nash equilibrium.

Definition 23 A strategy profile σ∗ is a Nash equilibrium in a Bayesian game if for

each player i and each strategy σi,

Ui(σ
∗
i , σ

∗
−i) ≥ Ui(σi, σ

∗
−i).

There is also an interim way of defining the equilibrium. This is called the Bayesian

equilibrium, and is the common way of defining equilibrium in Bayesian games.

Definition 24 A strategy profile σ∗ is a Bayesian equilibrium in a Bayesian game if for

each player i, each type ti ∈ Ti, and each action ai ∈ Ai(ti),

Ui((σ
∗
i , σ

∗
−i)|ti) ≥ Ui((ai, σ

∗
−i)|ti) ∀ ti ∈ Ti.

Informally, it says that a player i of type ti maximizes his expected/interim payoff by

following σ∗
i given that all other players follow σ∗

−i.
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The restriction to pure actions on the RHS of the inequality in the above definition is

without loss of generality since it automatically implies the inequality over mixed actions also.

In games with finite type spaces, Bayesian equilibrium and Nash equilibrium are equivalent

concepts - we show this below.

We will say a Bayesian game is finite if the set of types of each player is finite and the

set of actions available to each player and each type is finite. Finite Bayesian games useful

properties (some of which extend to infinite games).

The first property that we show is that in a finite game, a strategy profile is a Nash

equilibrium if and only if it is a Bayesian equilibrium. In other words, a player has a

profitable deviation in Bayesian game before he learns his type if and only if he has a

profitable deviation after he learns his type. This result will use the fact that probability of

every type occurring is positive.

Theorem 19 In a finite Bayesian game, a strategy profile is a Bayesian equilibrium if and

only if it is a Nash equilibrium.

Proof : Consider a strategy profile σ∗. Suppose σ∗ is a Bayesian equilibrium. Then, for

every i ∈ N , for every ti ∈ Ti, and every ai ∈ Ai(ti), we have

Ui(σ
∗
i , σ

∗
−i|ti) ≥ Ui(ai, σ

∗
−i|ti).

For any pure strategy si, we know that

Ui(si, σ
∗
−i) =

∑

ti∈Ti

p(ti)Ui(si(ti), σ
∗
−i|ti) ≤

∑

ti∈Ti

p(ti)Ui(σ
∗
i , σ

∗
−i|ti) = Ui(σ

∗
i , σ

∗
−i).

Since this holds for every pure strategy si, it holds for any mixed strategy σi by the indiffer-

ence principle. Hence, σ∗ is a Nash equilibrium.

Now, suppose that σ∗ is a Nash equilibrium. Assume for contradiction that σ∗ is not a

Bayesian equilibrium. Then, there is some i ∈ N and some ti ∈ Ti with ai ∈ Ai(ti) such that

Ui(ai, σ
∗
−i|ti) > Ui(σ

∗
i , σ

∗
−i|ti).

Then, we consider a new strategy σ̂i of Player i such that σ̂i(t
′
i) = σi(t

′
i) if t′i 6= ti and
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σ̂i(ti) = ai. Now, observe the following:

Ui(σ̂i, σ
∗
−i) =

∑

t′i∈Ti

p(t′i)Ui(σ̂i, σ
∗
−i|t′i)

=
∑

t′
i
∈Ti\{ti}

p(t′i)Ui(σ̂i, σ
∗
−i|t′i) + p(ti)Ui(σ̂i, σ

∗
−i|ti)

=
∑

t′i∈Ti\{ti}
p(t′i)Ui(σ

∗
i , σ

∗
−i|t′i) + p(ti)Ui(ai, σ

∗
−i|ti)

>
∑

t′i∈Ti\{ti}
p(t′i)Ui(σ

∗
i , σ

∗
−i|t′i) + p(ti)Ui(σ

∗
i , σ

∗
−i|ti)

= Ui(σ
∗).

This contradicts the fact that σ∗ is a Nash equilibrium. �

The next property we show is that finite Bayesian games have a Bayesian equilibrium.

Theorem 20 Every finite Bayesian game has a Bayesian equilibrium.

Proof : Consider a new strategic form game where the set of players is the set ∪i∈NTi, i.e.,

every type of each player is a player in this new game. The set of pure strategy of a player

ti is Ai(ti). Note that an action profile a will consist of an action for every type. Hence

a ≡ {a(ti)}ti∈∪i∈NTi
. The payoff of Player ti in this game in a pure action profile a is

uti(a) =
∑

t−i∈T−i

p(t−i|ti)Ui((ti, t−i); {aj(tj)}j∈N).

Now, a mixed strategy of player ti in the new game is a probability distribution over

∆Ai(ti), which is exactly a strategy in the Bayesian game. Similarly, a strategy σi(ti) ∈
∆Ai(ti) in the original game corresponds to a mixed strategy of Player ti in the new game.

Further, note that a Nash equilibrium of the new game is a Bayesian equilibrium of the

original game.

Since the new game is a finite strategic game, a Nash equilibrium in mixed strategies

exist, and hence, a Bayesian equilibrium of the original game exists. �

Though this existence result was for finite Bayesian games, many non-finite Bayesian

games have a Bayesian equilibrium. In fact, games with infinite type spaces and infinite

action spaces are common in economics - one of the reason is that one can make use of tools

and techniques from analysis easily.
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12 Analysis of First-price Auction

We will study a model of selling a single indivisible object. Each agent derives some utility

by acquiring the object - we will refer to this as his valuation. In the terminology of the

Bayesian games, the valuation is the type of the agent.

We will study auction formats to sell the object. This will involve payments. A central

assumption in auction theory is that utility from monetary payments is quasi-linear, i.e.,

if an agent gets utility v from the object and pays an amount p, then his net utility is

v − p.

Implicitly, this assumes risk neutral bidders - the net utility of a bidder is his net payoff.

Another fundamental assumption that is commonly made is that of no externality, i.e.,

if an agent does not win the object then he gets zero utility. All the auctions that we will

study will involve zero payments by the agent who does not win the object.

We will now study the equilibrium, revenue, and welfare properties of two auction formats

for the sale of a single object.

12.1 The Second-Price (Vickrey) Auction

Suppose each buyer j ∈ N bids an amount bj . Then the highest buyer wins the object.

We assume that in case of a tie for the highest bid, each bidder gets the good with equal

probability. We denote the probability of winning at a profile of bids b ≡ (b1, . . . , bn) as φj(b)

for each buyer j ∈ N . Note that φj(b) = 1 if bj > maxk 6=j bk and φj(b) = 0 if bj < maxk 6=j bk.

Then the payoff of buyer j ∈ N with value xj is given by

πj(b) = φj(b)
[

xj −max
k 6=j

bk
]

The following theorem has already been proved (see Lemma 2)

Theorem 21 A weakly dominant strategy in the second-price auction (Vickrey auction) is

to bid your true value.

Note that the statement of this theorem did not refer to the Bayesian game (in particular

to the priors) because the solution concept used here is (weak) dominant strategy, which is

a prior-free solution concept.
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12.2 The Symmetric Model

We will now analyze another auction format that does not have a dominant strategy equi-

librium but has a nice Bayesian equilibrium. We will assume that all the bidders draw their

value from some interval [0, w] using a distribution F (same for all the bidders). We also

assume that F admits a density function f such that f(x) > 0 for all x ∈ [0, w]. It is possible

that the interval is the whole non-negative real line, in which case, we will abuse notation to

let w = ∞. But the mean of this distribution will be finite.

12.3 Payment in the Vickrey Auction

Consider any arbitary bidder, say 1. Let the random variable of the highest value of the

remaining n − 1 bidders be Y1 (it is the random variable of maximum of n − 1 random

variables). Let G be the cumulative distribution function of Y1. Notice that for all y,

G(y) = F (y)n−1. Also, if any bidder has true value x1, then his probability of winning in

the Vickrey auction is G(x1). If he wins, his expected payment is E(Y1|Y1 < x1).

Hence, the expected payment of a bidder in the Vickrey auction when a bidder has true

value x is

πII(x) = G(x)E(Y1|Y1 < x)

= G(x)

∫ x

0
yg(y)dy

G(x)

=

∫ x

0

yg(y)dy.

12.4 The First-Price Auction

Like in the Vickrey auction, the highest buyer wins the object in the first-price auction too.

We assume that in case of a tie for the highest bid, each bidder gets the good with equal

probability. We denote the probability of winning at a profile of bids b ≡ (b1, . . . , bn) as φj(b)

for each buyer j ∈ N . Note that φj(b) = 1 if bj > maxk 6=j bk and φj(b) = 0 if bj < maxk 6=j bk.

Given a profile of bids b ≡ (b1, . . . , bn) of bidders, the payoff to bidder j with value xj is

given by

πj(b) = φj(b)
[

xj − bj
]

58



12.5 Symmetric Equilibrium

Unlike the Vickrey auction, the first-price auction has no weakly dominant strategy (verify).

Obviously, bidding your true value guarantees a payoff of zero, and there are obvious ways to

generate positive expected payoff. Hence, we adopt the weaker solution concept of Bayesian

equilibrium. In fact, we will restrict ourselves to equilibria where bidders use the same

bidding function which are technically well behaved.

In particular, for any bidder j ∈ N , a strategy βj : [0, w] → R+ is his bidding function.

The focus in our study will be monotone symmetric equilibria, where every bidder uses

the same bidding function. So, we will denote the bidding function (strategy in the Bayesian

game) by simply β : [0, w] → R+. We assume β(·) to be strictly increasing and differentiable.

Bayesian equilibrium requires that if every bidder except bidder i follows β(·) strategy,
then the expected payoff maximizing strategy for bidder i must be β(x) when his value

is x. Note that if bidder i with value x bids β(x), and since everyone else is using β(·)
strategy, increasingness of β ensures that the probability of winning for bidder i is equal to

the probability that x is the highest value, which in turn is equal to G(x). Thus, we can

define the notion of a symmetric (Bayesian) equilibrium in this case as follows.

Definition 25 A strategy profile β : [0, w] → R+ for all agents is a symmetric Bayesian

equilibrium if for every bidder i and every type x ∈ [0, w]

G(x)(x− β(x)) ≥ Probability of winning by bidding b(x− b) ∀ b ∈ R+,

where the probability of winning is calculated by assuming bidders other than bidder i are

following β(·) strategy.

Remember that due to symmetry, G(x) indicates the probability of winning in the auction

when the bidder bids β(x), and (x− β(x)) is the resulting payoff.

Theorem 22 A symmetric equilibrium in a first-price auction is given by

βI(x) =
1

G(x)

∫ x

0

yg(y)dy = E[Y1|Y1 < x],

where Y1 is the highest of n− 1 independently drawn values.

Proof : Suppose every bidder except bidder 1 follows the suggested strategy. Let bidder 1

bid b. Notice that b ≤ β(w) in equilibrium since bidding any amount strictly greater than

β(w) cannot be an equilibrium - the bidder can always increase payoff by reducing the bid
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slightly but still larger than β(w). Hence, bid amount of a bidder will lie between 0 and

β(w), and hence, there exists a z = β−1(b). Then the expected payoff from bidding β(z) = b

when his true value is x is

π(b, x) = G(z)
[

x− β(z)
]

= G(z)x−
∫ z

0

yg(y)dy

= G(z)x− zG(z) +

∫ z

0

G(y)dy

= G(z)
[

x− z
]

+

∫ z

0

G(y)dy,

where, we have integrated by parts in the fourth equality 5. Hence, we can write

π(β(x), x)− π(β(z), x) = G(z)(z − x)−
∫ z

x

G(y)dy ≥ 0.

Notice that the previous inequality holds whether z ≤ x or z ≥ x. Hence, bidding according

to β(·) is a symmetric equilibrium. �

We now prove that this is the unique symmetric equilibrium in the first-price auction.

Now, consider any bidder, say 1. Assume that he realizes a true value x, and wants to

determine his optimal bid value b using a symmetric (increasing and differentiable) bidding

function β.

Notice that when a bidder realizes a value zero, by bidding a positive amount, he makes

a loss. So, β(0) = 0. Bidder 1 wins whenever his bid b > maxi 6=1 β(Xi), equivalently

b > β(maxi 6=1Xi) = β(Y1) (since β(·) is increasing). This is again equivalent to saying

Y1 < β−1(b) (since β(·) is increasing, an inverse exists). Hence, his expected payoff is

G(β−1(b))(x− b).

A necessary condition for maximum is the first order condition, which is obtained by differ-

entiating with respect to b.

g(β−1(b))

β ′(β−1(b))
(x− b)−G(β−1(b)),

where we used g = G′ is the density function of Y1 and β(β−1(b)) = b. At the equilibrium,

b = β(x), this should equal to zero, which reduces the above equation to

G(x)β ′(x) + g(x)β(x) = xg(x)

⇔ d

dx
(G(x)β(x)) = xg(x).

5To remind, integration by parts
∫

h1(y)h
′

2
(y)dy = h1(y)h2(y)−

∫

h′

1
(y)h2(y)dy.
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Integrating both sides, and using β(0) = 0, we get

β(x) =
1

G(x)

∫ x

0

yg(y)dy = E[Y1|Y1 < x].

Hence, this is the unique symmetric equilibrium in the first-price auction.

The equilibrium bid in the first-price auction can be rewritten as

βI(x) = x−
∫ x

0

G(y)

G(x)
dy.

This amount is less than x. From the proof of the Theorem 22, it can be seen that if a bidder

with value x bids β(z′) with z′ > z, then his loss in payoff is the shaded area above the G(·)
curve in Figure 4. On the other hand, if he bids β(z′′) with z′′ < z, then his loss in payoff is

the shaded area below the G(·) curve in Figure 4.

y

G(y)

(0,0) w

11

z’z" x

Loss due to overbidding

Loss due to underbidding

Figure 4: Loss in first-price auction by deviating from equilibrium

Another observation is that G(y)
G(x)

= (F (y)
F (x)

)n−1. Hence, the amount of lowering of bid van-

ishes to zero as the number of bidders increase, and the equilibrium bid amount approaches

the true valuation.

Hence, the expected payment in the first price auction for a bidder with value x can be

written as

πI(x) = G(x)β(x) = G(x)E(Y1|Y1 < x) =

∫ x

0

yg(y)dy = πII(x).

It is instructive to look at some examples. Suppose values are distributed uniformly in

[0, 1]. So, F (x) = x and G(x) = xn−1. So, β(x) = x − 1
xn−1

∫ x

0
yn−1dy = x − x

n
= n−1

n
x. So,

in equilibrium, every bidder bids a constant fraction of his value.

Let us consider the case of two bidders, and values distributed exponentially on [0,∞)

with mean 1
λ
. So, F (x) = 1 − exp(−λx) and for n = 2, G(x) = F (x). So, β(x) = E[Y1 :
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Y1 < x] ≤ E[Y1] = E[X ]. If λ = 2, this means that β(x) ≤ 0.5. This means that even if the

bidder has a very high value of 100000000, he will not bid more than 0.5 in equilibrium. The

intuition behind this is that even if the bidder has very high value, he has low probability of

losing if he bids less than 0.5. So, it makes sense for him to bid low and get a larger expected

profit.

13 Revenue Equivalence

The revenue from an auction is the sum of total ex-ante payment of all the bidders. Since

the equilibrium interim payment of each bidder is the same in both the first price and the

second price auction. It is immediate that the revenue from both the auctions are the same.

This is sometimes termed as the revenue equivalence theorem.

Theorem 23 Suppose bidders have private values with independent and identical distribu-

tions. Then any symmetric and increasing equilibrium of first-price and second-price auction

yields the same expected revenue to the seller.

This is a striking result because even though the actual payments in both the auctions

can be quite different the expected payments turn out to be the same.

We can in fact compute an exact expression for the revenue in these auctions. The

exact value of ex ante expected payment of the seller in the first-price auction can also be

computed. This is equal to

E(πI(x)) = n

∫ w

0

πI(x)f(x)dx = n

∫ w

0

(

∫ x

0

yg(y)dy
)

f(x)dx

= n

∫ w

0

(

∫ w

y

f(x)dx)yg(y)dy

= n

∫ w

0

(

1− F (y)
)

yg(y)dy

=

∫ w

0

n(n− 1)(1− F (y))F (y)n−2yf(y)dy

= E(second highest value).

The last equality can be explained as follows. Let us consider the random variable of the

second highest number of n randomly drawn numbers using F , and denote its cumulative

density function as F (2). Let us find the value F (2)(y). The probability that the second

highest value is less than or equal to y can be broken into two disjoint events: (a) probability
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that all the values are less than y - which is F (y)n, and (b) probability that exactly n − 1

values are less than y - which nF (y)n−1(1− F (y)). So, we can write

F (2)(y) = F (y)n + nF (y)n−1(1− F (y)) = nF (y)n−1 − (n− 1)F (y)n.

This gives,

f (2)(y) = n(n− 1)F (y)n−2f(y)− n(n− 1)F (y)n−1f(y) = n(n− 1)F (y)n−2f(y)(1− F (y)).

Since the expected second highest value is

∫ w

0

yf (2)(y)dy =

∫ w

0

n(n− 1)(1− F (y))F (y)n−2yf(y)dy,

which is exactly the expression we have. Hence, the total expected payment in the first-price

auction is the expected second highest value of a bidder, which is also the total expected

payment in the second-price auction.

The expected payment of a buyer with value x in the first-price auction or second-price

auction can be written as

πI(x) = πII(x) =

∫ x

0

yg(y)dy = xG(x)−
∫ x

0

G(y)dy

= expected value− expected profit.

Since xG(x) is the expected value to a buyer with value x, the expected profit for him is
∫ x

0
G(y)dy. This is shown graphically in Figure 5.

y

G(y)

(0,0) w

11

G(x)

x

Expected Profit

Expected Payment

Figure 5: Expected profit and payment in the first-price or second-price auction
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13.1 Uniform Distribution

For uniform distribution in interval [0, w], F (x) = x
w
and f(x) = 1

w
. This gives G(x) = xn−1

wn−1 .

Hence, bid of a bidder with value x in first-price auction is

βI(x) = x−
∫ x

0

yn−1

xn−1
dy = x− x

n
=
n− 1

n
x.

The revenue in the first price and second-price auction is

n(n− 1)

∫ w

0

(1− x

w
)(
x

w
)n−2x

1

w
dx =

n(n− 1)

wn

∫ w

0

(w − x)xn−1dx =
n− 1

n+ 1
w.

Note that with two bidders, the symmetric equilibrium of a bidder is to bid 1
2
his value in

the first-price auction. Hence, at a profile of valuations (v1, v2) with v1 > v2, agent 1 pays v2

in the second-price auction and v1
2
in the first-price auction. Clearly, there are some regions

where one auction does better than the other in terms of revenue, but the expected revenue

is the same in both the auctions.

13.2 Analysis of Bilateral Trading

The bilateral trading is one of the simplest model to study Bayesian games. It involves two

players: a buyer (b) and a seller (s). The seller can produce a good with cost c and the buyer

has a value v for the good. Suppose both the value and the cost are distributed uniformly

in [0, 1].

Now, consider the following Bayesian game. The buyer announces a price pb that he is

willing to pay and the seller announces a price ps that she is willing to accept. Trade occurs

if pb > ps at a price equal to pb+ps
2

. If pb ≤ ps, then no trade occurs.

The type of the buyer is his value v ∈ [0, 1] and the type of the seller is his cost c ∈ [0, 1].

A strategy for each agent is to announce a price given their types. In other words, the

strategy of the buyer is a map pb : [0, 1] → R and ps : [0, 1] → R.

If no trade occurs, then both the agents get zero payoff. If trade occurs at price p, then

the buyer gets a payoff of v − p and the seller gets a payoff of p− c.

Theorem 24 There is a Bayesian equilibrium (p∗b , p
∗
s) in the bilateral trading problem with

uniformly distributed types in [0, 1], where for every v, c ∈ [0, 1],

p∗b(v) =
2

3
v +

1

12
, p∗s(c) =

2

3
c+

1

4
.

64



Proof : Suppose the seller follows strategy p∗s. Then he never quotes a price above 2
3
+ 1

4
= 11

12
.

So, the buyer should never quote a price above 11
12

in a best response. Similarly, the seller

quotes a minimum price of 1
4
. Hence, the buyer should never quote a price below 1

4
as

best response. Suppose he quotes a price πb when his value is v. Then, trade occurs if the

p∗s(c) < πb or c <
3
2
πb − 3

8
. Note that since 1

4
≤ πb ≤ 11

12
, we have 0 ≤ 3

2
πb − 3

8
≤ 1.

Let xb ≡ 3
2
πb − 3

8
. Then the expected payoff of buyer from bidding πb at type v is

∫ xb

0

(

v − πb + p∗s(c)

2

)

dc =

∫ xb

0

(

v − πb +
2
3
c+ 1

4

2

)

dc

=
(

v − πb
2

− 1

8

)

xb −
1

6
x2b

=
(

v − 1

3
xb −

1

4

)

xb −
1

6
x2b

= (v − 1

4
)xb −

1

2
x2b .

This is a strictly concave function in πb, hence, the first order condition gives the unique

maximum. The first order condition gives (v− 1
4
)−xb = 0. This implies that xb =

3
2
πb− 3

8
=

v − 1
4
. Hence, πb =

2
3
v + 1

12
is a best response.

A similar optimization exercise solves the seller’s problem. Suppose the buyer follows

strategy p∗b . Then, the buyer quotes a minimum of 1
12

and a maximum of 3
4
. Then the seller

should never quote less than 1
12

because such a strategy will not maximize his expected payoff.

Suppose he quotes πc, then trade occurs if πc <
2
3
v + 1

12
, which reduces to v > 3

2
πc − 1

8
≥ 0

since πc ≥ 1
12
. Further, 3

2
πc − 1

8
≤ 1 since πc ≤ 3

4
. Denote xc =

3
2
πc − 1

8
. Hence, the expected

payoff of the seller at type c is given by
∫ 1

xc

(πc +
2
3
v + 1

12

2
− c

)

dv =

∫ 1

xc

(1

2
πc +

1

24
− c+

1

3
v
)

dv

=

∫ 1

xc

(1

3
πc +

1

12
− c+

1

3
v
)

dv

=
(1

3
πc +

1

12
− c

)

(1− xc) +
1

6
(1− x2c).

Again this is a strictly concave function and its maximum can be found by solving the first

order condition. The first order condition gives us

1

3
(1− xc)−

(1

3
πc +

1

12
− c

)

− 1

3
xc = 0.

This gives us xc =
3
2
πc − 1

8
= c+ 1

4
, which gives the unique best response as πc =

2
3
c+ 1

4
. �

There are other Bayesian equilibria of this game. However, this equilibrium can be shown

to be unique in the class of strategies where players use strategies linear in their type. One
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Player 1

Player 2

(u1(b), u2(a))

Accepts

(0, 0)

Rejects

Proposes a

Player 2

(u1(a), u2(b))

Accepts

(0, 0)

Rejects

Proposes b

Figure 6: Extensive form game with perfect information

notable feature of this equilibrium is that trade occurs when p∗b(v) > p∗s(c), which is equivalent

to requiring 2
3
v+ 1

12
> 2

3
c+ 1

4
. This gives v− c > 1

4
. Note that efficiency will require trade to

happen when v > c. Hence, there is some loss in efficiency. This is in general an impossibility

- you cannot construct any Bayesian game whose equilibrium will have efficiency in Bayesian

equilibrium in this model (more on this in some advanced course).

14 Extensive Form Games

In many situations strategic interactions between agents happen sequentially. Unlike in

strategic form games, agents move sequentially in such games. We consider some examples

first.

Suppose two players are deciding how to share two indivisible objects {a, b}. First, Player
1 proposes an allocation. Player 2 observes the proposal of Player 1 and then decides whether

to accept or reject the proposal. If Player 2 rejects, then no player gets any object. If Player

2 accepts the proposal, then each receives the proposed allocation of Player 1. Each player

i ∈ {1, 2} only cares about his own object and has a utility function ui ≡ (ui(a), ui(b)),

indicating his utility for the objects.

This situation can be modeled as an extensive game of perfect information. This is

usually depicted by a game tree.

An important feature of this game is that Player 2 has completely observed what Player

1 has proposed. His action is contingent on what he has observed so far in the game. Such

games are called extensive form games with perfect information, i.e., where every player has

perfectly observed what has happened so far in the game at every point. The outcomes of
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the game are realized after the game ends. Players assign payoffs to this terminal stages

of the game - this will involve assigning payoffs to every possible sequence of moves in the

game.

Figure 6 depicts the extensive form game using a tree. The payoffs of the agents are

written in the leaf nodes.

A strategy in such a game is a complex object. It must state the action to be taken for

every contingent path that can be taken in this game.

We now look at another example where perfect information is absent. Suppose two friends

are trying to meet. Friend 1 observes the weather in his city, which is either rain or sunny.

Then, he decides to either go to Friend 2’s place or stay at home. If Friend 1 stays at home,

Friend 2 does not do anything and the game ends. If Friend 1 comes to Friend 2’s place,

she either takes him for dinner or cooks at home. Crucial here is the fact that Friend 2 does

not observe the weather in Friend 1’s city, which Friend 1 has observed. However, Friend

2 observes whether he Friend 1 has come to her place or not. But Friend 2 does not know

if Friend 1 has come from a sunny city or rainy city. In that sense, though the game has

sequential nature, the information is not perfect in this game.

There is a way to represent this game as an extensive form game with imperfect infor-

mation. This is done by introducing the dummy player (Nature) who creates the imperfect

information. Nature makes the first move by taking either the action “Rainy” or “Sunny”.

The action of Nature is observed by Friend 1 but not by Friend 2. After observing the action

of Nature, Friend 1 takes either of the actions “Stay home” or “Go to Friend 2”. Friend

1 can now come to Friend 2 from a Sunny city or a Rainy city. This idea is captured by

an information set, where a bunch of nodes in the game are combined together to capture

Friend 2’s uncertainty about where she is in the game. Irrespective of where she is in the

game, she observes that Friend 1 has come to her place, and then she chooses one of the

actions “go out” or “stay in”.

Figure 7 shows the extensive form game with information set. The information set of

Player 2 is shown in dashed rectangle - it consists of two nodes in the game tree. At this

information set, Player 2 does not know if Player 1 has come from a sunny city or rainy city.

Each of the possible paths in the game are assigned a payoff for each player. Further,

games of imperfect information also specify probabilities/priors of uncertain moves of Nature.

These are used to compute expected payoffs on information sets.

67



Nature

Player 1

(y1, y2)

At home

Player 2

(x1, x2)

Cooks

(x′

1
, x′

2
)

Out

Goes out

Sunny with prob p

Player 1

Player 2

(z1, z2)

Cooks

(z′
1
, z′

2
)

Out

Goes out

(y′
1
, y′

2
)

At home

Rainy with prob p

Figure 7: Extensive form game with information sets

15 Games with Perfect Information

We now formally define the notion of an extensive form game. We start from the most basic

extensive game - a perfect information game, where every player at every node in the game

knows what path/history has brought him to that node.

To formally define an extensive form game, we need to define a cycle-free graph. A graph

G = (V,E) is a set of a vertices V and subset of unordered pairs E ⊆ V ×V such that for all

{i, j} ∈ E, i 6= j. A cycle in a graph G is a sequence of distinct vertices v1, . . . , vk with k > 2

such that {v1, v2}, . . . , {vk−1, vk}, {vk, v1} are all edges of the graph. A graph G is cycle-free

if there are no cycles in G.

A path in a graphG is a sequence of distinct vertices v1, . . . , vk such that {v1, v2}, . . . , {vk−1, vk}
are all edges of the graph. A graph is connected if there is a path from every vertex to every

other vertex. A connected and cycle-free graph is called a tree.

An important property of a tree graph is that there is a unique path from every vertex to

every other vertex. From every tree G = (V,E), we can construct a rooted tree by choosing

a root vertex r ∈ V . A rooted tree is represented by G ≡ (V,E, r). In a rooted tree, G, a

vertex v is called the child of v′ if there is an edge {v, v′} and v′ is in the unique path from

root r to v. The set of all children of a vertex v is denoted by C(v). Any vertex v with no

children, i.e., C(v) = ∅ is called a leaf vertex.

An example of a rooted tree is shown in Figure 8. The root of this tree is shown. The
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leaves of the tree are {v3, v6, v7, v8, v9, v10}. For child: v5 is the only child of v2, where as v1

has two children: {v3, v4}.

r

v1

v3 v4

v7 v8

v2

v5

v9 v10

v6

Figure 8: An example of a rooted tree

The backbone of an extensive form game is a rooted tree.

Definition 26 An extensive form game of perfect information is

Γ ≡ (N, V, E, r, {Vi}i∈N∪{0}, {A(x)}x∈V , {px}x∈V0
, {ui}i∈N),

where

• N is the set of players

• (V,E, r) is a game tree, where

– Each non-leaf vertex x ∈ V specifies a player, called the decision maker at x, in

N or Nature - Player 0 - who will take an action at this vertex.

– Each edge {x, y} ∈ E represents an action, in particular decision maker at x takes

an action specified by this edge to reach vertex y. We will denote by A(x) the set

of actions available at vertex x.

– Root vertex r specififes the first player in N ∪ {0} to take an action.

• A(x) is the set of actions available at vertex x, and they map to the set of edges. Note

that if x is a leaf vertex, then A(x) is an empty set.
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• {Vi}i∈N∪{0} is a partitioning of the set of vertices that are not leaves. Hence, Vi repre-

sents the set of vertices where agent i takes action and V0 represents the set of vertices

where the Nature takes an action. It is possible that V0 is empty, in which case, we say

that this is an extensive form perfect information game without any chance moves.

• For every vertex x ∈ V0, a probability distribution px over the set of actions A(x) is

known to all the players (perfect information).

• For every agent i ∈ N , ui(x) assigns a payoff for every leaf vertex x to Player i.

We note here that the set of vertices/edges in a game tree may be infinite. This can

happen because of two reasons: (1) the set of actions available at a vertex may be infinite

and/or (2) the set of stages (i.e., lengths of paths) of the game may be infinite. At every

vertex x in an extensive form game, the unique path from root r to vertex x conveys a lot of

information: it contains information about who are the players who have taken what action

to reach from r to x. It is standard to denote this information on the path as history hx

at vertex x. In fact, an alternate representation of an extensive form game is to just specify

the history at every vertex.

Consider the following example of Figure 6. There is only one vertex, the root vertex,

where Player 1 is the decision maker. For all other non-leaf nodes, Player 2 is the decision

maker. Player 1 has two actions available to him - the two proposals he can make to Player

2. In each of his vertices, Player 2 has the same two actions (Accept, Reject) available to

him. The payoffs of both the players are shown on the leaf vertices.

15.1 Strategy and Subgames

A strategy for a player in an extensive game must specify what he will do at each of his

decision vertices. Hence, you can imagine a Player telling a computer to play on his behalf.

In that case, he does not know ex-ante which decision vertices will be reached. So, he gives

the computer a complete contingent plan of what actions must be taken at every decision

vertex.

Formally, a strategy of player i ∈ N is a map si : Vi → ∪x∈Vi
A(x) such that si(x) ∈ A(x)

for all x ∈ Vi.

Notice that there are certain games, where every player moves only once - these games

are said to satisfy the single move property. However, there are games in which the single

move property is not satisfied. In those games, if a strategy specifies a certain action at a

70



decision vertex, that may ensure that certain decision vertex is never reached. But that does

not exclude us from describing what action to take in those unreached vertices.

To see this, consider the game in Figure 9, where Player 2 moves twice. If Player 2 plays

a strategy where he says he “Calls Player 1” at the first vertex, then exactly one more of his

decision vertex will be reached. But a strategy for Player 2 must specify his action at all the

decision vertices. This is crucial to evaluating his and his opponent’s options.

Player 2

Player 1

(y1, y2)

At home

Player 2

(x1, x2)

Cooks

(x′

1
, x′

2
)

Out

Goes out

Calls Player 1

Player 1

Player 2

(z1, z2)

Cooks

(z′
1
, z′

2
)

Out

Goes out

(y′
1
, y′

2
)

At home

Does not call Player 1

Figure 9: Extensive form game without single move property

The idea of a subgame is crucial to the analysis of an extensive form game. The subgame

of an extensive form game of perfect information

Γ ≡ (N, V, E, r, {Vi}i∈N∪{0}, {A(x)}x∈V , {px}x∈V0
, {ui}i∈N),

starting at x ∈ V , where x is not a leaf vertex, is an extensive form game

Γ(x) ≡ (N, V (x), E(x), x, {Vi(x)}i∈N∪{0}, {A(x′)}x′∈V (x), {px′}x′∈V0(x), {ui}i∈N),

where the the (x) in the above notation means that the restriction of the original game

starting from vertex x and its children, and children of its children etc.

Note that a game is a subgame of itself. So, every game has a subgame.
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16 Equilibrium for Extensive Form Games

We now develop the theory of equilibrium for extensive form games. One naive way of doing

that is to represent it as a strategic form game, and then apply the solution concepts of

strategic form games. Representing an extensive form game as a strategic form game is

quite easy: for every player i and every (pure) strategy of i in the extensive form game

corresponds to a pure strategy in the strategic form game. The payoff from a strategy profile

can then be computed from the game tree. This is because each strategy profile in the

extensive form game maps to a unique terminal vertex of the game tree. This is called the

reduced normal/strategic form of the extensive game. For a strategy profile s in an

extensive form game Γ, we let xs as the terminal vertex reached because of the strategy

profile s. Then, the payoff of agent i from a strategy profile s is ui(xs) and the payoff from

a mixed strategy profile σ is given by

Ui(σ) :=
∑

s

ui(xs)σ1(s1)× . . .× σn(sn).

Definition 27 A strategy profile σ is a Nash equilibrium of Γ if for all i ∈ N and for all

σ′
i

Ui(σ) ≥ Ui(σ
′
i, σ−i).

Nash equilibrium is not the correct solution concept for extensive form games because it

misses the sequential move aspect of the game by treating it in strategic form. We illustrate

this with an example.

Consider the game in Figure 10. The reduced strategic form representation of this game

Player 1

Player 2

(0, 0)

L

(2, 1)

R

D

(1, 2)

U

Figure 10: Nash equilibrium
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is shown in Table 24. From this, one concludes that the game has two pure strategy Nash

equilibria: (U, L) and (D,R).

L R

U (1, 2) (1, 2)

D (0, 0) (2, 1)

Table 23: Reduced strategic form of the game in Figure 10

But note that once the game has reached the information set of Player 2, he will play

R. So, playing L is not credible for Player 2. Then, Player 1 can take this information into

account while choosing his action. Player 1 clearly prefers playing D over U since Player

2 cannot threaten him credibly to play L. Hence, the equilibrium (U, L) is not a good

prediction of the game.

The main idea here is that the equilibrium (U, L) specifies a strategy L for Player 2 which

is not a credible strategy - once the decision vertex of Player 2 is reached, he will never play

this.

As we discussed above, a strategy profile leads to a unique terminal vertex with a unique

path from root to the terminal vertex. Hence, an equilibrium strategy profile will not touch on

many decision vertices - these are called off-equilibrium path decision vertices. One primary

requirement in extensive form game equilibrium is that action of every player must be optimal

starting at every information set, not just information set reached on equilibrium path.

16.1 Subgame Perfect Equilibrium

We now discuss a refinement to Nash equilibrium for extensive form game. The idea of

enforcing credibility is employed by using the notion of subgames.

Definition 28 A strategy profile σ is a subgame perfect equilibrium (SPE) of the

extensive form game Γ if for every subgame of Γ the strategy profile σ restricted to that

subgame is a Nash equilibrium of the subgame.

Since Γ itself is a subgame of the game Γ, it follows that every SPE is a Nash equilibrium

- hence, SPE is a refinement of Nash equilibrium. The game in Figure 10 has a unique

SPE. To see this, the subgame starting from decision vertex of Player 2 has only one player.

In that, Player 2 playing R is a dominant strategy. So, out of the two Nash equilibria of

the entire game (subgame), only the one with R being played by Player 2 survives. Hence,

(D,R) is the unique SPE.
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16.2 Games with Perfect Information

In games with perfect information (and without any moves by Nature), the idea of a subgame

perfect equilibrium is very compelling. We restrict attention to games with finite number of

stages. We will show that it coincides with two other easy notions of equilibrium. In this

section, we only focus attention on games with perfect information without any moves by

Nature.

Figuring out Nash equilibrium of subgames can be quite a complicated task. In games

with perfect information, this can be avoided because of a well known equivalence of subgame

perfect equilibrium with two other notions. The first is the idea of sequential rationality.

Definition 29 A strategy σi of Player i is sequentially rational given σ−i if each decision

vertex x of Player i, σi restricted to subgame at x is a best response to σ−i restricted to the

subgame at x.

A strategy profile σ is sequentially rational if for each Player i, σi is sequentially

rational given σ−i.

The main difference between subgame perfect equilibrium and sequential rationality is that

sequential rationality requires that at each subgame starting at decision vertex x, only the

owner of decision vertex x must be choosing a best response. On the other hand, the sub-

game perfect equilibrium requires at every subgame, strategy of every player must be a best

response given strategies of other players. Clearly, subgame perfection is more demanding,

but we will show that both the ideas are the same.

Finally, an easy method to compute optimal behavior of agents in finite extensive form

game is the following. Start with a decision vertex just before a terminal vertex. Specify

an action that leads to the highest payoff for the owner of that vertex among all possible

actions - in case of ties, all possible actions leading to highest payoff are specified. If such an

optimal action leads to terminal vertex z, then replace this decision vertex and the subsequent

subgame by terminal vertex z. Repeat this procedure. If indifferences occur, this will lead

to multiple strategy profiles surviving. This procedure is called the backward induction

procedure.

Definition 30 A strategy profile that survives the above procedure is said to be a strategy

profile surviving the backward induction procedure.

We will prove the following theorem.

Theorem 25 Let Γ be an extensive form game of perfect information with no Nature move

and finite number of stages. Then the following are equivalent.
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1. σ is a subgame perfect equilibrium.

2. σ is sequentially rational.

3. σ survives the backward induction procedure.

Note here that (1) implies (2) because (1) requires best response from all players in the

subgame but (2) only requires best response by the owner of the root vertex of the subgame.

Also, (2) implies (3) because (2) allows owner of the root vertex to change his strategy at

every decision vertex in the subgame but (3) only changes at one decision vertex at a time.

We will often refer to all these notions to be the definition of a subgame perfect equilibrium

in such games. An immediate corollary of Theorem 25 is that a subgame perfect equilibrium

in pure strategies always exist - this follows from the fact that the backward induction

procedure always generates at least one pure strategy profile. If there are no indifferences

in payoffs, the backward induction procedure generates a unique strategy profile, which is

referred to as the backward induction solution.

16.2.1 Illustration of Backward Induction Procedure

In the game in Figure 10, Player 2 plays R. Then we replace the subgame starting at the

decision vertex of Player 2 by payoff (2, 1). Now, Player 1 chooses D in this new game.

Hence, the unique outcome of the backward induction procedure is (D,R).

Consider the game in Figure 11. There are three players: two entrant firms and one

incumbent firm. The entrants decide sequentially whether to stay out (O or o) or enter the

market (E or e). If they stay out they get zero. If they enter, then the incumbent can fight

(f/f ′/f ′′) or accommodate (a/a′/a′′). If both entrants stay out, the incumbent gets 5. If the

entrant accommodates, the per firm profit is 2 for duopoly and −1 for triopoly. On top of

this, if the incumbent fights, then it costs 1 for the incumbent and 3 for entrants. The game

is described in Figure 11.

If we solve this game by backward induction procedure, then the incumbent always

accommodates. Given this, entrant firm 2 enters in his left-most information set but stays

out in the right-most information set. Given this, entrant firm 1 enters. This illustrates the

idea of a first-mover advantage in extensive form games.

How do we describe the subgame perfect equilibrium of this game? We need to specify

the actions at every information set: (E, (e, o′), (a, a′, a′′)). You can verify that there are

many Nash equilibria of this game. Hence, Nash equilibrium has very less predictive power

in this game but the subgame perfect equilibrium leads to a unique outcome.
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Player 1

Player 2

(0, 0, 5)

o

Player 3

(0,−1, 1)

f

(0, 2, 2)

a

e

O

Player 2

Player 3

(−1, 0, 1)

f ′

(2, 0, 2)

a′

o′

Player 3

(−4,−4,−2)

f ′′

(−1,−1,−1)

a′′

e′

E

Figure 11: Backward induction

Backward induction can be a very demanding solution in games where players need to

move many times. This is because it requires players to anticipate actions down the game

tree. A sharp example of this fact is given a well known game called the centipede game.

Two players start with 1 unit of money each. Each player can either decide to continue C or

stop S. If anyone stops, then the game ends and each take their piles. If a player continues,

then the opponent gets to take action but his pile is reduced by 1 while the opponent’s pile

is increased by 2. The play ends when any player reaches 100. Suppose Player 1 moves first.

Unique prediction due to backward induction is Player 1 stops in the first chance resulting

in (1, 1). The subgame perfect equilibrium specifies action S at every decision vertex. This

is also the unique Nash equilibrium of this game.

In lab experiments, agents have usually continued for some time. This is a general critique

of equilibrium in extensive form game that no satisfactory refinement can predict such an

outcome.

16.3 Indifferences and Backward Induction

If there are indifferences, then many pure and mixed strategies will survive backward induc-

tion and all of them will be subgame perfect equilibrium. To illustrate this, consider the

following example in Figure 12.
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Player 1

Player 2

(−1, 0)

L

(1, 0)

R

D

(0, 1)

U

Figure 12: Backward induction with indifference

In the game in Figure 12, Player 2 is indifferent between his strategies L and R. Suppose

he plays L, then optimal strategy for Player 1 is to play U . On the other hand if Player 2

plays R, then Player 1 chooses D. So, (U,R) and (D,L) are two subgame perfect equilibria.

If Player 2 randomizes αL+(1−α)R. Player 1 gets 0 by playing U and 1−2α by playing D.

If α > 1
2
, then Player 1 playing U is optimal. If α < 1

2
, then Player 1 playing D is optimal.

If α = 1
2
, then Player 1 randomizing βL + (1 − β)D for any β ∈ [0, 1] is optimal. All these

correspond to subgame perfect equilibria of this game.

16.4 Proof of Theorem 25

For simplicity, we focus attention to pure strategy profiles. First thing, we note that is

a redefinition of a strategy profile surviving backward induction procedure. Notice that

backward induction requires that every decision vertex, the decision maker of that vertex

chooses an optimal strategy given that the rest of the subgame has been chosen optimally. In

particular, consider a subgame at decision vertex x with decision maker i. If s is a strategy

profile that survives backward induction procedure, then denote its restriction to subgame

at x as sx. Backward induction requires that sxi is a better than any other strategy s̄xi for

Player i given sx−i where s̄
x
i and sxi differ from each other by one decision vertex. Formally,

s survives backward induction procedure if and only if this fact is true for every decision

vertex x.

With the help of this redefinition of backward induction procedure, we can do the proof.

The implications (1) ⇒ (2) and (2) ⇒ (3) are immediate from definitions. To see this note

that sequential rationality requires that at every subgame starting with vertex x only the
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decision maker at x must best respond - but subgame perfect equilibrium needs that everyone

must best respond. Hence, (1) ⇒ (2). For (2) ⇒ (3), consider the optimization problem

done in the backward induction procedure and sequential rational strategies. Suppose Player

i owns a decision vertex x. Denote the strategy profile s restricted to subgame from x as sx.

To verify sequential rationality of sxi given sx−i, we need to check for deviations at all decision

vertices in the subgame. For backward induction, as we had argued earlier, we only need to

check deviations of one decision vertex at a time. The meat of the proof lies in establishing

the other directions.

(2) ⇒ (1). Suppose s is a sequentially rational strategy profile. Let x be a decision vertex

of agent i. We need to show that sx is a Nash equilibrium of the subgame Γ(x). Count the

length of the paths from x to every possible decision vertex reachable from x, and denote

the length of the maximal path by ℓ(x). We do the proof by induction on ℓ(x). If ℓ(x) = 1,

then the proof follows from sequential rationality itself. Assume ℓ(x) > 1 and suppose that

the claim is true for all y with ℓ(y) < ℓ(x).

First, note that by definition, sxi is a best response to sx−i. Consider any player j 6= i.

If j does not have a decision vertex in the subgame Γ(x), then his strategy is vacuously a

best response in this subgame. If j has a decision vertex in this subgame, let y be the first

such decision vertex when we go from x to a terminal vertex. By induction and sequential

rationality, syj is a best response to sy−j .

Now, j’s strategy in the subgame at x is the union of his strategies in each such y. Since

each of them is a best response by induction, his strategy in the subgame Γ(x) is also a best

response. This shows that s is a Nash equilibrium.

(3) ⇒ (2). For this direction, we will prove a general principle that is generally true in

many variants of extensive form game. This is the one-shot deviation principle. Before doing

so, note that we need to fix an agent i and strategies s−i of other agents, and discuss about

deviations of this agent. So, effectively, we are discussing a one-agent decision problem. We

call a strategy s′i a one-shot deviation of strategy si if it differs from si at exactly one

vertex, say x. Further, the one-shot deviation strategy is profitable if it generates higher

utility. Note that this is equivalent to requiring that it generates higher utility in the subgame

Γ(x).

Fixing the strategies of other players at s−i, we will show that if for strategy si there

is no strategy s′i which is a one-shot profitable deviation, then si is sequentially rational

given s−i. Assume for contradiction that this is not true. Then, there is a decision vertex

x of agent i such that sxi has a profitable deviation in subgame Γ(x). Consider all paths

from x to a decision vertex in the subgame Γ(x) and let L(x) denote the maximum number
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decision vertices along any such path that belongs to i. If L(x) = 1, then this will imply

that sxi has a profitable one-shot deviation, contradicting survival from backward induction.

So, L(x) > 1. We can now use induction on L(x). Suppose the claim is true for all decision

vertices y of agent i with L(y) < L(x). Since a more than one-shot deviation in vertex x

means a deviation in decision vertex y with L(y) < L(x). But, this will mean a profitable

deviation exists for decision vertex y also. This is a contradiction due to L(y) < L(x) and

our induction hypothesis.

16.5 Infinite Horizon and Action Sets

There are extensive games where the number of stages is infinite. For such games, the process

of backward induction is not defined. However, the notion of subgame perfect equilibrium

is still well defined. We need to consider subgames, and the strategies should consist of

equilibrium behavior in each subgame.

Another important remark is that with finite number of stages, backward induction is well

defined even if agents have infinite set of actions in a decision vertex. However, the optimal

response may be empty with infinite set of actions. So, wherever the optimal response map

is non-empty, we can easily define the backward induction process. The following example

illustrates this point clearly.

16.6 Alternative Offers Bargaining

We now visit a classical application of subgame perfect equilibrium. In this problem, two

players are bargaining over 1 unit of money. They will bargain for T+1 periods starting from

period 0. In even periods (starting at 0), Player 1 offers a split (ot, 1− ot), where ot ∈ [0, 1]

is Player 1’s share. If Player 2 accepts, the game ends. Else, we move to the next period. In

odd periods, Player 2 offers a split. If no split is accepted at the end of period T , then the

game ends with each player getting 0. Money received in period t is discounted by δt, where

δ ∈ (0, 1).

This game has perfect information, finite number of stages, but infinite set of actions at

each decision vertex. There are many tied utilities too. But surprisingly, it has a unique

subgame perfect equilibrium.

To understand the game better, consider just a one-period T = 1 case. Player 1 offers a

split (o1, 1− o1) and Player 2 can either accept or reject. In all the decision vertices, where

Player 2 gets a positive offer, he accepts. In the decision vertex where Player 2 gets zero

offer, he is indifferent. Knowing this, we now apply backward induction on Player 1. Player
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1’s optimal is not clearly to give a positive split to Player 2 because that is dominated. If

Player 2 rejects a zero offer with positive probability y, then Player 1 gets a payoff of 1− y,

which is dominated by Player 1 offering (1 − y

2
, y
2
). Hence, again Player 2 rejecting a zero

offer with positive probability and accepting a positive offer implies Player 1 has no optimal

action at his decision vertex. Hence, the backward induction procedure does not provide any

strategy of Player 1 for such a strategy of Player 2. On the other hand, if Player 2 accepts

Player 1’s zero offer with probability 1, then Player 1’s optimal action is to offer (1, 0). This

will be a subgame perfect equilibrium. This forms the basis of the theorem below.

Theorem 26 In the alternative offers bargaining game, there is a unique subgame perfect

equilibrium, where the initial offer is accepted. As T → ∞, the equilibrium payoffs converge

to ( 1
1+δ

, δ
1+δ

).

Proof : Suppose T is even. Then, in the last period, Player 1 offers. Consider the subgame

from this period. It consists of a decision vertex for Player 1 where he offers a split (oT , 1−oT )
and a decision vertex for Player 2 for each offer of Player 1. In the decision vertex, Player 2

must accept any positive offer. But it can accept, reject, or randomize on zero offer. Then,

consider the offer of Player 1. Player 1 cannot offer positive amount to Player 2 since he can

improve it by giving half of that - hence, there is a one-shot deviation. So, Player 1 must

offer 0 amount to Player 2. Now, if Player 2 rejects such an offer, then both get zero. Hence,

if Player 2 randomizes with α probability reject and (1− α) probability accept, then Player

1 offering 0 gets a payoff of (1 − α)δT . But Player 1 can do better by offering Player 2 an

amount 1
2
α (which Player 2 will accept). Hence, if Player 2 rejects with positive probability,

then offering 0 is not a best response of Player 1. So, offering 0 and getting rejected with

some probability is not a subgame perfect equilibrium. Thus, offering 0 and accepting 0 is

the unique subgame perfect equilibrium outcome from period T .

We now repeat this idea. Essentially, at each subgame an offer must be made such that

the opponent is indifferent between accepting and rejecting and the opponent must accept.

By backward induction, we proceed as follows.

1. In period T , Player 1 offers (1, 0), which Player 2 accepts. Resulting payoffs are (δT , 0).

2. In period (T − 1), Player 1 can assure himself of δT . So, he accepts any offer giving

him at least δT . So, Player 2 offers (δ, 1− δ) which gives payoff (δT , δT−1 − δT ).

3. In period (T − 2), Player 2 can assure himself of δT−1 − δT . So, Player 1 offers (1 −
δ + δ2, δ − δ2), which gives payoff (δT−2 − δT−1 + δT , δT−1 − δT ).

Continuing in this manner, we get
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4. In period 0, Player 1 offers (1− δ + δ2 − . . .+ δT , δ− δ2 + . . .− δT ) ≡ (1+δT+1

(1+δ)
, δ−δT+1

(1+δ)
),

which is accepted by Player 2. Note that the limit of T → ∞ is ( 1
1+δ

, δ
(1+δ)

).

If T is odd, a similar analysis yields an offer by Player 1 equal to (1−δT+1

(1+δ)
, δ+δT+1

(1+δ)
), whose

limit T → ∞ is also ( 1
1+δ

, δ
(1+δ)

). �

17 Games with Imperfect Information

In games with imperfect information a player may not observe the entire history at every

decision vertex. Hence, when he reaches his decision vertex, there is uncertainty about which

decision vertex he is really in. To make complete sense of this uncertainty, the set of actions

available at each of these uncertain decision vertices must be same. This idea is captured by

the notion of an information set.

Definition 31 In an extensive form game the information set of Player i is a non-empty

subset Ui ⊆ Vi and a subset of actions A(Ui), such that at each x ∈ Ui we have A(x) = A(Ui).

The only additional information in an extensive form game with imperfect information

is a specification of information sets. In particular, for every player i, we specify a partition

{U j
i }j of the decision vertices Vi of Player i, where each U j

i is an information set. Now, set

of actions are specified for each information set.

Definition 32 An extensive form game of imperfect information is

Γ ≡ (N, V, E, r, {Vi}i∈N∪{0}, {U j
i }ji∈N , {A(U j

i )}ji∈N , {px}x∈V0
, {ui}i∈N),

where {U j
i }ji∈N is a partition of Vi and A(U

j
i ) specifies the actions available at each informa-

tion set U j
i for Player i.

Note that if every information set contains a single vertex, then the game is of perfect

information.

The strategy and the idea of subgame is suitably changed in a game of imperfect in-

formation. Since the player is unsure about the vertex he has reached in an informa-

tion set, his strategy must specify an action at every information set. We will denote by

Ui ≡ {U1
i , . . . , U

k
i } the collection of information sets of Player i.

Formally, a strategy of player i ∈ N is a map si : Ui → ∪
U

j
i ∈Ui

A(U j
i ) such that si(U

j
i ) ∈

A(U j
i ) for all U

j
i ∈ Ui.
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In the game in Figure 7, each player’s information set is a singleton, except for Player 2,

who has a single information set with two vertices. His strategy must specify what he will

do at this information set.

The definition of a subgame is just the subtree starting from a decision vertex. If the

game is of imperfect information, we need to worry about information sets. In particular,

when we consider a subtree, for every Player and every information set of this player, all the

vertices of this information set either belongs to the subtree or does not intersect with the

subtree. So, Γ(x) will be a subgame if for every i ∈ N and for every U j
i ∈ Ui either U

j
i lies

in the subtree in Γ(x) or it has an empty intersection with the subtree in Γ(x).

The game in Figure 7 has only one subgame, i.e., the game itself. This is because every

other subgame will only have part of the information set of Player 2.

17.1 Perfect Recall

Consider the following game in Figure 13. Player 2 is forgetful here. He forgets whether he

had called Player 1 or not earlier. As a result, when Player 1 reaches his home, he does not

know whether Player 2 has come because of his call or without his call. Thus, Player 2 has

an information set consisting of two decision vertices.

Player 2

Player 1

(y1, y2)

At home

Player 2

(x1, x2)

Cooks

(x′

1
, x′

2
)

Out

Goes out

Calls Player 1

Player 1

Player 2

(z1, z2)

Cooks

(z′
1
, z′

2
)

Out

Goes out

(y′
1
, y′

2
)

At home

Does not call Player 1

Figure 13: Extensive form game without perfect recall

Games in which players remember the entire sequence of information (history) from root
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to their every information set are players with perfect recall. Formally, Player i has perfect

recall if at every information set U j
i and every pair of vertices x, x′ ∈ U j

i , the information

observed by Player i to reach x and x′ from root are identical. An extensive form game

in which all the players have perfect recall is called a game with perfect recall. We will

exclusively focus attention on games in which all the players have perfect recall.

18 Mixed and Behavior Strategies

We have defined pure strategies in an extensive form game as a map that defines what

action a player will take in each of his information sets. There are two natural ways to define

randomized strategies in this environment. The first one says that we define a probability

measure (distribution) over the set of all pure strategies. This is the notion of a mixed

strategy. Formally, a mixed strategy of Player i is σi ∈ ∆
∏

U
j
i ∈Ui

A(U j
i ).

Consider the game in Figure 14. Player 1 has two pure strategies - we roughly write it

as {x, y} to denote that in his only information set, he can either choose action x or action

y. Similarly, the pure strategies of Player 2 can be written as {Aa,Ar,Ra,Rr}, where Aa
indicates that in his left-most information set (decision vertex) he plays A and in the other

information set he plays a - similar interpretations can be made for other pure strategies. A

mixed strategy of Player 1 will be σ1(x), σ1(y) such that σ1(x)+σ1(y) = 1. A mixed strategy

of Player 2 will be σ2(Aa), σ2(Ar), σ2(Ra), σ2(Rr) such that

σ2(Aa) + σ2(Ar) + σ2(Ra) + σ2(Rr) = 1.

Player 1

Player 2

(3, 3)

A

(4, 0)

R

x

Player 2

(1, 2)

a

(2, 1)

r

y

Figure 14: Extensive form game with perfect information
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Another way to specify random behavior in this game is to specify a probability distri-

bution at each information set. A behavior strategy of Player i specifies a probability

distribution bji over Ai(U
j
i ) for each of his information set U j

i . Hence, bi ∈
∏

U
j
i ∈Ui

∆Ai(U
j
i ).

Notice that every behavior strategy naturally induces a probability distribution over pure

strategies, and hence, is a mixed strategy.

In the game in Figure 14, Player 2 will have to specify two maps: b12(A), b
1
2(R) with b

1
2(A)+

b12(R) = 1 and b22(a), b
2
2(r) with b

2
2(a) + b22(r) = 1. Note that the induced mixed strategy of

Player 2 can be computed by multiplying the respective probabilities: for instance, σ2(Aa) =

b12(A)b
2
2(a). Thus, specifying randomization using a behavior strategy assumes independence

across information sets - when a player reaches his information set he randomizes over the

actions at that information set only.

Since mixed strategies allow for correlation, not every mixed strategy can be induced from

behavior strategies. To see this, consider the game in Figure 14. Suppose b12(A) =
1
2
= b12(R)

and b22(a) =
1
3
, b22(r) =

2
3
. The mixed strategy generated is

σ2(Aa) =
1

6
, σ2(Ar) =

1

3
, σ2(Ra) =

1

6
, σ2(Rr) =

1

3
.

Now, consider the following mixed strategy of Player 2,

σ2(Aa) =
1

3
, σ2(Ar) =

1

6
, σ2(Ra) = 0, σ2(Rr) =

1

2
.

If there is a behavior strategy of Player 2 that generates this mixed strategy, then we must

have b12(R) = 0 or b22(a) = 0, which will then imply that either σ2(Rr) or σ2(Aa) is zero, a

contradiction. The main idea here is that behavior strategy does not allow for correlation

present in this mixed strategy.

But such correlation is strategically unnecessary. This is because information sets are

reached sequentially. To make ideas precise, fix a player i and a mixed strategy σ−i of other

players. By specifying a behavior strategy bi, we induce a probability distribution over the

terminal (leaf) vertices of the game tree by the play (bi, σ−i). Similarly, each σi also induces

a probability distribution over terminal vertices by the play (σi, σ−i).

Formally, let ρ(x; σ) denote the probability that a terminal vertex x is reached by playing

a strategy profile σ. How is ρ computed? It is computed by using the conditional probability

formula. Formally, it is cumbersome to state. We illustrate with the above example. In the

above example, suppose Player 1 plays the behavior/mixed strategy where he plays x and

y with equal probability. Suppose Player 2 plays strategy σ2. Then what is the probability

of reaching the terminal vertex with payoff (3, 3)? It can be reached if Player 1 plays x and
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Player 2 either plays Aa or Ar. Hence, the required probability is

σ1(x)×
[

σ2(Aa) + σ2(Ar)
]

=
1

4
.

A similar calculation reveals the following distribution over terminal vertices

(1

4
,
1

4
,
1

6
,
1

3

)

,

where we have written the probabilities of terminal vertices from left to right.

A similar calculation for behavioral strategies can also be done. It can be verified that

both the mixed strategy and the behavior strategies give rise to the same distribution over

terminal vertices. When computing the probability of a terminal node, we somehow con-

structed a behavior strategy by adding up all the pure strategies in the support of the pure

strategy that lead to this terminal vertex. It so turned out that it was indeed a behavior

strategy that we had earlier stated.

Definition 33 A behavior strategy bi and a mixed strategy σi of Player i are outcome

equivalent if for every mixed strategy σ−i of other players, the probability distributions

induced over the terminal vertices by (bi, σ−i) and (σi, σ−i) are the same.

It is safe to conjecture that for every mixed strategy, there is a behavior strategy that is

outcome equivalent to it. The conjecture is not exactly true. Consider the extensive form

game in Figure 15. Player 1 is a player without perfect recall. He has two information sets:

U1 and U2, where U1 is the root vertex. So, a behavior strategy of Player 1 must specify

b11(x), b
1
1(y) such that b11(x) + b11(y) = 1 and b21(a), b

2
1(r) such that b21(a) + b21(r) = 1.

Now, there are four pure strategies {xa, xr, ya, yr}. Consider the mixed strategy that

puts equal (1
2
) probability xa and yr but zero probability on the rest. This mixed strategy

induces the following distribution on terminal vertices: 1
2
probability on (3, 3) and (2, 1) and

zero on the rest. But to get non-zero probability on the terminal vertex (3, 3), Player 1 has

to choose a behavior strategy at his information set U2 which puts positive probability on a.

Similarly, to reach terminal vertex (2, 1), he has to put positive probability on y at U1. As a

result, vertex (1, 2) will be reached with positive probability. So, for this mixed strategy of

Player 1, there are no behavior strategy.

This is a problem due to imperfect recall. If there is perfect recall in the previous example

(xa) and (ya) will become (xa) and (ya′), where a is some outcome different from a′ because

they belong to different information sets. Formally, Harold Kuhn established the following

theorem.
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Player 1

Player 1

(3, 3)

a

(4, 0)

r

x

Player 1

(1, 2)

a

(2, 1)

r

y

Figure 15: Extensive form game with imperfect recall

Theorem 27 In every extensive game, if a player i has perfect recall, then every mixed

strategy of player i has an outcome equivalent behavior strategy.

The proof involves constructing particular behavior strategies for every mixed strategy.

Though the proof is notationally quite involved, the idea is relatively straightforward. We

illustrate this with an example. Consider Player 2 in the game in Figure 16. Consider a

mixed strategy of Player 2 as σ2(Lℓ) = σ2(Lr) =
1
3
, σ2(Rℓ) =

1
12
, σ2(Rr) =

1
4
. Suppose Player

1 plays pu (for U) and pd (for D) as his mixed strategy. Then the probability distribution

induced on terminal vertices (3, 1), (3, 0), (4, 1), (2, 2) respectively are 1
3
, pu

1
3
, pu

1
3
, pd

2
3
.

Clearly, to achieve these probabilities Player 2 must play 1
3
on R at his first information

set. So, he plays L with probability 2
3
. Then, to ensure equivalent outcome, he should play ℓ

and r with probability 1
2
each. Hence, we computed behavior strategy of playing ℓ of Player

2 at his second information set by σ2(Lℓ)
σ2(Lℓ)+σ2(Lr)

= 1
2
. The proof of Kuhn’s theorem formalizes

this and shows that such computations are always possible.

19 Equilibria for Games of Imperfect Information

In games where there is imperfect information, subgame perfect equilibrium can still be

applied but backward induction is not well-defined in such games. Moreover, subgame perfect

equilibrium may be a useless solution concept in which there is imperfect information. To

see this, consider the game in Figure 17. This game has only one subgame. Hence, the set

of Nash equilibria are equivalent to the set of subgame perfect equilibria. The problem with

subgame perfect equilibrium in this game is that it does not use any beliefs of Player 2. As

a result, it puts no restriction on his optimal choice when his information set is reached. To
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Player 2

Player 1

(3, 0)

D

Player 2

(4, 1)

ℓ

(2, 2)

r

U

L

(3, 1)

R

Figure 16: Extensive form game with perfect recall

appropriately define behavior in information sets, any equilibrium must also define beliefs

and equilibrium choices must be consistent with these beliefs. This is the basic idea behind

defining equilibrium refinements in games of imperfect information.

Player 1

Player 2

(4, 0)

L

(−3,−1)

R

A

Player 2

(2, 1)

L

(−1,−1)

R

B

(0, 2)

C

Figure 17: Imperfect Information
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19.1 Perfect Bayesian Equilibrium

To understand the problem with subgame perfect equilibrium further in such games, consider

the reduced-form strategic-form game of the game in Figure 17. It is shown in Table 24.

L R

A (4, 0) (−3,−1)

B (2, 1) (−1,−1)

C (0, 2) (0, 2)

Table 24: Reduced strategic form of the game in Figure 10

The Nash equilbria of this strategic-form game consists of (A,L), (C, αL + (1 − α)R),

where α ≤ 1
3
. The idea of sequential rationality requires that each player must behave

rationally once his information set is reached. To be able to do this, players must form

beliefs about where they are inside their information set, and act optimally according to this

belief. The nature of beliefs that is permissible results in different solution concepts.

For instance, if we specify a strategy profile, where Player 1 plays A with probability 1
3

and B with probability 1
2
, then this equilibrium knowledge is enough to pin down the beliefs

of Player 2. Remember, that Player 2 has correct belief about equilibrium behavior of Player

1. Hence, his belief of the information set can be deduced from this: total probability of

reaching this information set is 5
6
, and individual conditional probabilities are (2

5
, 3
5
). Of

course, here we cannot apply this principle if a strategy profile does not reach a particular

information set since conditional probabilities are not defined at those information sets. So,

sequential rational behavior can be with respect to any belief at such information sets.

Formally, in an extensive form game with imperfect information, the belief of Player i is

a map µi : U
j
i → [0, 1] for each j such that

∑

x∈Uj
i
µ(x) = 1 for all j.

Given a strategy profile σ, we can compute the probability with which each decision

vertex is reached in an extensive form game. We denote this as Pσ(x). The probability with

with an information set U j
i is reached given σ is Pσ(U

j
i ) =

∑

x∈Uj
i
Pσ(x).

Definition 34 Belief µi of Player i is Bayesian given a strategy profile σ if for every

information set U j
i reached with positive probability in the strategy profile σ, we have for all

x ∈ U j
i ,

µi(x) =
Pσ(x)

Pσ(U
j
i )
.

Sequential rationality now extends to this setting as follows.
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Definition 35 A strategy σi of Player i at information set U j
i is sequentially rational

given strategies σ−i and beliefs µi if for all σ′
i, we have

∑

x∈Uj
i

µi(x)ui(σi, σ−i|x) ≥
∑

x∈Uj
i

µi(x)ui(σ
′
i, σ−i|x).

A strategy σi of Player i is sequentially rational given σ−i and µi if it sequentially

rational at all information sets.

An equilibrium here now involves specifying strategies and beliefs. Beliefs have to be

consistent in the form of Bayesian and strategies have to be sequentially rational. The pair

of strategy profile and belief profile is called an assessment.

Definition 36 An assessment (σ, µ) is a perfect Bayesian equilibrium (PBE) if for

every Player i

• µi is Bayesian given σ

• σi is sequentially rational given σ−i and µi.

In the game in Figure 17, for every belief of Player 2, L is a weakly dominant action.

Given this, Player 1 must play A irrespective of his beliefs. Hence, the unique PBE of this

game is (A,L, µ2(B) = 1). In general, a PBE does not allow players to play a strictly

dominated action, while a Nash equilibrium does not preclude this.

Remark. An easy fact to check is that Nash equilibrium requires optimal action (se-

quential rationality) on the path of play - so, it is silent on behavior on information sets that

are not reached. The extra thing that PBE brings is optimal behavior on information sets

that are not reached for some belief. Hence, σ is Nash equilibrium if and only if for every

Player i (i) there are beliefs µi that are Bayesian given σ−i and (ii) for each information set

U j
i with Pσ(U

j
i ) > 0, we have σi is sequentially rational given σ−i and µi. Hence, PBE is a

refinement of Nash equilibrium.

Theorem 28 Every PBE is a Nash equilibrium.

However, PBE allows for any arbitrary beliefs off equilibrium path. This can lead to

unsatisfactory predictions in certain games. The following example illustrates this. Consider

the game in Figure 18. In this game, what beliefs of Player 2 induce him to play ℓ? Suppose

he puts µ probability on his left decision vertex and (1 − µ) on the other. Then, his payoff

by playing ℓ is 2 − µ and his payoff from playing r is 3 − 4µ. So he plays ℓ if µ > 1
3
, r if

µ < 1
3
, and mixes ℓ and r otherwise. But Player 1 plays his dominant strategy D in his
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second information set. So, what should Player 1 play in PBE in the first information set?

Suppose he mixes αL+(1−α)R, where α > 0. Then, µ = 1 is the only Bayesian belief - note

this information set is reached in equilibrium now. Then Player 2 must play ℓ. This means

that α = 1. If Player 1 plays R, then any belief is allowed for Player 2. But for Player 1 to

choose R in equilibrium, Player 2 must play r - if he plays ℓ, then he is better of choosing L

and then D to get payoff 2. For Player 2 to play r, the belief should be µ ≤ 1
3
. There are

other PBE where Player 2 mixes also.

Now, let us consider the PBE ((R,D), r;µ ≤ 1
3
). It is not reasonable to assume that

Player 2 plays r in his information set since he knows that U is never played by Player

1. Another amazing feature of this game is its subgame perfect equilibrium. The subgame

starting with the second information set of Player 1 has one Nash equilibrium - Player 1

chooses his dominant strategy D and Player 2 best responds with ℓ. Given this, Player

1 chooses L in the first information set. Hence, ((L,D), ℓ) is a unique subgame perfect

equilibrium of this game. Thus, the PBE is not a refinement of subgame perfect equilibrium.

Player 1

Player 1

Player 2

(2, 1)

ℓ

(−2,−1)

r

D

Player 2

(−5, 2)

ℓ

(−5, 3)

r

U

L

(0, 2)

R

Figure 18: Problems with PBE

19.2 Sequential Equilibrium

To get rid of this unpleasant feature of PBE, a refinement is proposed. The refinement aims

to put some consistent beliefs on information sets that are not reached in equilibrium.
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Definition 37 An assessment (σ, µ) is a sequential equilibrium if

1. µ is consistent given σ: There exists a sequence of completely mixed strategy profile

{σk}k such that (i) limk σ
k = σ and if µk are the unique Bayesian beliefs for σk, then

limk µ
k = µ.

2. σ is sequentially rational given µ.

The extra condition here from PBE is consistency, which requires that if Players make

some small mistakes from equilibrium, the beliefs should be close to the Bayesian beliefs

corresponding to those small mistakes. Note that the sequence we construct need not be

unique, and different sequences may lead to different beliefs.

In extensive form games with imperfect information, the one-shot deviation principle con-

tinues to hold. Hence, in such games, it is enough to check for deviations at one information

set at a time.

The following theorem, whose proof we skip, establishes that a sequential equilibrium is

refinement of subgame perfect equilibrium.

Theorem 29 Every sequential equilibrium is a subgame perfect equilibrium. Every com-

pletely mixed strategy Nash equilibrium is a sequential equilibrium.

The second part of Theorem 29 follows trivially by taking the sequence of strategies same as

the equilibrium strategy.

Let us now revisit the game in Figure 18. First, look at the subgame perfect equilibrium

((L,D), ℓ). If we consider mixed strategies, where σk
1 (R) = ǫkR, σ

k
1 (L) = 1− ǫkR and σk

1 (D) =

1− ǫkD, σ
k
1(U) = ǫkD. Then,

µ =
(1− ǫDk )(1− ǫkR)

1− ǫkR
→ 1.

Note that perturbation of Player 2’s strategy is not necessary here. Hence, µ = 1 is a

consistent belief given this strategy profile. We already know that this strategy profile is

sequentially rational given µ. Hence, it is a sequential equilibrium.

Now, can there be a sequential equilibrium where Player 1 chooses (R,D) and Player

2 chooses r. If we perturb the strategies of Player 1, then we reach the information set of

Player 2 with positive probability where the belief on the (L,D) decision vertex must be

very high. As a result, Player 2 must choose ℓ here to be sequentially rational. Hence, no

sequential equilibrium will choose Player 2 playing r with positive probability if Player 1

plays (R,D).

A comment about existence of PBE and sequential equilibrium is that if games have

perfect recall, then these equilibria always exist.
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Nature

Agent 1Agent 2

Agent 2

Agent 2

Agent 2

U

D

U

D

U

DD

U

EN

EN

High

Low

p = 0:8

1− p = 0:2

2; 1

2; 0

4; 0

2; 1

5; 4

3; 1

2; 0

3; 1
Agent 1

Figure 19: Signaling game

19.3 Example: A signaling game

We give an example to illustrate the notions of PBE and sequential equilibrium. This

example is usually called a simpler version of the signaling game. There are two agents in

this example - see Figure 19. Agent 1 has two types - High or Low, their probabilities are

as shown in Figure 19. Agent 1’s type is not observed by Agent 2 but his action, which is

either N or E, is observable by Agent 2. After observing Agent 1’s action, Agent 2 takes an

action, which is either U or D. The payoffs are as shown in Figure 19.

We now compute some of the PBE of this game. Before doing so, we observe that Agent

1 of type High strictly prefers E to N. Hence, in any PBE, Agent 1 must choose E at his

decision vertex corresponding to High type. We now look at various PBE of this game.

Denote the belief of Agent 2 on his left information set as µL for the top decision vertex and

1 − µL for the bottom decision vertex. Similarly, denote the belief of Agent 2 on his right

information set as µR for the top decision vertex and 1− µR for the bottom decision vertex.

• Separating PBE. High type Agent 1 chooses E but Low type Agent 1 chooses N. If

such a PBE exists, then all the information sets of Agent 2 is reached in equilibrium. By

Bayesian rationality, Agent 2’s belief must satisfy: µL = 0, µR = 1. Then, sequential

rationality of Agent 2 implies that he must choose D in the left information set and U

in the right information set. Finally, we verify that Agent 1 is sequentially rational. As

argued, the High type choosing E is sequentially rational. For the Low type, choosing

N gives a payoff of 2 and choosing E gives a payoff of 2 also. Hence, Agent 1’s strategy
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is sequentially rational. So, we can describe the separating PBE as:

(High : E,Low : N,Left : D,Right : U, µL = 0, µR = 1).

This PBE is trivially a sequential equilibrium since every information set is reached

with positive probability in this equilibrium.

• Pooling PBE. Both High and Low type Agent 1 choose E. If such a PBE exists,

then left information set of Agent 2 is not reached in equilibrium and right information

set is reached with probability 1. By Bayesian rationality, Agent 2’s belief in right

information set must be: µR = p = 0.8. Then, sequential rationality of Agent 2 in

the right information set implies he must choose U: choosing U gives a payoff equal to

0.8(4) compared to a payoff of 1 by choosing D. For Agent 1 to choose N when he is of

Low type, Agent 2 must choose D - this is because if Agent 2 chooses U, then Agent

1 is better off choosing N when he is of Low type. So, sequential rationality of Low

type Agent 1 forces Agent 2 to choose D in his left information set. But such a choice

is possible with sequential rationality if 1− µL ≥ µL or µL ≤ 0.5.

Hence, there is a class of pooling PBE:

(High : E,Low : E,Left : D,Right : U, µL ≤ 0.5, µR = p = 0.8).

Any such PBE is also a sequential equilibrium. Fix a particular PBE with a particular

value of µL. For this, we think of a perturbation of Agent 1’s actions to reach the left

information set of Agent 2. But this perturbation must generate beliefs µL in the limit.

A possible way to generate this belief is to choose perturbations as follows:

High : ǫ′N + (1− ǫ′)E;Low : ǫN + (1− ǫ)E,

where ǫ′ = ǫ µL

4(1−µL)
. Notice that this choice of ǫ and ǫ′ exactly generates µL belief

by Bayesian rationality. Hence, as ǫ → 0 (and, hence, ǫ′ → 0), we get the beliefs

approaching µL.

• Mixing at Low type. High type Agent 1 chooses E but Low type agent mixes N

and E. If such a PBE exists, then let Low type Agent 1 mixes as σEE + (1 − σE)N ,

where σE ∈ (0, 1). As a result, all information sets of Agent 2 is reached in equilibrium.

Bayesian rationality implies that

µL = 0, µR =
0.8

0.8 + 0.2σE
.
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Then, sequential rationality of Agent 2 requires that he must choose D in the left

information set. Sequential rationality of Agent 1 at Low type requires that he must

be indifferent between N and E (because he mixes). This is only possible if Agent 2

chooses U at his right information set. But then, 4µR ≥ 1 or 3.2 ≥ 0.8 + 0.2σE or

σE ≤ 1.2, which is always true. Hence, independent of the mixing probability of Agent

1 of Low type, Agent 2 prefers U at his right information set. So, for any σE ∈ (0, 1),

we have the following PBE:

(High : E,Low : σEE + (1− σE)N,Left : D,Right : U, µL = 0, µR =
0.8

0.8 + 0.2σE
).

Since every information set is reached with positive probability in such PBE, they are

also sequential equilibria.

20 Repeated Games

20.1 Basic Ideas - The Repeated Prisoner’s Dilemma

Consider the Prisoners’ Dilemma (PD) game in Table 25. Recall that a dominant strategy

equilibrium of this game is (L1, L2), and it is the unique Nash equilibrium of the game.

L2 R2

L1 2,2 6,1

R1 1,6 5,5

Table 25: Prisoner’s Dilemma

Now, suppose the game is played twice with the actions at the end of every stage is

observed by all the players, and the payoff of a player at the end of the game is the sum

of payoff at the end of each stage. The game can be represented in extensive form now. A

subgame perfect equilibrium of this extensive form game requires that the players play a

Nash equilibrium in the second stage, and they play a Nash equilibrium of the entire game.

Since the unique Nash equilibrium of the game is (L1, L2), the players will play (L1, L2) in

second stage in any subgame pefect equilibrium. Given this, the players now know that they

will get a payoff of 1 in the second stage. So, the we can add (1, 1) to the payoff matrix in the

first stage, and then compute a Nash equilibrium. This still gives a unique Nash equilibrium

of (L1, L2). Hence, the outcome of this game in a subgame perfect equilibrium is (L1, L2).

This argument can be generalized. Let G = (N, {Ai}i∈N , {ui}i∈N ) denote a strategic-form
game of complete information. The game G is called the stage game of the repeated game.
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Definition 38 Given a stage game G, let G(T ) denote the finitely repeated game in

which G is played T times with actions taken by of all players in the preceding stages observed

before the play in the next stage, and payoffs of G(T ) are simply the sum of payoffs in all T

stages.

Our arguments earlier lead to the following proposition (without formally defining notions

of equilibrium).

Proposition 1 If the stage game G has a unique Nash equilibrium, then for any finite

repetition of G, the repeated game G(T ) has a unique subgame perfect outcome: the Nash

equilibrium of the stage game G is played in every stage.

There are two important assumptions here: (a) the stage game has a unique Nash equilibrium

and (b) the stage game is repeated finite number of times. We will see that if either of the

two assumptions are not present then it is possible for players to get better payoffs.

We now modify the PD game by introducing a new strategy for every player. The new

PD game is shown in Table 26. There are two Nash equilibria of this game: (L1, L2) and

(R1, R2).

L1 M1 R1

L2 1,1 5,0 0,0

M2 0,5 4,4 0,0

R2 0,0 0,0 3,3

Table 26: A Game with Multiple Nash Equilibrium

Now, suppose the stage game in Table 26 is repeated twice. Then, using the arguments

earlier, we can say that in every stage playing either of the Nash equilibria is subgame perfect.

But, we will show that there exists a subgame perfect equilibrium in which (M1,M2) is played

in the first stage.

Consider the following strategy of the players: if (M1,M2) is played in the first stage, then

play (R1, R2) in the second stage; if any other outcome happens in the first stage, then play

(L1, L2) in the second stage. This means, in the first stage of the game, the players are looking

at a payoff table as in Table 27, where second stage payoff (3, 3) is added to (M1,M2) and

second stage payoff (1, 1) is added to all other strategy profiles. The addition of different

payoffs to different strategy profiles changes the equilibria of this game. Now, we have

three pure strategy Nash equilibria in Table 27: (L1, L2), (M1,M2), and (R1, R2). Hence,

((M1,M2), (R1, R2)) constitute a subgame perefect equilibrium of this repeated game. Thus,
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existence of multiple Nash equilibrium in the stage game allowed us to achieve cooperation

in the fist stage of the game. Notice that (M1,M2) is not a Nash equilibrium of the stage

game.

L1 M1 R1

L2 2,2 6,1 1,1

M2 1,6 7,7 1,1

R2 1,1 1,1 4,4

Table 27: Analyzing Payoffs of First Stage

This is part of a general argument: if G is a static game of complete information with

multiple Nash equilibria, there may be subgame perfect outcomes of the finitely repeated

game G(T ) in which for any stage t < T , the outcome in stage t is not a Nash equilibrium.

20.2 A Formal Model of Infinitely Repeated Games

Let G ≡ (N, {Ai}i∈N , {ui}i∈N) be a strategic form game. When we repeat such a stage

game G, we will assume that players observe all the actions taken in each period. At any

period, let at denote the action profile chosen by players. The sequence of actions profile

(a1, . . . , at−1) that leads to current period will be called the history of period t.

An infinitely repeated game of G is defined by G∞ ≡ (G,H, {u∗i}i∈N), where

• H = ∪∞
t=1A

t are the set of all possible histories, with A1 ≡ ∅ denoting the null history,

At denoting the possible histories till period t, and A∞ denoting all infinite length

histories.

• u∗i : A
∞ → R+ for every i ∈ N is a utility function that assigns every infinite history a

payoff for Player i.

A history is terminal if and only if it is infinite. Note that an infinitely repeated game is

a special type of infinite extensive game.

Strategies in a Repeated Game.

What is a strategy of a player in an infinitely repeated game? Remember, a strategy

needs to assign an action for every possible situation. This means that we need to assign an
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action at every period for every possible history. Thus, strategy of Player i is a collection of

infinite maps {sti}∞t=1, where

sti : A
t → Ai.

Since a strategy seems to be a really complicated (infinite) object here, it is difficult to

imagine it. One easy way to think of a strategy is a machine (or automaton). The machine

for Player i has the following components.

• A set Qi of states.

• An element q0i ∈ Qi, indicating the initial state.

• A function fi : Qi → Ai that assigns an action to every state.

• A transition function τi : Qi × A → Qi that assigns a state for every state and every

action profile.

States represent situations that Player i cares about. We give an example showing how

a strategy in Prisoner’s Dilemma can be modeled as a machine. The strategy we consider is

called a trigger strategy. It chooses the cooperate action C as long as the history consists

of all players choosing C. Else, it chooses D. We only care about two states here: whether

everyone chosen C in the past or not. We will denote this as C and D respectively. Since we

want to choose C in the first period, we set q0i := C. Now, fi(C) = C and fi(D) = D. The

transition function looks as follows:

τi(C, (C,C)) = C, τ(X , (X, Y )) = D if (X , (X, Y )) 6= (C, (C,C)).

This is an example of a strategy which is relatively simple. Note that the number of

states here is finite. As one can see that we can construct strategies that care about more

number of states (possibly infinite). For our purposes, the kinds of strategies that we will

use will require machines with finite state space.

Payoffs in Repeated Games.

Fix a strategy profile of players s ≡ (s1, . . . , sn). This strategy profile leads to outcomes

in each stage/period. Denote by vti , the payoff due to this strategy profile in period t. So,

agent i has an infinite stream of payoffs {vti}∞t=1 from this strategy profile. Similarly, if there

is another strategy profile s′, then it will generate an infinite stream of payoffs {wt
i}∞t=1. As a

result, if Player i has to compare outcomes of two strategy profiles, it compares two infinite

streams of payoffs: {vti}∞t=1 and {wt
i}∞t=1.
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There are many ways to make this comparison. The most standard way is to use a

discounted criterion. In this way, we have a discount factor δ ∈ (0, 1) which is same for all

the players. Player i attaches a payoff equal to

∞
∑

t=1

δt−1vti ,

to the payoff stream {vti}∞t=1. For instance, if there is a payoff stream that generates payoffs

v ≡ (1, 1, 1, . . .), then the payoff from this stream is 1(1+ δ+ δ2+ . . .) = 1
1−δ

. Note that even

though the payoff is 1 in each period, we get a higher payoff overall. It is often convenient

to assign a payoff of

(1− δ)
∞
∑

t=1

δt−1vti ,

to the payoff stream {vti}∞t=1. This normalizes the payoff and makes it easy to compare it

with the stage game payoff. Note that comparisons across two infinite stream of payoffs still

remain the same.

Obviously, discounting puts different weights on payoffs of different periods. Particularly,

future is valued less than present. Note that changes in payoff in a single period may matter

in the discounting criteria. To see this, compare v ≡ (1, 1, . . .) and w ≡ (1+ǫ, 1−ǫ, 1−ǫ, . . .),
where ǫ ∈ (0, 1). Payoff from v is 1 and payoff from w is (1+ǫ)(1−δ)+(1−ǫ)δ = 1+ǫ−2ǫδ =

1 + ǫ(1− 2δ). This is greater than 1 if and only if δ > 1
2
. 6

Similarly, look at the payoff streams v ≡ (1,−1, 0, 0, . . .) and w ≡ (0, 0, 0, . . .). The

payoff from w is zero but the payoff from v is (1 − δ)2. Hence, for any δ ∈ (0, 1), v is

preferred to w. However, consider the stream v′ ≡ (−1, 1, 0, 0, . . .). This generates a payoff

of (1− δ)(−1 + δ) = −(1− δ)2. Hence, v′ is worse than w. This shows that the discounting

puts more emphasis on current payoffs than future payoffs.

This is contrasted in the following two streams of payoffs v ≡ (0, 0, 0, . . . , 1, 1, 1, . . .) and

w ≡ (1, 0, 0, . . .). The payoff stream v has M zeros and then all 1s. The payoff from v is δM

and from w is (1 − δ). For every δ, there is a M such that w is preferred to v. But for a

fixed M , we can find δ close to 1 such that v is preferred to w.

Given a strategy profile, s ≡ (s1, . . . , sn), we get a unique stream of action profiles {at}∞t=1

associated with this strategy profile. Note how this action profile is obtained - first, each

player i plays a1i := s11(∅). Having generated the action profiles ht ≡ (a1, . . . , at−1), player i

6Sometimes, discounting is interpreted differently. A discount δ means that the stage game continues to

next period with probability δ.
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plays ati ≡ sti(h
t). From this, we can compute the utility of Player i as

u∗i (s) := (1− δ)

∞
∑

t=1

δt−1ui(a
t).

Having defined strategies and payoffs, we are now ready to define the equilibrium concepts

for repeated games.

Definition 39 A strategy profile s ≡ (s1, . . . , sn) is a Nash equilibrium of the infinitely

repeated game G∞ if for every i ∈ N , for every s′i, we have

u∗i (si, s−i) ≥ u∗i (s
′
i, s−i).

A strategy profile s is a subgame perfect equilibrium if its restriction from any period t

is a Nash equilibrium of the subgame starting from that period.

20.3 Folk Theorems: Illustrations

There are two interesting take-aways from the results of repeated games. First, repeated

games allow for a large set of payoffs to be achieved in Nash and subgame perfect equilibrium.

Such theorems are called Folk Theorems. The second take-away is the kind of strategies

that support such equilibrium payoffs. Such strategies are very common in many social

interactions. To be able to establish folk theorems using such common real-life strategies

give a strong foundation for such results.

We will now illustrate the basic idea behind the folk theorems using the Prisoner’s

Dilemma example - see Table 28. We first show that there are subgame perfect equilib-

ria where cooperation can be achieved.

L2 R2

L1 1,1 -1,2

R1 2,-1 0,0

Table 28: Prisoner’s Dilemma

Proposition 2 Suppose δ ≥ 1
2
. Then, there is a subgame perfect equilibrium in the Pris-

oner’s Dilemma game (Table 28), where both the players play (L1, L2) in every period.

Proof : We describe the following strategy. Each player i follows Li if the history consists

of both players playing (L1, L2). If the history is different from (L1, L2) play in each period
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in the past, i plays Ri. The strategy stated here is called a trigger strategy. Fix Player 1 and

assume that Player 2 is following the trigger strategy stated in the Proposition. We show

that following the trigger strategy is optimal for Player 1. We need to consider two types of

subgames.

Case 1. We consider a subgame where the history so far has been (L1, L2). In that case,

following L1 gives Player 1 a payoff of 1. Playing R1 in some periods has the following

consequence. In the first period he plays R1 he gets a payoff of 2 since Player 2 plays L2.

But in subsequent periods Player 2 plays R2. So, he gets a maximum payoff of 0. As a

result, his payoff is less than (1− δ)
(

1+ δ+ . . .+ δt−1 +2δt
)

, where t is the first period from

this subgame where he deviates. Remember the truthful payoff stream is (1, 1, 1, . . .). The

deviated payoff stream payoff is less than the payoff stream (1, 1, . . . , 2, 0, 0, 0, . . .). Then, it

is sufficient to compare the payoff streams (1, 1, 1, . . .) and (2, 0, 0, . . .). The later one gives

a payoff of 2(1− δ). But δ ≥ 1
2
implies that 1 ≥ (1 − δ)2. Hence, no deviation is profitable

in this subgame.

Case 2. We consider a subgame where the history involves action profiles other than

(L1, L2). In that case, Player 2 is repeatedly playing R2 in this subgame. But if Player 2 is

playing R2, Player 2 gets a payoff stream of (0, 0, . . .) by Playing R1 in every period but gets

a payoff stream where in every period he gets payoff less than or equal to 0 by playing some

other strategy.

Hence, the specified strategy is a Nash equilibrium in this subgame. �

20.4 Nash Folk Theorem

The trigger strategies used in Proposition 2 can be used to establish a general result about

what payoffs can be achieved in a Nash equilibrium of G∞.

The important payoff for folk theorems is the minmax value. Define the minmax value

of player i in the stage game G as

vi = min
a−i

max
ai

ui(ai, a−i),

where (ai, a−i) denotes an action profile of the stage game. 7 This is the minimum payoff

player i can be held to by its opponents (using pure actions), given that he plays best response

7The minmax and maxmin payoff of a player can be quite different. Please construct examples to see that

the minmax is different from maxmin. In the early parts of the lectures, I used v
i
to denote the maxmin
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to the action profile a−i. Let ui(ai, a−i) = vi for player i. Then, we call a−i the minmax

action profile against player i.

The reason minmax values are important is the following lemma.

Lemma 6 Player i’s payoff is at least vi in any pure action Nash equilibrium of the stage

game G and the infinitely repeated game G∞, regardless of the value of δ.

Proof : Let a be a Nash equilibrium of the stage game. Then for every i ∈ N ,

ui(a) = max
ai

ui(ai, a−i) ≥ max
ai

min
a′
−i

ui(ai, a
′
−i) = vi.

Hence, Player i’s payoff is at least vi in any Nash equilibrium of the stage game.

Now, suppose player i plays a best response to the actions of other players in each period

of G∞. This guarantees him vi in every period irrespective of the strategy played by other

players. Hence, a player i is guaranteed of a payoff of vi by this strategy in G∞. So, any

strategy that does not guarantee vi will have a deviation where Player i just best responds

to the actions of other players in every period. �

Hence, Player i is guaranteed to get at least vi payoff in any pure action Nash equilibrium

of the repeated game.

Definition 40 A payoff profile v = (v1, . . . , vn) is strictly enforceable if for every i ∈ N ,

we have vi > vi.

We now give a weaker version of Folk Theorem.

Theorem 30 (Pure Nash Folk Theorem) Suppose v is a strictly enforceable payoff pro-

file and there exists an action profile a in the stage game G such that ui(a) = vi for all i ∈ N .

Then, there exists a δ, such that for all δ ≥ δ, there is a Nash equilibrium of G∞ with discount

δ where a is played in every period.

Proof : Suppose v is a strictly enforceable feasible payoff profile and there exists an action

profile a in the stage game G such that ui(a) = vi for all i ∈ N . Consider the following

strategy. It is described by three states: (a) normal state (b) i-punishment state, and (c)

more-punishment state. The initial state is normal state. In normal state, the strategy

recommends playing ai to each Player i. Now, we inductively define the states at every

payoff of Player i in a strategic form game, but here I use it for minmax payoff of Player i. I apologize for

this confusion.
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history. For every history, there is a unique predecessor history where actions lead to the

current history. If the predecessor history is normal and everyone plays the recommended

action profile a, then the state remains normal.

If the predecessor history is normal and a single player i does not play ai, then the

current history becomes i-punishment state. If the predecessor history is i-punishment, then

the current history remains i-punishment irrespective of the action taken by the players. In

the i-punishment state, the strategy recommends playing the minmax action profile of Player

i.

If the predecessor history is normal and more than one player do not play a, then the cur-

rent history becomes more-punishment state. If the predecessor history is more-punishment,

then the current history remains more-punishment irrespective of the action taken by the

players. In the more-punishment state, the strategy recommends playing a fixed action

profile - this need not minmax any particular player.

The strategy is shown in Table 29.

Predecessor state Action profile in predecessor Current state Recommended action profile

Normal a Normal a

Normal (a′i, a−i) i-punishment Minmax for Player i

Normal (a′S, aN\S) with |S| > 1 more-punishment Any fixed action profile

i-punishment a′ i-punishment Minmax for Player i

more punishment a′ more punishment Any fixed action profile

Table 29: Trigger strategy for Nash folk theorem

To see this strategy profile can be sustained in Nash equilibrium, first observe that the

payoff from equilibrium is vi for Player i. Suppose all the other players except i follows

the prescribed strategy. Let v̄i = maxa′i∈Ai
ui(a

′
i, a−i). If Player i deviates, then he gets a

maximum payoff of v̄i. This maximum payoff he gets in the first period he deviates and

thereafter he is punished, and hence, gets a payoff of vi. Hence, if he deviates in period t,

his maximum possible payoff from deviation is

(1− δ)
(

vi + δvi + . . .+ δt−1v̄i + δtvi + δt+1vi + . . .
)

For deviation to be not profitable, we need to ensure that

vi ≥ (1− δ)
(

vi + δvi + . . .+ δt−1v̄i + δtvi + δt+1vi + . . .
)

.

Expanding the LHS, we get

(1− δ)
(

vi + δvi + δ2vi + . . .
)

.
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Canceling common terms in expanded LHS and RHS, we need to ensure that

δt−1v̄i + δtvi + δt+1vi + . . . ≤ δt−1vi + δtvi + δt+1vi + . . . .

This means, we need to ensure that v̄i(1− δ) + δvi ≤ vi.

This is equivalent to ensuring

δ ≥ v̄i − vi
v̄i − vi

.

Define

δ :=
v̄i − vi
v̄i − vi

.

Note that by assumption v̄i > vi > vi. Hence, δ ∈ (0, 1). This proves the claim. �

The exact version of folk theorems will be discussed later - they involve use of mixed

behavior strategies by players.

One of the issues with the Nash folk theorem is the strategies required to sustain the

Nash equilibrium is very extreme - it requires you to punish the deviant for infinite number

of periods. This may not be a reasonable threat. For instance, consider the game in Table

30. Theorem 30 says that (T, L) is achievable in Nash equilibrium of G∞ for sufficiently

patient players as long as the Column player can punish deviations by action R. This will

hurt the Row player but the Column player is also badly hurt. This motivates the next set

of results that require subgame perfect equilibrium - even punishments need to happen in

equilibrium.

L R

T 6,6 0,-100

B 7,1 0,-100

Table 30: A Stage game

20.5 The One-Shot Deviation Principle

The one-shot deviation principle is a useful tool in the repeated games setting. Two strategies

si and s
′
i are one-shot deviations of each other if they differ from each other by actions chosen

at one period for one history, i.e., sti(h
t) 6= s̄ti(h

t) but st
′

i (h
t′) = s̄t

′

i (h
t′) for all (t′, ht

′

) 6= (t, ht).

The one-shot deviation principle says that, fixing Player i and strategies s−i of other players,

if strategy si of Player i is optimal over all strategies s̄i that are one-shot deviations from si,

then it is optimal over all strategies.
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To see why the one-shot deviation principle is true, consider Player i by fixing the strate-

gies of other players at s−i. Suppose strategy si is optimal over all one-shot deviations.

Suppose another strategy s′i differs from si at finite set of decision vertices (i.e., periods

and histories). Then, we go the last period t where si and s
′
i differ at some history ht. In

this subgame, si and s′i differ from each other by one-shot deviation. Hence, s′i cannot be

profitable in this subgame. So, all the gains from s′i must be occurring before this period.

So, we restore s′i to si in all histories in this period. We inductively repeat this procedure to

reach a stage where si and s
′
i are one-shot deviations. This is the same argument we have

done for the backward induction procedure. Indeed, we did not use any specifics of repeated

games in this argument.

The difference here is that si and s′i can differ from each other at infinite number of

decision vertices. Here, the discounted criteria of repeated games rescue us. Suppose strategy

si is suboptimal. Then, there is some history ht after which Player i can make a sequence of

different moves than those prescribed by si. If the number of such different moves is finite,

the previous argument applies. Else, let γ be the gain of Player i from this deviation, which

starts in period t at history ht. Let M be the best conceivable one-period gain in payoff

to Player i by deviating from si. Choose a period s > t such that δs−tM < γ

2
- note that

since M is finite and δ ∈ (0, 1), we can find such a s. Note that δs−tM is the maximum

possible payoff gain from period s onwards - here, instead of multiplying the payoff in period

t by δt−1, we multiply by 1 as if the game started from period t. Thus, gain from period s

onwards cannot be more than γ

2
. So, gain from period t to s must be at least γ

2
. So, si can

be modified at finite decision vertices such that we get a new strategy s′′i that is better than

si. Moreover, s′′i differs from si at finite histories. But this contradicts our earlier argument

that one-shot deviation principle guarantees deviations at finite decision histories.

20.6 Perfect Folk Theorem - Reversion to Nash

To make punishments credible, we must require Nash equilibrium at every subgame. This is

the main motivation for using subgame perfect equilibrium. For every history, players must

be playing Nash equilibrium actions. The following is quite immediate.

Proposition 3 Suppose a is a Nash equilibrium of G. Then playing a at every period for

every history is a subgame perfect equilibrium of G∞.

Proof : This follows from the one-shot deviation principle. If this strategy is not subgame

perfect equilibrium, then there is some history ht at which a Player i has a one-shot deviation,

104



where he plays a′i. But the payoff from such a deviation only differs from the the prescribed

strategy by ui(ai, a−i)− ui(a
′
i, a−i), which is positive because a is a Nash equilibrium. This

completes the proof. �

Now, denote by v∗i the worst payoff of Player i over all Nash equilibria action profiles in

G. We are now ready to state a mild version of the perfect folk theorem.

Theorem 31 (Pure Perfect Folk Theorem with Nash Reversion) Suppose a is any

action profile such that ui(a) > v∗i for all i ∈ N . Then, there exists a δ ∈ (0, 1) such that for

all δ ∈ (δ, 1), there is a subgame perfect equilibrium of G∞ where a is played in every period

on equilibrium path.

Proof : We describe a strategy that is a subgame perfect equilibrium. The strategy classifies

each history into three possible states: (a) normal state, (b) i-punishment state (c) more-

punishment state. If the state is normal then strategy recommends to play a.

The first period, null history is normal state. Now, we inductively define the state of

any history. For every history in period t, there is a unique history in period (t− 1), where

actions taken will lead to the history in period t. Call this the predecessor history. For

every history, if the predecessor history is normal and a is played, then the current history

becomes normal. If the predecessor state is normal and ai is not played by a single player i

but others play a−i, then the state becomes i-punishment state. If the predecessor history is

normal and more than one player do not play a, then the state becomes more-punishment

state. If the predecessor state is i-punishment, it stays i-punishment and if the predecssor

state is more-punishment, it stays more-punishment. In the i-punishment state, the strategy

recommends playing the Nash equilibrium action profile of the stage game that gives Player i

payoff v∗i . In the more-punishment state, the strategy recommends playing some fixed Nash

equilibrium action profile of the stage game. Denote this strategy as s. The strategy is

shown in Table 31.

Predecessor state Action profile in predecessor Current state Recommended action profile

Normal a Normal a

Normal (a′i, a−i) i-punishment Nash for v∗i
Normal (a′S, aN\S) with |S| > 1 more-punishment Any fixed Nash

i-punishment a′ i-punishment Nash for v∗i
more punishment a′ more punishment Any fixed Nash

Table 31: Trigger strategy for perfect Folk Theorem
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In any history which is either a i-punishment state or a more-punishment state, the strat-

egy recommends playing a Nash equilibrium. By Proposition 3, this is a Nash equilibrium

of this subgame.

The only complicated history is the one which is in normal state. Fix a Player i and

suppose others are following s−i. If Player i follows si, then he gets a payoff of ui(a). By

the one-shot deviation principle, we need to check deviations in one history of this subgame.

Suppose Player i deviates and plays another action a′i in some period. He gets a payoff of

ui(a
′
i, a−i) in this period, but we move to i-punishment state in the subsequent periods. As

a result, he gets a payoff of v∗i after that. Hence, his payoff from deviation is

(1− δ)ui(a
′
i, a−i) + δv∗i .

Hence, to be a subgame perfect equilibrium, we will need that

ui(a) ≥ (1− δ)ui(a
′
i, a−i) + δv∗i .

This can be assured if we make sure the following holds:

ui(a) ≥ (1− δ) max
a′′i ∈Ai

ui(a
′′
i , a−i) + δv∗i .

Denote maxa′′i ∈Ai
ui(a

′′
i , a−i) = di(a−i). Then, we need to ensure that ui(a) ≥ (1−δ)di(a−i)+

δv∗i . This is true if

δ ≥ di(a−i)− ui(a)

di(a−i)− v∗i
= δ.

Note that di(a−i) ≥ ui(a) > v∗i ensures that δ ∈ [0, 1). In other words, for δ ∈ [δ, 1), the

recommended strategy is a subgame perfect equilibrium. This completes the proof. �

20.7 Exact Versions of the Folk Theorems

Exact version of the Nash folk theorem and perfect folk theorem says that every strictly

enforceable feasible payoff can be attained as a Nash equilibrium. The same statement is

true for subgame perfect equilibrium under some additional conditions of the feasible payoff

state.

Definition 41 A payoff profile v ≡ (v1, . . . , vn) is feasible if for every action profile a in

the stage game G, there exists λa ∈ [0, 1] with
∑

a′ λa′ = 1 and for every i ∈ N

vi =
∑

a′

λa′ui(a
′).
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The set of all feasible payoff profiles is denoted as Conv(V ). These are payoffs that can

be obtained by taking convex combination of different pure action profiles. In particular, if

V = {v : v = u(a) ∀ a ∈ A}, then Conv(V ) is just the convex hull of V - all vectors obtained

by taking convex combination of vectors in V .

One way to interpret the feasible payoffs is that these are all the payoffs that can be

obtained by playing correlated strategies. Correlated strategies require a public randomiza-

tion device. So, achieving payoffs in Conv(V ) requires public randomization. This requires

mixed/correlated behavior strategies. A mixed behavior strategy of an agent chooses a mixed

action profile at every period. Now, the minmax payoff is determined using mixed action

profiles. The problem with mixed actions is that it is difficult to detect deviations. This

has led to a wide literature on monitoring technologies in repeated games. We give some

informal idea about how the folk theorems look.

L R

T 3,0 1,-2

B 5,4 -1,6

Table 32: A Stage game

Consider the game in Table 32. We draw its feasible payoff vector in Figure 20. The

minmax values of both the players are also shown in Figure 20. It is possible that the number

of extreme points of this polytope is less than the number of action profiles. Check for a

game with two players and two pure actions with payoffs: (1, 1), (2, 2), (3, 3), (4, 4). Here,

the feasible payoff vector set is a straight line joining (1, 1) and (4, 4).

It is clear that any action profile of the stage game leads to a feasible payoff vector. But

if the players choose their mixed actions independently, then it is possible that some feasible

payoff vector may not be attained - this is something we have seen earlier.

For this reason to achieve any payoff in the feasible payoff vector, the players should

use public randomization device, and everyone observes the outcome of this device, and play

a strategy according to this. The public randomization device randomizes amongst the

(pure strategy) payoff vectors of the stage game. Based on the payoff vector chosen by the

randomizing device, everyone chooses the corresponding strategy. An analogous proof to

Theorem 30 and its subgame perfect version using public randomization device can be done

to establish the exact folk theorems. They will say that every strictly enforceable feasible

payoff can be achieved in Nash and subgame perfect equilibrium. The subgame perfect

version of these theorems use more detailed “punishment and reward” strategies and extra

technical condition. We state the theorem without a proof - the theorem is due to Fudenberg
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Player 1’s Payoff

Player 2’s
Payoff

1,0

1,−2

−1,6

5,4

3,0

Minmax Payoff Vector

Feasible Payoff Polytope

Nash Reversion Region

Figure 20: Feasible Payoff Vectors and Minmax Values

and Maskin.

Theorem 32 Suppose either Conv(V ) has dimension n or n = 2. Then, for every strictly

enforceable feasible payoff vector, there is a discount factor (sufficiently close to 1) such that

the infinitely repeated game generates the same payoff vector in a subgame perfect equilibrium.

The proof of theorem uses a different type of strategy, which we illustrate below using an

example. The stage game is shown in Table 33.

L C R

T 2,2 2,1 0,0

M 1,2 1,1 -1,0

B 0,0 0,-1 -1,-1

Table 33: A Stage game

Notice that the minmax payoff vector is (0, 0). The unique pure Nash equilibrium is

(T, L). Using Theorem 31 is not so useful here. But the exact version of the folk theorem as-

sures that (T, L), (T, C), (M,L), (M,C) are possible to get in a subgame perfect equilibrium.

We show below how (M,C) is possible.
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Theorem 33 Suppose δ ≥ 1
2
. Then, there is a subgame perfect equilibrium of the infinitely

repeated game of the stage game in Table 33 such that (M,C) is played in every period in

equilibrium.

Proof : The strategy used classifies each history in each period as two states: (a) normal

state (b) punishment state. A normal state recommends agents to play (M,C) and a pun-

ishment state recommends agents to play (B,R). The initial period (with null history) is a

normal state.

Now, we can inductively define the state of every history. For every history in period

t, there is a history in period (t − 1) that leads to this history, called the predecessor. If

the predecessor is in normal state, and agents play (M,C), the current history (of period t)

becomes a normal state. If the predecessor is in punishment state, and agents play (B,R),

the current history becomes a normal state. Else, the current history becomes punishment

state.

In other words, deviations (both in normal and punishment state) are punished for one

period by staying in punishment state.

Hence, we can classify each history as a normal state or punishment state and look at

deviations in each of them. Since the game is symmetric, we fix Player 1 without loss of

generality and assume that Player 2 follows this strategy. If Player 1 follows the strategy,

then he gets a payoff of 1. We consider two types of subgames.

Normal state. This is a subgame which starts from a normal state history. If the rec-

ommendation is followed, then player 1 gets 1. By the one-shot deviation principle, we only

need to consider deviation in one period. If Player 2 plays C, then the maximum payoff

of Player 1 by deviating is 2 in that period. Since this is a one period deviation, Player 1

follows the strategy from next period onwards. Since the next period will have a punishment

history, he will undergo punishment and receive −1, and then normal state prevails, and he

gets 1 from there onwards. The total payoff from deviation is thus computed as:

(1− δ)
(

2 + δ(−1) + δ2 + δ3 + . . .
)

= (1− δ)(1− 2δ) + 1.

Since δ ≥ 1
2
, this expression is less than or equal to 1. Hence, deviation is not profitable.

Punishment state. This is a subgame which starts from a punishment state history. If

the recommendation is followed, then Player 1 gets punished in this period and gets (−1),

which is followed by normal state that gives 1 in each period. So, the total payoff is

(1− δ)
(

− 1 + δ + δ2 + . . .
)

= 1− 2(1− δ).
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The one-shot deviation will mean that Player 1 deviates in this period. Best deviation is to

play T get 0. But this will result in a punishment in the next period and normal play from

there on. Thus, the resulting payoff is

(1− δ)
(

0 + δ(−1) + δ2 + δ3 + . . .
)

= 1− (1 + 2δ)(1− δ).

Note that since δ ≥ 1
2
, we have 1 + 2δ ≥ 2. Hence, deviation is not profitable.

So, we conclude that deviation in any subgame is not profitable. This implies that the

recommended strategy is a subgame perfect equilibrium. �

The proof of the perfect Folk Theorem uses similar ideas but the punishment phase can

last for more than one period (this is because the result is for general games). The number

of periods the punishments last depend on the parameters of the problem.
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