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1 Games in Strategic Form

A game in strategic form or normal form is a triple Γ ≡ (N, {Si}i∈N , {ui}i∈N) in which

• N = {1, 2, . . . , n} is a finite set of players,

• Si is the set of strategies of player i, for every player i ∈ N - the set of strategy profiles

is denoted as S ≡ S1 × . . .× Sn,

• ui : S → R is a utility function that associates with each profile of strategies s ≡
(s1, . . . , sn), a payoff ui(s) for every player i ∈ N .

Here, the set of strategies can be finite or infinite. When the Si is finite for each i ∈ N ,

we will refer to Γ as a finite game. The assumption is that players choose these strategies

simultaneously in the game, i.e., no player observes the strategies played by other players

before playing his own strategy. Here, simultaneous only means they choose their strategies

independently without observing each others strategies - one can think of a situation where

each player writes down the possible course of action for every possible contingencies in the

future and submit it to the game. Hence, the game itself may involve players moving in

sequence. But the strategic form game analysis says that players write down what they will

do in every possible contingency of the game and they follow this as the game unfolds. For

instance, consider the game of chess, suppose both the players write down what moves they

will play for every possible position of the chess board, and as the game progresses they just

follow this “plan” or “strategy”. So, even though chess is a situation where players move one

after the other, we are analyzing it in strategic form (or, normal form). So, the strategic

form game is a “reduced form” (i.e., looking at situations from the very start) approach at

analyzing strategic interactions.

A strategy profile of all the players will be denoted as s ≡ (s1, . . . , sn) ∈ S. A strategy

profile of all the players excluding a Player i will be denoted by s−i. The set of all strategy

profiles of players other than a Player i will be denoted by S−i.

We give two examples to illustrate games in strategic form.

1. The first game is the game of Prisoner’s Dilemma. Suppose N = {1, 2}. These players

are prisoners. Because of lack of evidence, they have been questioned in separate

rooms and made to confess their crimes. If they both confess, then they each achieve

a payoff of 1. If both of them do not confess, then they can achieve higher payoffs of 2

each. However, if one of them confesses, but the other one does not confess, then the
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confessed player gets a payoff of 3 but the player who does not confess gets a payoff of

0.

What are the strategies in this game? For both the players, the set of strategies is

{Confess (C), Do not confess (D)}. The payoffs from the four strategy profiles can be

written in a matrix form. It is shown in Table 1.

c d

C (1, 1) (3, 0)

D (0, 3) (2, 2)

Table 1: The Prisoner’s Dilemma

2. Two shops are competing to locate themselves on a street - represented by the compact

interval [0, 1]. Suppose consumers are uniformly located on the street. Once shops are

located, the consumers go the nearest shop - with ties broken using a equal probability.

The utility of a shop is the measure of consumers he gets. Here the set of strategies

are the points in [0, 1] - an infinite set. If location of shop 1 is x1 and shop 2 is x2, then

the payoff of shop 1 is

u1(x1, x2) = x1 +
x2 − x1

2
if x1 ≤ x2

u1(x1, x2) = (1− x1) +
x1 − x2

2
if x1 > x2

u2(x1, x2) = 1− u1(x1, x2).

The strategy of a game is a powerful tool for representation. It can potentially represent

many situations. It provides a complete description of actions that need to be taken in all

possible contingencies. As an example, suppose two individuals work every day together on

some project for 2 days. Based on the effort put by the individuals on these days, they

realize payoffs at the end of two days. Here, a strategy is an effort level in Day 1 and an

effort level in Day 2. Players choose such strategies (a combination of effort levels for two

days) and that results in payoffs. Later, we will show that many strategic interactions can

be reduced to such strategic form by specifying the strategies appropriately. As we go along

in the course, we will see that strategies have different meaning and definitions in different

types of interactions agents can have. But, in all such cases, the common thread that will

run is: a strategy will describe what an agent must do in all possible contingencies. One way

to interpret this is that the agent has written down his strategy in an envelope (or, written

down a computer program) that needs to describe his actions in all possible situations that
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can arise. We saw in the chess example, the strategy of a player is a complicated object

when we look at the strategic form.

2 Beliefs of Players

The objective of game theory is to provide predictions of games. To arrive at reasonable

predictions for normal form games, let us think how agents will behave in these games. One

plausible idea is each agent forms a belief about how other agents will play the game and

play his own strategy accordingly. For instance, in the Prisoner’s Dilemma game in Table 1,

Player 1 may believe that Player 2 will play c with probability 3
4
and play d with probability

1
4
. In that case, he can compute his payoffs (using expected utility) from both the strategies:

• from playing C: 3
4
1 + 1

4
3 = 6

4
,

• from playing D: 3
4
0 + 1

4
2 = 2

4
.

Clearly, playing C is better under this belief. Hence, Player 1 will play D given his belief.

Note. From now on, unless stated otherwise, we will assume Si for all i to be finite sets.

Many results, with the help of extra notations and mathematics, extend to the case where

strategy sets are not finite.

Formally, each player i forms a belief µi ∈ ∆S−i, where ∆S−i is the set of all probability

distributions over S−i. Given these beliefs, it computes his utility given his beliefs as:

Ui(si, µi) :=
∑

s−i∈S−i

ui(si, s−i)µi(s−i) ∀ si ∈ Si.

Then it chooses a strategy s∗i such that Ui(s
∗
i , µi) ≥ Ui(si, µi) for all si ∈ Si.

There are two reasons why this may not work. First, beliefs may not be formed, i.e.,

where do beliefs come from? Second, beliefs may be incorrect. Even if agent i believes

certain strategies will be played by others, other agents may not play them. In game theory,

there are two kinds of solution concepts to tackle these issues: (a) solution concepts that

work independent of beliefs and (b) solution concepts that assume correct beliefs. The former

is sometimes referred to as a non-equilibrium solution concept, while the latter is referred to

as an equilibrium solution concept.

3 Domination

The idea of domination is probably the strongest possible prediction of a game. Dominance

is a concept that uses strategies whose performance is good irrespective of the beliefs.
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Definition 1 A strategy si ∈ Si for Player i is strictly dominant if for every s−i ∈ S−i,

we have

ui(si, s−i) > ui(s
′
i, s−i) ∀ s′i ∈ Si \ {si}.

Similarly, a strategy si ∈ Si for Player i is weakly dominant if for every s−i ∈ S−i, we

have

ui(si, s−i) ≥ ui(s
′
i, s−i) ∀ s′i ∈ Si \ {si}.

It is fairly clear that the idea of domination requires a strategy to be optimal for a player

irrespective of what he believes other players are doing. The following lemma formalizes it.

Lemma 1 Suppose Γ = (N, {Si}i∈N , {ui}i∈N ) is a finite game. A strategy si for Player i is

strictly dominant if and only if for all beliefs µi

Ui(si, µi) > Ui(s
′
i, µi) ∀ s′i ∈ Si \ {si}.

A strategy si for Player i is weakly dominant if and only if for all beliefs µi

Ui(si, µi) ≥ Ui(s
′
i, µi) ∀ s′i ∈ Si \ {si}.

Proof : We do the proof for strictly dominant strategies - the weak dominance part follows

similarly. Suppose si is a strictly dominant strategy for Player i. Fix a belief µi. Now, note

the following:

Ui(si, µi) =
∑

s−i

ui(si, s−i)µi(s−i)

>
∑

s−i

ui(s
′
i, s−i)µi(s−i) (By definition of strict dominance)

= Ui(s
′
i, µi).

For the other direction, suppose si is an optimal strategy for Player i for all beliefs µi.

Now, choose some s−i and consider the belief that µi(s−i) = 1. Then, it follows that

ui(si, s−i) = Ui(si, µi) > Ui(s
′
i, µi) = ui(s

′
i, s−i).

�

In the Prisoner’s Dilemma game in Table 1, the strategy C (or c) is a strictly dominant

strategy for each player.

If we assume a modest amount of rationality in players, we must believe that players

must play strictly dominant strategies (whenever they exist). Here, rationality requires that
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every player plays a strategy that maximizes his utility given his belief about other players’

strategies. However, many games do not have a strictly dominant strategy for both the

players. For instance, in the game in Table 2, there is no strictly dominant strategy for

either of the players.

L C R

T (2, 2) (6, 1) (1, 1)

M (1, 3) (5, 5) (9, 2)

B (0, 0) (4, 2) (8, 8)

Table 2: Domination

3.1 An Auction Example

In some games, weakly dominant strategies give striking prediction. One such example is

given below.

The Vickrey Auction. An indivisible object is being sold. There are n buyers (players).

Each buyer i has a value vi for the object, which is completely known to the buyer. Each

buyer is asked to report or bid a non-negative real number - denote the bid of buyer i as bi.

The highest bidder wins the object but asked to pay an amount equal to the second highest

bid. In case of a tie, all the highest bidders get the object with equal probability and pay

the second highest bid, which is also their bid amount in this case. Any buyer who does not

win the object pays zero. If a buyer i wins the object and pays a price pi, then his utility is

vi − pi.

Lemma 2 In the Vickrey auction, it is a weakly dominant strategy for every buyer to bid his

value.

Proof : Suppose for all j ∈ N \{i}, buyer j bids an amount bj . If buyer i bids vi, then there

are two cases to consider.

Case 1. vi > maxj 6=i bj . In this case, the payoff of buyer i from bidding vi is vi−maxj 6=i bj >

0. By bidding something else, if he is not the unique highest bidder (i.e., either he shares

the object or loses the object), then he either does not get the object or he gets the object

with lower probability and pays the same amount. In the first case, his payoff is zero and in

the second case, his payoff is strictly less than vi −maxj 6=i bj . Hence, bidding vi is a weakly
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dominant strategy.

Case 2. vi ≤ maxj 6=i bj . In this case, the payoff of buyer i from bidding vi is zero - this is

because either he is not getting the object (in which case his payoff is zero) or he is sharing

the object in which case he is paying maxj 6=i bj = vi. If he bids an amount smaller than vi,

then he does not get the object and his payoff is zero. If he bids an amount larger than

vi, then he gets the object with probability one and pays maxj 6=i bj , and hence, his payoff is

vi −maxj 6=i bj ≤ 0. Hence, bidding vi is a weakly dominant strategy for buyer i. �

3.2 A voting example

We now consider an example from voting. Besides highlighting weakly dominant strategies,

it also emphasizes that games can be ordinal, i.e., devoid of any utility representation.

In the voting problem, there is a finite set of candidates A. The candidates are ordered

(ranked) by some parameter exogenously. For instance, candidates are ordered according to

their idealogical position. We denote this ordering over A as ≻. Agents in N are voters.

Voters have preference (strict ranking) over candidates in A. In particular, we will assume

that each voter i ∈ N has a strict ranking Pi over A and Pi satisfies single-peakedness.

Informally, a single peaked preference says that as we go away from the peak (top ranked

candidate) using the exogenous order ≻, we prefer candidates less. Before formally defining

the preference, consider Figure 1. The exogenous order ≻ is: a7 ≻ a6 ≻ a5 ≻ a4 ≻ a3 ≻
a2 ≻ a1. The peak of this preference is a3. According to single-peakedness, a4 is preferred to

a6 because a4 is closer to a3 then a6. A pictorial description of a single peaked preference is

shown in Figure 1. In particular, a single peaked preference cannot have the following: a3 at

the top but a5 is better than a4. Note that we do not restrict preferences across the peak in

any way. More formally, single-peakedness is defined as follows. Suppose Pi(1) is the peak

of agent i when his preference is Pi. Then, Pi is single-peaked with respect to ≻ if for all

a, b ∈ A if a ≻ b ≻ Pi(1) or Pi(1) ≻ b ≻ a, then b Pi a (i.e., b is preferred to a).

Voting game. The game assumes that each agent has single-peaked preference with

respect ≻. Each agent can submit a candidate - the strategy set Si = A for each i ∈ N .

Denote the submitted candidate of agent/voter i as si ∈ A. Based on the submitted profile of

candidates (s1, . . . , sn), the winner is determined by looking at the median of the submitted
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Idealogy order

a1 a2 a3 a4 a5 a6 a7

a3 Pi a2 Pi a4 Pi a5 Pi a6 Pi a1 Pi a7

Figure 1: Single-peaked preference

candidates with respect to ≻, i.e.,

W (s1, . . . , sn) := median(s1, . . . , sn),

where in case of n being even, we choose the n
2
-th candidate in (s1, . . . , sn) according to

≻. For instance, in Figure 1, if there are three agents and they submit (s1 = a3, s2 =

a1, s3 = a5), then the median is agent 1’s submitted candidate. Here, we do not need a

utility representation for agents. Agents can compare outcomes in the game using their

preferences. In particular, if agent’s preferences are (P1, . . . , Pn), then a strategy profile

(s1, . . . , sn) is a weakly dominant strategy if for every i ∈ N and every ŝ−i,

W (si, ŝ−i) Pi W (s′i, ŝ−i) or W (si, ŝ−i) Pi W (s′i, ŝ−i) ∀ s′i ∈ A \ {si}.

We show that every agent has a weakly dominant strategy.

Lemma 3 In the voting game each agent i ∈ N submitting si = Pi(1) is a weakly dominant

strategy.

Proof : Suppose other agents submitted ŝ−i. If agent i submits si = Pi(1), let the candidate

a = W (si, ŝ−i) be chosen. So, a is the median of (si, ŝ−i). If a = Pi(1), then agent i cannot

do better by submitting some other candidate. Suppose a is to the “left” of Pi(1): Pi(1) ≻ a.

As long as i submits s′i such that s′i ≻ a or s′i = a, the median of (s′i, ŝ−i) remains a. If i

submits s′i such that a ≻ s′i, then the median (s′i, ŝ−i) can only move to the “right” of a, i.e.,

a ≻ W (s′i, ŝ−i). But Pi(1) ≻ a ≻ W (s′i, ŝ−i) implies that a Pi W (s′i, ŝ−i). Hence, agent i

does not prefer this outcome. So, in both cases, agent i cannot do better.

A similar proof can be done if a ≻ Pi(1). �
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3.3 Dominated strategies

Consider the game in Figure 2. Irrespective of the strategy played by Player 2, Player 1

always gets less payoff in B than inM . In such a case, we will say that Strategy B is strictly

dominated.

Definition 2 A strategy si ∈ Si for Player i is strictly dominanted if there exists s′i ∈ Si

such that for every s−i ∈ S−i, we have

ui(si, s−i) < ui(s
′
i, s−i).

In this case, we say that s′i strictly dominates si.

A belief based definition is also possible: irrespective of beliefs of Player i, playing si is

worse than playing s′i.

Another assumption of rationality is that a rational player will never play a strictly

dominated strategy. But does that imply we can forget about a strictly dominated strategy?

The main issue is removing a strategy of Player i influences the support of the belief of other

players. So, unless we assume something about the knowledge level of other players, it is not

clear whether we can remove a strategy from Player i. Note that belief of a player about

others’ strategies influences his choice of optimal strategy.

To see this, consider the example in Table 2. Strategy B is strictly dominated by Strategy

M for Player 1. Hence, if Player 1 is rational, then he will not play B. If Player 2 does not

know that Player 1 is rational, then he cannot eliminate B from the support of his belief of

Player 1’s strategies. Suppose Player 2 knows that Player 1 is rational. Then, he can

conclude that Player 1 will not play B ever. As a result, his belief on what Player 1 can

play must put probability zero on B. In that case, his Strategy R is strictly dominated by

Strategy L. So, he will not play R. Now, if Player 1 knows that Player 2 is rational

and Player 1 knows that Player 2 knows that Player 1 is rational, then he will not

play M because it is now strictly dominated by T . Continuing in this manner, we will get

that Player 2 does not play C. Hence, the only strategy profile surviving such elimination is

(T, L).

The process we just described is called iterated elimination of strictly dominated strategies.

It requires more than rationality. We do not provide a formal treatment of this topic. Loosely,

a fact is common knowledge among players in a game if for any finite chain of player

(i1, . . . , ik) the following holds: Player i1 knows that Player i2 knows that Player i3 knows

that . . . Player ik knows the fact. Iterated elimination of strictly dominated strategies require
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the following assumption. Common Knowledge of Rationality (CKR): The fact that

all players are rational is common knowledge.

Let us consider another example in Table 3. Strategy R is strictly dominated by Strategy

M for Player 2. If Player 2 is rational, he does not play R. If Player 1 knows that Player 2 is

rational and he himself is rational, then he will assume that R is not played, and T strictly

dominates B after removing R. So, he will not play B. If Player 2 knows that Player 1 is

rational and Player 2 knows that Player 1 knows Player 2 is rational, then he will not play

L. So, iteratively deleting all strictly dominated strategies lead to a unique prediction of

(T,M).

L M R

T (1, 0) (1, 2) (0, 1)

B (0, 3) (0, 1) (2, 0)

Table 3: Domination

In many games, iterated elimination of strictly dominated strategies lead to a unique

outcome of the game. In those cases, we call it a solution of the game. However, absence

of strictly dominated strategies will imply that no strategies can be eliminated. In such a

case, iterated elimination of strictly dominated strategies result in no solution. However, the

order in which we eliminate strictly dominated strategies does not matter. A formal proof

of this fact will be presented later.

In some games, there may not exist any strictly dominated strategy. In such a case, the

following weaker notion of weak domination is considered.

Definition 3 Strategy si of Player i is weakly dominated if there exists another strategy

ti of Player i such that for all s−i ∈ S−i, we have

ui(si, s−i) ≤ ui(ti, s−i),

with strict inequality holding for at least one s−i ∈ S−i. In this case, we say that ti weakly

dominates si.

There is no foundation for eliminating (iteratively or otherwise) weakly dominated strate-

gies. Indeed, if we remove weakly dominated strategies iteratively, then the order of elimi-

nation matters. This is illustrated in the following example in Table 4.

The game in Table 4, there are two weakly dominated strategies for Player 1: {T,B}.
Suppose Player 1 eliminates T first. Then, strategies in {C,R} are weakly dominated for
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L C R

T (1, 2) (2, 3) (0, 3)

M (2, 2) (2, 1) (3, 2)

B (2, 1) (0, 0) (1, 0)

Table 4: Order of elimination of weakly dominated strategies

Player 2. Suppose Player 2 eliminates R. Then, Player 1 eliminates the weakly dominated

strategy B. Finally, Player 2 eliminates Strategy C to leave us with (M,L).

Now, suppose Player 1 eliminates B first. Then, both L and C are weakly dominated.

Suppose Player 2 eliminates L first. Then, T is weakly dominated for Player 1. Eliminating

T , we see that C is weakly dominated for Player 2. So, we are left with (M,R).

4 Nash Equilibrium

One of the problems with the idea of domination is that often there are no dominated

strategies. Hence, it fails to provide any prediction about many games. For instance, consider

the game in Table 5. No pure strategy in this game is dominated.

a b

A (3, 1) (0, 4)

B (0, 2) (3, 1)

Table 5: No dominated strategies

We now revisit the strong requirement of domination that a strategy is best irrespective

of the beliefs we have about what others are playing. In many cases, games are results of

repeated outcomes. For instance, if two firms are interacting in a market, they have a good

idea about each other’s cost and technology. As a result, they can form accurate beliefs

about what other player is playing. The idea of Nash equilibrium takes this accuracy to the

limit - it assumes that each player has correct belief about what others are playing and

responds optimally given his (correct) beliefs.

Definition 4 A strategy profile (s∗1, . . . , s
∗
n) in a strategic form game Γ ≡ (N, {Si}i∈N , {ui}i∈N)

is a Nash equilibrium of Γ if for all i ∈ N

ui(s
∗
i , s

∗
−i) ≥ ui(si, s

∗
−i) ∀ si ∈ Si.
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The game Γ in the above definition may be a finite or an infinite game. The definition

above requires that given strategies of other players s∗−i, a unilateral deviation by Player i is

not profitable. A belief based definition is also possible. We will say that a strategy profile

(s∗1, . . . , s
∗
n) is a Nash equilibrium if for all i ∈ N ,

µi(s
∗
−i) = 1

Ui(s
∗
i ;µi) ≥ Ui(si;µi) ∀ si ∈ Si.

The idea of a Nash equilibrium is that of a steady state, where each player is responding

optimally given the strategies of the other players - no unilateral deviation is possible. It

does not argue how this steady state is reached. It has a notion of stability - if a player finds

certain unilateral deviation profitable, then such a steady state cannot be sustained.

An alternate definition using the idea of best response is often useful. A strategy si of

Player i is a best response to the strategy s−i of other players if

ui(si, s−i) ≥ ui(s
′
i, s−i) ∀ s′i ∈ Si.

The set of all best response strategies of Player i given the strategies of other players is

denoted by Bi(s−i).

Now, a strategy profile (s∗1, . . . , s
∗
n) is a Nash equilibrium if for all i ∈ N ,

s∗i ∈ Bi(s
∗
−i).

The following observation is immediate.

Claim 1 If s∗i is a strictly dominant strategy of Player i, then {s∗i } = Bi(s−i) for all s−i ∈
S−i. Hence, if (s∗1, . . . , s

∗
n) is a strictly dominant strategy equilibrium, it is a unique Nash

equilibrium.

It is extremely important to remember that Nash equilibrium assumes correct beliefs

and best responding with respect to these correct beliefs of other players. There are other

interpretations of Nash equilibrium. Consider a mediator who offers the players a strategy

profile to play. A player agrees with the mediator if (a) he believes that others will agree

with the mediator and (b) strategy proposed to him by the mediator is a best response to

the strategy proposed to others.

4.1 Examples

We give various examples of games where a Nash equilibrium (in pure strategies) exist. In

Table 6, we consider the Prisoner’s Dilemma game. By Claim 1, (A, a) is a Nash equilibrium

of this game since it is the outcome in strictly dominant strategies.
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a b

A (1, 1) (5, 0)

B (0, 5) (4, 4)

Table 6: Nash equilibrium in Prisoner’s Dilemma

Consider now the game (called the coordination game) in Table 7. The game is called

coordination game since if players do not coordinate in this game they both get zero payoff.

If they coordinate, then they get the same payoff but (A, a) is worse than (B, b) for both the

players. If Player 2 plays a, then B1(a) = {A} and if Player 1 plays A, then B2(A) = {a}.
So, (A, a) is a Nash equilibrium. Now, if Player 2 plays b, then B1(b) = {B} and if Player 1

plays B, then B2(B) = {b}. Hence, (B, b) is another Nash equilibrium. This example shows

you that there may be more than one Nash equilibrium in a game.

a b

A (1, 1) (0, 0)

B (0, 0) (3, 3)

Table 7: Nash equilibrium in the Coordination game

Another game that has more than one Nash equilibrium is the Battle of the sexes. A

man and a woman are deciding which movie to go between two movies {X, Y }. Man wants

to see movie X and woman wants to see movie Y . However, if both of them go to separate

movies, then they get zero payoff. Their preferences are reflected in Table 8. If Woman plays

x, then Man’s best response is {X} and if Man plays X , then Woman’s best response is {x}.
Hence, (X, x) is a Nash equilibrium. Using a similar logic, we can compute (Y, y) to be a

Nash equilibrium. These are the only Nash equilibria of the game.

x y

X (2, 1) (0, 0)

Y (0, 0) (1, 2)

Table 8: Nash equilibrium in the Battle of the Sexes game

Now, we discuss a game with infinite number of strategies. This game is called the the

Cournot Duopoly game. Two firms {1, 2} produce the same product in a market where

there is a common price for the product. They simultaneously decide how much to produce

- denote by q1 and q2 respectively the quantities produced by firms 1 and 2. If the total

quantity produced by both the firms is q1 + q2, then the product price is assumed to be
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2 − q1 − q2. Suppose the per unit cost of productions are: c1 > 0 for firm 1 and c2 > 0 for

firm 2. We will assume that q1, q2, c1, c2 ∈ [0, 1]. We will now compute the Nash equilibrium

of this game.

This is a two player game. Each player’s strategy is the quantity it produces. If firms 1

and 2 produce q1 and q2 respectively, then their payoffs are given by

u1(q1, q2) = q1(2− q1 − q2)− c1q1

u2(q1, q2) = q2(2− q1 − q2)− c2q2.

Given q2, firm 1 can maximize its payoff my maximizing u1 over all q1. To do so, we take

the first order condition for u1 to get

2− 2q1 − q2 − c1 = 0.

This simplifies to

q1 =
1

2
(2− c1 − q2).

Similarly, we get

q2 =
1

2
(2− c2 − q1).

Solving these two equations we get

q∗1 =
2− 2c1 + c2

3
, q∗2 =

2− 2c2 + c1
3

.

These are necessary conditions for optimality. Since the utility functions are strictly concave

(verify this!), these will be the unique optimal solutions. We can also directly verify that it

is a Nash equilibrium. For this, first note that

u1(q
∗
1, q

∗
2) = (q∗1)

2

u2(q
∗
1, q

∗
2) = (q∗2)

2

Now, given firm 2 sets q∗2, let us find the utility when firm 1 sets q1:

u1(q1, q
∗
2) =

q1
3

[

4 + 2c2 − 4c1 − 3q1
]

.

= 2q1q
∗
1 − (q1)

2

≤ (q∗1)
2

= u1(q
∗
1, q

∗
2).
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A similar calculation suggests

u2(q
∗
1, q2) ≤ u2(q

∗
1, q

∗
2).

Hence, (q∗1, q
∗
2) is a Nash equilibrium. This is also a unique Nash equilibrium (why?).

We now consider an example of a two-player game where payoffs of both the players add

up to zero. This particular game is called the matching pennies. Two players toss two coins.

If they both turn Heads or Tails, then Player 1 is paid by Player 2 Rs. 1. Else, Player 1

pays Player 2 Rs. 1. The payoff of each player is the money he receives (or the negative of

the money he pays). The payoffs are shown in Table 9. For the moment assume that, what

turns up in the coin is in the control of the players - for instance, a player may choose to

show Heads in his coin.

The Matching Pennies game has no Nash equilibrium. To see this, note that when Player

2 plays h, then the unique best response of Player 1 is H . But when Player 1 plays H , the

unique best response of Player 2 is t. Also, when Player 2 plays t the unique best response

of Player 1 is T , but when Player 1 plays T the unique best response of Player 2 is h.

h t

H (1,−1) (−1, 1)

T (−1, 1) (1,−1)

Table 9: The Matching Pennies game

5 Existence of Nash Equilibrium

In many games Nash equilibria exist. The question that we investigate in next three sections

is the following:

What are some sufficient conditions on the game that ensures existence of Nash

equilibrium?

We will discuss some classes of games where we will show that a Nash equilibrium exists.

The first one is somewhat technical in nature - but general enough to be applied to a large

variety of games. The next one is somewhat simpler in nature, and the existence in those

class of games were proved by Nash himself - in fact, the this class of games is a subclass

of the first class of games, but even then we discuss it because of other reasons. All these

classes of games have one thing in common: the strategy sets of each player has a lot of

structure (geometrical) and the utility functions are well-behaved over these strategy sets.
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An existence result is a technical result and may not appeal to everyone. However, it has

its own beauty and importance. First, it shows that in some class of games, we can begin

to think of computing and describing Nash equilibria. Second, it illustrates that the game is

consistent with some steady state solution - though the precise steady state(s) are not found

by proving an existence result.

All the existence results rely on some kind of fixed point result. We elaborate on this a

little bit before proceeding further. Let X be some non-empty set and f : X → X . We say

x ∈ X is a fixed point of f if

x = f(x).

A fixed point theorem identifies conditions on X and f such that a fixed point exists. These

versions of fixed point theorems are indirectly useful - we will see the exact usefulness later

(two of our existence results, including the original Nash result was proved by such existence

results).

However, a set-theoretic version (or, correspondence version) of the fixed point theorem

is immediately useful. As before, fix a set X and let f : X → 2X . So, for every x ∈ X , the

function value f(x) gives a subset of X . Such a function f has a fixed point x ∈ X if

x ∈ f(x).

A fixed point theorem here would identify conditions on X and f such that a fixed point

exists.

The usefulness of correspondence version of fixed point theorems is somewhat direct. Fix

a strategy profile s ∈ S. Remember that the best response of agent i for s−i is Bi(s−i) and

it gives all the strategies that maximize agent i’s payoff against s−i. Define the function

B : S → 2S as follows: for every s ∈ S,

B(s) = B1(s−1)× . . .× Bn(s−n).

We refer to B as the best response correspondence.

Take the game in Table 10. Consider the strategy profile s ≡ (s1 = M, s2 = L). Now,

B1(s2) = {T} and B2(s1) = {C,R}. Hence,

B(s1, s2) = {T} × {C,R} = {(T, C), (T,R)}.

The following claim establishes that such fixed point theorems will be useful for showing

existence of Nash equilibrium.
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L C R

T (3, 3) (0, 0) (0, 2)

M (0, 0) (3, 3) (0, 3)

B (2, 2) (2, 2) (2, 0)

Table 10: Best response maps

Claim 2 A Nash equilibrium exists if and only if the best response correspondence has a

fixed point.

Proof : If a Nash equilibrium s exists, then si ∈ Bi(s−i) for all i ∈ N . Hence, s ∈ B(s) - so,

a fixed point of B exists. If a fixed point s of B exists, then s ∈ B(s), which in turn implies

that si ∈ Bi(s−i). Hence, s is a Nash equilibrium. �

Claim 2 forms the foundation for proving most of the existence results about Nash equi-

librium. We will see this in next few sections.

5.1 Convex Strategy Sets with Concave and Continuous

Utility Functions

The first such existence theorem is in a class of infinite games. The strategy space is assumed

to have some geometric structure and the utility functions are assumed to be well-behaved.

Theorem 1 Suppose Γ ≡ (N, {Si}i∈N , {ui}i∈N ) is a game in strategic form such that for

each i ∈ N

1. Si is a compact and convex subset of RKi for some integer Ki.

2. ui(si, s−i) is continuous in s−i.

3. ui(si, s−i) is continuous and concave in si.
1

Then, Γ has a Nash equilibrium.

Proof : The proof of this theorem is done using Kakutani’s fixed point theorem.

Theorem 2 (Kakutani’s Fixed Point Theorem) Let A be a non-empty subset of a fi-

nite dimensional Euclidean space. Let f : A → 2A be a map which satisfies the following

properties.

1A concave function is continuous in the interior of the domain. Requiring continuity here makes it

continuous even at the boundary points.
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1. A is compact and convex.

2. f(x) is a non-empty subset of A for each x ∈ A.

3. f(x) is a convex subset of A for each x ∈ A.

4. f(x) has a closed graph for each x ∈ A, i.e., if {xk, yk} → {x, y} with yk ∈ f(xk) for

each k, then y ∈ f(x).

Then, there exists x ∈ A such that x ∈ f(x).

We use Theorem 2 in a straightforward manner to establish existence of Nash equilibrium.

For every strategy profile s, we know by Claim 2 that s is a Nash equilibrium if and only if

s is a fixed point of the best response correspondence B. We show that B satisfies all the

conditions of Theorem 2, and we will be done.

1. Since each Si is compact and convex, the set of strategy profiles S1 × . . .× Sn is also

compact and convex.

2. For every s and for every i ∈ N ,

Bi(s−i) = {s′i ∈ Si : ui(s
′
i, s−i) = max

s′′
i
∈Si

ui(s
′′
i , s−i)}.

This set is non-empty because of ui is continuous in s′′i and Si is compact - so, by

Weirstrass theorem, a maximum of the function exists. As a result B(s) is also non-

empty.

3. Next, we show that B(s) is convex. Pick, t, t′ ∈ B(s) and λ ∈ (0, 1). Define t′′ ≡
λt + (1 − λ)t′. We show that for every i ∈ N , t′′i ∈ Bi(s−i). Since ti, t

′
i ∈ Bi(s−i), we

get

ui(ti, s−i) = ui(t
′
i, s−i) = max

s′i

ui(s
′
i, s−i).

But then concavity of ui implies that

ui(t
′′
i , s−i) ≥ λui(ti, s−i) + (1− λ)ui(t

′
i, s−i) = max

s′i

ui(s
′
i, s−i).

Hence, t′′i ∈ Bi(s−i), and this implies that B(s) is convex.
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4. Finally, we show that B has a closed graph. To see this, assume for contradiction

that B does not have a closed graph. Then, for some sequence {tk, t̄k} → {t, t̄} with

t̄k ∈ B(tk), we have t̄ /∈ B(t). This means, for some i ∈ N , t̄i /∈ Bi(t−i). This

implies that ui(s̄i, t−i) > ui(t̄i, t−i) for some s̄i ∈ Si. The argument then follows from

continuity of ui in both his own strategy and the strategy of others. Continuity ensures

that we can find some point in the sequence tk such that tk is arbitrarily close to t and

ui(s̄i, t−i) is arbitrarily close to ui(s̄i, t
k
−i) and ui(t̄i, t−i) is arbitrarily close to ui(t̄i, t

k
−i)

- it is close enough such that ui(s̄i, t
k
−i) > ui(t̄i, t

k
−i) is maintained, and this is ensured

by continuity with respect to other players’ strategies. See Figure 2 for an illustration.

ui(s̄i; t−i)ui(t̄i; t−i) ui(s̄i; t
k

−i
)ui(t̄

k

i
; tk

−i
)

ui(t̄i; t
k

−i
)

Figure 2: Illustration of proof of closed graph property

Now, we use continuity of ui in i’s strategy. Since t̄ki is arbitrarily close to t̄i, we

conclude that ui(t̄
k
i , t

k
−i) is arbitrarily close to ui(t̄i, t−i) - it sufficiently close to maintain

the relationship that

ui(s̄i, t
k
−i) > ui(t̄

k
i , t

k
−i).

See Figure 2 for an illustration. But this contradicts the fact that t̄ki ∈ Bi(t
k
−i).

Now, we apply Kakutani’s fixed point theorem (Theorem 2) to conclude that there exists

s such that s ∈ B(s). This implies that s is a Nash equilibrium. �

To see how Theorem 1 can and cannot be applied, consider the following location game.

Two shops (players) are locating on the line segment [0, 1] which has a uniform distribution

of customers. Once the shops are located, customers go to the nearest shop with tie broken

with equal probability. The utility of a shop is the mass of customers that go there. So,

strategy sets of both the players are S1 = S2 = [0, 1], a convex and compact set. If the shops

locate themselves at (s1, s2) with s1 ≤ s2, then the utilities of the shops are

u1(s1, s2) =
s1 + s2

2
, u2(s1, s2) = 1− s1 + s2

2
.

Hence, fixing s2 as s1 approaches s2, we see that u1(s1, s2) approaches s2 but as s1 crosses

s2 for values arbitrarily close to s2 it has a value of 1− s2. Hence, u1 is not continuous in s1

for all values of s2 6= 1
2
. So, Theorem 1 cannot be applied here. But Nash equilibrium exists

in such games - s∗1 = s∗2 =
1
2
is a Nash equilibrium.
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Second, consider the Cournot duopoly game with two firms. When firms produce q1 and

q2, the price in the market is 2− q1− q2 and unit costs of the firms are c1 and c2 respectively.

Then, the utility function of each firm i is

ui(q1, q2) = qi(2− q1 − q2)− ciqi.

This is continuous in both qi and q−i. Further, it is concave in qi. Hence, it satisfies all

the conditions of Theorem 1. Further, if we assume that the allowable quantities are some

closed interval in the non-negative real line, then the strategy set of each firm is compact

and convex. Theorem 1 guarantees that a Nash equilibrium exists.

6 Mixed Strategies

We now consider a game which is derived from a finite game. Formally, let

Γ := (N, {Si}i∈N , {ui}i∈N),

be a finite strategic form game (i.e., each Si is finite). Consider the game derived from Γ by

extending the strategy set of each player by allowing them to randomize over Si.

Formally, the mixed extension of Γ is given by

∆Γ := (N, {∆Si}i∈N , {Ui}i∈N),

where for all i ∈ N , the utility function Ui of Player i is a linear extension of his utility

function ui in Γ. In particular, if we consider a strategy profile σ ∈∈ ∏

i∈N ∆Si in the mixed

extension ∆Γ, we have

Ui(σ) =
∑

s≡(s1,...,sn)∈S
ui(s)σ1(s1) . . . σn(sn),

where σi(sj) is the probability with which Player i plays strategy sj of game Γ in the strategy

σi of game ∆Γ. Note that the mixed extension of a game is an infinite game - it includes all

possible lotteries over pure strategies of a player.

For any finite strategy set Si of Player i, every σi ∈ ∆Si is called a mixed strategy of

Player i. In this case Si is called the set of pure strategies of Player i. In other words, mixed

strategies are all the strategies of a player in the mixed extension. A mixed strategy profile

is σ ≡ (σ1, . . . , σn) ∈
∏

i∈N ∆Si. Under mixed strategy, players are assumed to randomize

independently, i.e., how a player randomizes does not depend on how others randomize.
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Consider the following game in Table 11. Suppose Player 1 plays the mixed strategy A

with probability 3
4
and B with probability 1

4
. Suppose Player 2 plays a with probability 1

4

and b with probability 3
4
. Then, the mixed strategy profile is

σ ≡ (σ1, σ2) =
(

(σ1(A), σ1(B)), (σ2(a), σ2(b))
)

=
(

(
3

4
,
1

4
), (

1

4
,
3

4
)
)

.

a b

A (3, 1) (0, 0)

B (0, 0) (1, 3)

Table 11: Mixed strategies

From this, the probability with which each pure strategy profile is played can be computed

(using independence). These probabilities are shown in Table 12. A player computes the

utility from a mixed strategy profile using expected utility. The mixed strategy profile σ

gives players payoffs as follows:

U1(σ) = u1(A, a)σ1(A)σ2(a) + u1(A, b)σ1(A)σ2(b) + u1(B, a)σ1(B)σ2(a) + u1(B, b)σ1(B)σ2(b)

= 3
3

16
+ 0 + 0 + 1

3

16

=
3

4

U2(σ) = u2(A, a)σ1(A)σ2(a) + u2(A, b)σ1(A)σ2(b) + u2(B, a)σ1(B)σ2(a) + u2(B, b)σ1(B)σ2(b)

= 1
3

16
+ 0 + 0 + 3

3

16

=
3

4
.

a b

A 3
16

9
16

B 1
16

3
16

Table 12: Mixed strategies - probability of all pure strategy profiles

6.1 Extending the strategy space

Since ∆Γ is derived from Γ, the first question to ask is what happens to dominated and

dominant strategies, and Nash equilibria of Γ when we consider ∆Γ. This is a relevant
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question because the set of strategies in ∆Γ is larger than Γ. The following lemma is useful

in understanding this relationship.

Lemma 4 (Indifference Principle) Suppose σi ∈ Bi(σ−i) and σi(si) > 0. Then, si ∈
Bi(σ−i).

Proof : Suppose σi ∈ Bi(σ−i). Let Si(σi) := {si ∈ Si : σi(si) > 0}. If |Si(σi)| = 1, then

the claim is obviously true. Else, pick si, s
′
i ∈ Si(σi). We argue that Ui(si, σ−i) = Ui(s

′
i, σ−i).

Suppose not and Ui(si, σ−i) > Ui(s
′
i, σ−i). Then,

Ui(σi, σ−i) =
∑

s′′i ∈Si(σi)

Ui(s
′′
i , σ−i)σi(s

′′
i )

= Ui(si, σ−i)σi(si) + Ui(s
′
i, σ−i)σi(s

′
i) +

∑

s′′i ∈Si(σi)\{si,s′i}
Ui(s

′′
i , σ−i)σi(s

′′
i )

< Ui(si, σ−i)
(

σi(si) + σi(s
′
i)
)

+
∑

s′′i ∈Si(σi)\{si,s′i}
Ui(s

′′
i , σ−i)σi(s

′′
i )

= Ui(σ
′
i, σ−i),

where σ′
i is the new mixed strategy of Player i, where he plays si with probability σi(si)+σi(s

′
i)

and s′i with probability zero, and every other strategy s′′i in Si(σi) is played with probability

σi(s
′′
i ). But this contradicts the fact that σi ∈ Bi(σ−i).

This means that Ui(si, σ−i) = Ui(s
′
i, σ−i) for all si, s

′
i ∈ Si(σi). We denote this utility as

Πi(σ−i). Then,

Ui(σi, σ−i) =
∑

s′′i ∈Si(σi)

Ui(s
′′
i , σ−i)σi(s

′′
i ) = Πi(σ−i).

This proves the claim. �

This allows us to state the following straightforward results.

Theorem 3 Suppose s∗ ≡ (s∗1, . . . , s
∗
n) is a strategy profile in the finite game Γ. Then, the

following are true.

1. If s∗ is a Nash equilibrium of Γ, it is also a Nash equilibrium of the mixed extension

∆Γ.

2. If s∗i a weakly dominant strategy for Player i in Γ, it is also a weakly dominant strategy

for Player i in ∆Γ.

3. Every strictly dominant strategy of ∆Γ is a pure strategy, i.e., a strategy in Γ.
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Proof : Proof of (1). Suppose s∗ is not a Nash equilibrium of ∆Γ. Then, for some i ∈ N ,

s∗i /∈ Bi(s
∗
−i). But by Lemma 4, there is some strategy s′i ∈ Si such that s′i ∈ Bi(s

∗
−i). This

means, ui(s
′
i, s

∗
−i) > ui(s

∗
i , s

∗
−i). This contradicts the fact that s∗ is a Nash equilibrium of Γ.

Proof of (2). Suppose s∗i a weakly dominant strategy for Player i in Γ. Suppose s∗i a not

a weakly dominant strategy for Player i in ∆Γ. Then, for some σ−i, Lemma 4 implies that

there is a strategy si such that

Ui(si, σ−i) > Ui(s
∗
i , σ−i).

But this implies that

∑

s−i

[

ui(si, s−i)− ui(s
∗
i , s−i)

]

σ−i(s−i) > 0,

where σ−i(s−i) is the probability with which strategy s−i is played by Players in N \ {i}.
But this implies that for some s′−i, we must have

ui(si, s
′
−i)− ui(s

∗
i , s

′
−i) > 0.

This contradicts the fact that s∗i is a weakly dominant strategy in Γ.

Proof of (3). Suppose σi is a strategy in ∆Γ but not in Γ (i.e., σi is not a pure strategy)

and σi is strictly dominant in ∆Γ. Then, by Lemma 4, there are two strategies si 6= s′i
belonging to Γ such that σi(si) > 0 and σi(s

′
i) > 0, and for all s−i,

Ui(si, s−i) = Ui(s
′
i, s−i) = Ui(σi, s−i).

Hence, σi is not strictly dominant. �

Theorem 3 has consequences in computing a Nash equilibrium in the mixed extension

of Γ. It says that we can compute Nash equilibria, weakly dominant strategies, strictly

dominated strategies, and strictly dominant strategies of Γ, and they continue to maintain

their properties in the mixed extension. The following remarks say that mixed extensions

may create additional complications.

• A pure strategy that is not dominated by any pure strategy may be dominated by

a mixed strategy. To see this, consider the example in Table 13. Strategy C is not

dominated by any pure strategy for Player 1. However, the mixed strategy 1
2
A and 1

2
B

strictly dominates the pure strategy C. Hence, C is a strictly dominated strategy for

Player 1 in the mixed extension of the game described in Table 13.
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a b

A (3, 1) (0, 4)

B (0, 2) (3, 1)

C (1, 0) (1, 2)

Table 13: Mixed strategies may dominate pure strategies

• Even if a group of pure strategies are not strictly dominated, a mixed strategy with

only these strategies in its support may be strictly dominated. To see this, consider

the game in Table 14. The pure strategies A and B are not strictly dominated. But

the mixed strategy 1
2
A+ 1

2
B is strictly dominated by pure strategy C.

a b

A (3, 1) (0, 4)

B (0, 2) (3, 1)

C (2, 0) (2, 2)

Table 14: Mixed strategies may be dominated

6.2 Existence of Nash Equilibrium in Mixed Strategies

In this section, instead of talking about mixed extension of a game, we will refer to the mixed

strategies of a player in a game explicitly. Now, we prove Nash’s seminal theorem.

Theorem 4 (Nash) The mixed extension of every finite game has a Nash equilibrium.

Note that this theorem is a corollary of our earlier existence theorem - Theorem 1. This

is because, it is not difficult to check that the strategy space in the mixed extension of a finite

game is a convex set, the utility functions are linear in strategies, and hence, continuous and

concave as desired. The proof below is based on a weaker fixed theorem due to Brower. It

is also based on the original proof of Nash, and has a useful technique that can be applied

in other settings.

Proof : We do the proof in several steps.

Step 1. For each profile of mixed strategy σ, for each player i ∈ N , and for each pure

strategy si ∈ Si, we define

gi(si, σ) := max
(

0, Ui(si, σ−i)− Ui(σ)
)

.
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The interpretation of gi(si, σ) is that it is zero if Player i does not find deviating to si from

σ profitable. Else, it captures the increase in payoff of Player i from (σ) to (si, σ−i). Note

that Player i can profitably deviate from σ if and only if it can profitably deviate from σ

using a pure strategy - Lemma 4. This implies that σ is a Nash equilibrium if and only if

gi(si, σ) = 0 for all i ∈ N and for all si ∈ Si.

Step 2. Now, we show that for each i and each si, gi(si, ·) is a continuous in the second

argument. To see this note that Ui is continuous in σ and σ−i. As a result, Ui(si, σ−i)−Ui(σ)

is a continuous function. The max of two continuous functions is continuous. Hence, gi(si, ·)
is continuous.

Step 3. Using gi, we define another map fi in this step. For every i ∈ N , for every si ∈ Si,

and for every σ, define

fi(si, σ) :=
σi(si) + gi(si, σ)

1 +
∑

s′i
gi(s′i, σ)

.

The amount fi(si, σ) is supposed to hint that if σi is not a best response to σ−i, then how

much probability on si should be assigned - thus, it gives another improved mixed strategy.

It is easy to see that for each i and each si, fi(si, σ) ≥ 0. Further,

∑

si∈Si

fi(si, σ) =
∑

si∈Si

σi(si) + gi(si, σ)

1 +
∑

s′i∈Si
gi(s

′
i, σ)

=

∑

si∈Si
σi(si) +

∑

si∈Si
gi(si, σ)

1 +
∑

si∈Si
gi(si, σ)

= 1.

Denote by fi(σ) the vector of probabilities {fi(si, σ)}si∈Si
. Hence, fi(σ) is another mixed

strategy of Player i. Further, fi is a continuous function since both numerator and denom-

inator are non-negative continuous functions. Hence, f(σ) ≡ (f1(σ), . . . , fn(σ)) is also a

continuous function.

Step 4. We show that if f(σ) = σ, i.e., σ is a fixed point of f , then for all i ∈ N and for all

si,

gi(si, σ) = σi(si)
∑

s′i∈Si

gi(s
′
i, σ).
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To see this, using the fixed point property and the definition of fi, we see that

fi(si, σ) = σi(si)

=
σi(si) + gi(si, σ)

1 +
∑

s′i∈Si
gi(s

′
i, σ)

.

Rearranging, we get the desired equality.

Step 5. In this step of the proof, we show that if σ is a fixed point of f , then σ is a

Nash equilibrium. Suppose σ is not a Nash equilibrium. Then, for some Player i, there is

a strategy si such that gi(si, σ) > 0 - this uses Lemma 4 because we are claiming that a

pure strategy gives more payoff. As a result
∑

s′i∈Si
gi(s

′
i, σ) > 0. From the previous step,

we know that σi(s
′′
i ) > 0 if and only if gi(s

′′
i , σ) > 0 for any s′′i . In other words, σi(s

′′
i ) > 0 if

and only if Ui(σ) < Ui(s
′′
i , σ−i). Using this, we can get

Ui(σ) =
∑

s′′i ∈Si

σi(s
′′
i )Ui(s

′′
i , σ−i)

=
∑

s′′
i
:σi(s′′i )>0

σi(s
′′
i )Ui(s

′′
i , σ−i)

> Ui(σ)
∑

s′′i :σi(s′′i )>0

σi(s
′′
i )

= Ui(σ)

This gives us a contradiction.

Step 6. This leads to the last step of the theorem. In this step, we show that a fixed point

of f exists. For this, we use the following fixed point theorem due to Brouwer.

Theorem 5 (Brouwer’s fixed point theorem) Let X be a convex and compact set in

R
k and let F : X → X be a continuous function. Then, there exists a fixed point of F .

Now, we have already argued that f is a continuous function. The domain of f is the

set of all strategy profiles. Since this is the set of all mixed strategies of a finite set of pure

strategies, it is a compact and convex set. Finally, the range of f belongs to the set of

strategy profiles. Hence, by Brouwer’s fixed point theorem, there exists a fixed point of f .

By the previous step, such a fixed point corresponds to the Nash equilibrium of the finite

game. �
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The Brouwer’s fixed point theorem is not simple to prove, but you are encouraged to look

at its proof. In one-dimension, the Brouwer’s fixed point theorem is the intermediate value

theorem.

6.3 Interpretations of Mixed Strategy Equilibrium

Considering mixed strategies guarantee existence of Nash equilibrium in finite games. How-

ever, it is not clear why a player will randomize in the precise way prescribed by a mixed

strategy Nash equilibrium, specially given the fact he is indifferent between the pure strate-

gies in the support of such a Nash equilibrium. There are no clear answers to this question.

However, following are some arguments to validate that mixed strategies can be part of Nash

equilibrium play.

• Players randomize deliberately. For instance, in zero-sum games with two players,

players may randomize. In games like Poker, players have been shown to randomize.

• Mixed strategy equilibrium can be thought to be a belief system - if σ∗ is a Nash

equilibrium, then σ∗
i describes the belief that opponents of Player i have on Player

i’s behavior. This means that Player i may not actually randomize but his oppo-

nents collectively believe that σ∗
i is the strategy he will play. Hence, a mixed strategy

equilibrium is just a steady state of beliefs.

• One can think of a strategic form game being played over time repeatedly (payoffs

and actions across periods do not interact). Suppose players choose a best response

in each period assuming time average of plays of past (with some initial conditions

on how to choose strategies). In particular, they observe that opponents have been

playing a strategy A for 3
4
times and another strategy B for the remaining time. So,

they optimally respond by forming this as their belief. It has been shown that such

plays eventually converge to a steady state where the average play of each player is

some mixed strategy in some class of games.

• Another interpretation that is provided by Nash himself interprets Nash equilibrium

as population play. There are two pools of large population. We draw a player at

random from each pool and pair them against each other. The strategy of that player

will reflect the expected strategy played by the population and will represent a mixed

strategy. So, Nash equilibrium represents some kind of stationary distribution of pure

strategies in such population.

27



7 Computing Nash Equilibrium

7.1 Elimination of Dominated Strategies

We discuss some issues related to computation of Nash equilibrium. We first show how elim-

ination of certain strategies does not lead to elimination of Nash equilibria. First, we show

that if we eliminate some strategies (dominated or not) of a player, then every Nash equilib-

rium of the original game that survived this elimination continues to be a Nash equilibrium

of the new game. In all the games below, we write Γ as a strategic form game - this may

be a finite game or an infinite game or mixed extension of a finite game. The claims remain

valid in all these cases.

Lemma 5 Let Γ be a game in strategic form and Γ′ be a game derived from Γ by eliminating

some of the strategies of each player. If s∗ is a Nash equilibrium of Γ and s∗ is available in

Γ′, then s∗ is a Nash equilibrium in Γ′.

Proof : Let S ′
i be the set of strategies remaining for each player i in Γ′ and Si be the set of

original strategies in Γ for each player i. By definition,

ui(s
∗) ≥ ui(si, s

∗
−i) ∀ si ∈ Si.

But S ′
i ⊆ Si implies that ui(s

∗) ≥ ui(si, s
∗
−i) ∀ si ∈ S ′

i. Hence, s
∗ is also a Nash equilibrium

of Γ′. �

Note that eliminating arbitrary strategies though will not eliminate original Nash equi-

libria, it may introduce new Nash equilibria (think of an example!). The following theorem

shows that this is not possible if weakly dominated strategies are eliminated.

Lemma 6 Let Γ be a game in strategic form and sj be a weakly dominated strategy for Player

j in this game. Denote by Γ′ the game derived by eliminating strategy sj from Γ. Then, every

Nash equilibrium of Γ′ is also a Nash equilibrium of Γ.

Proof : Let s∗ be a Nash equilibrium of Γ′. Consider a player i 6= j. By definition,

ui(s
∗) = maxsi∈Si

ui(si, s
∗
−i). Since the set of strategies of i is the same in both the games,

this establishes that i cannot unilaterally deviate. For Player j, we note that sj is weakly

dominated, say by strategy tj . Then,

uj(sj, s
∗
−j) ≤ uj(tj , s

∗
−j) ≤ max

s′j∈Sj :s′j 6=sj
uj(s

′
j , s

∗
−j) = uj(s

∗
j , s

∗
−j),
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where the last equality follows since s∗ is a Nash equilibrium of Γ′. This shows that

uj(s
∗
j , s

∗
−j) ≥ uj(s

′
j , s

∗
−j) for all s

′
j ∈ Sj . Hence, s

∗ is also a Nash equilibrium of Γ. �

The above theorem implies that if we iteratively eliminate weakly dominated strategies

and look at the Nash equilibria of the resulting game, they will also be Nash equilibria of

the original game. However, we may lose some of the Nash equilibria of the original game.

Consider the game in Table 15. Suppose Player 2 eliminates L and then Player 1 eliminates

B. We are then left with (T,R). However, (B,L) is a Nash equilibrium of the original game.

Note that (T,R) is also a Nash equilibrium of the original game (implied by Theorem 6).

L R

T (0, 0) (2, 1)

B (3, 2) (1, 2)

Table 15: Elimination may lose equilibria

However, this cannot happen if we eliminate strictly dominated strategies.

Theorem 6 Let Γ be a game in strategic form and sj be a strictly dominated strategy for

Player j in this game. Denote by Γ′ the game derived by eliminating strategy sj from Γ.

Then, the set of Nash equilibria in Γ and Γ′ are the same.

Proof : By Lemma 6, we need to show that if s∗ is a Nash equilibrium of Γ, then s∗ is also

a Nash equilibrium of Γ′. Note that the strategy profile s∗ is still available to all the agents

in Γ′ since only a strictly dominated strategy is eliminated for Player j. Formally, for Player

j, there exists a strategy tj such that uj(tj , s
∗
−j) > uj(sj , s

∗
−j). Since s

∗ is a Nash equilibrium

of Γ, we get uj(s
∗
j , s

∗
−j) ≥ uj(tj, s

∗
−j) > uj(sj, s

∗
−j). So, s∗j 6= sj. Hence, s∗ is available in Γ′.

By Lemma 5, s∗ is a Nash equilibrium of game Γ′. �

This theorem leads to some interesting corollaries. First, a strictly dominated strategy

cannot be part of a Nash equilibrium. Second, if elimination of strictly dominated strategies

lead to a unique outcome, then that outcome is the unique Nash equilibrium of the original

game. In other words, to compute the Nash equilibrium, we can iteratively eliminate all

strictly dominated strategies of the players. Note that strictly dominated strategies can be

mixed strategies too if Γ is a mixed extension of a finite game.
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7.2 Mixed strategy equilibrium computation - examples

In general, computing mixed strategy equilibrium of a finite game is computationally difficult.

However, couple of thumb-rules make it easier for finding the set of all Nash equilibria. First,

we should iteratively eliminate all strictly dominated strategies. As we have learnt, the set of

Nash equilibria remains the same after iteratively eliminating strictly dominated strategies.

The second is a crucial property that we have already established - the indifference principle

in Lemma 4.

We start off by a simple example on how to compute all Nash equilibria of a game.

Consider the game in Table 16.

L R

T (8, 8) (8, 0)

B (0, 8) (9, 9)

Table 16: Nash equilibria computation

First, note that no strategies can be eliminated as strictly dominated. It is easy to verify

that (T, L) and (B,R) are two pure strategy Nash equilibria of the game. To compute mixed

strategy Nash equilibria, suppose Player 1 plays T with probability p and B with probability

(1− p), where p ∈ (0, 1). Then, by playing L, Player 2 gets

8p+ 8(1− p) = 8.

By playing R, Player 2 gets

9(1− p).

L is best response to pT + (1 − p)B if and only if 8 ≥ 9(1 − p) or p ≥ 1
9
. Else, R is a best

response. Note that Player 2 is indifferent between L and R when p = 1
9
- this follows from

the indifference lemma that we have proved. Hence, if Player 2 mixes, then Player 1 must

play 1
9
T + 8

9
B. But, when Player 2 plays qL + (1 − q)R, then Player 1 gets 8 by playing

T and 9(1 − q) by playing B. For Player 1 to mix, Player 2 must make him indifferent

between playing T and B, which happens at q = 1
9
. Thus, (1

9
T + 8

9
B, 1

9
L+ 8

9
R) is also a Nash

equilibrium of this game. Note that the payoff achieved by both the players by playing this

strategy profile is 8.

There are some strategies of a player which are not strictly dominated, but which can

still be eliminated before computing the Nash equilibrium. These are strategies which are

never best responses.
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Definition 5 A strategy σi ∈ ∆Si is never a best response for Player i if for every

σ−i ∈ ∆S−i,

σi /∈ Bi(σ−i).

The following claim is a straightforward observation.

Claim 3 If a strategy is strictly dominated, then it is never a best response.

The next claim says that we can remove all pure strategies that are not best responses to

compute Nash equilibrium.

Lemma 7 If a pure strategy si ∈ Si is never a best response, then any mixed strategy σi with

σi(si) > 0 is not a Nash equilibrium strategy.

Proof : Suppose si ∈ Si is never a best response but there is a mixed strategy Nash equi-

librium σ with σi(si) > 0. By the Indifference Lemma (Lemma 4), si is also a best response

to σ−i, contradicting the fact si is never a best response. �

The connection between never best response strategies and strictly dominated strategies

is deeper. Indeed, in two-player games, a pure strategy is strictly dominated if and only if

it is never a best response. We will come back to this once we discuss zero-sum games. We

will now use Lemma 7 to compute Nash equilibria efficiently.

Consider the two player game in Table 17. Computing Nash equilibria of such a game

can be quite tedious. However, we can be smart in avoiding certain computations.

L C R

T (3, 3) (0, 0) (0, 2)

M (0, 0) (3, 3) (0, 2)

B (2, 2) (2, 2) (2, 0)

Table 17: Nash equilibria computation

In two player 3-strategy games, we can draw the best response correspondences in a 2-d

simplex - Figure 3 represents the simplex of Player 1’s strategy space for the game in Table 17.

Any point inside the simplex represents a probability distribution over the three strategies

of Player 1, and these probabilities are given by the lengths of perpendiculars to the three

sides. To see this suppose we pick a point in the simplex with lengths of perpendiculars to

sides (T,B), (T,M), (M,B) as pm, pb, pt respectively. The following fact from Geometry is

useful.
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Fact 1 For every point inside an equilateral triangle with lengths of perpendiculars (pm, pb, pt),

the sum of pm + pb + pt equals to
√
3a/2, where a is the length of sides of the equilateral

triangle.

This fact can be proved easily by using the fact the sum of three triangles generated by

any point is the same -
√
3a2/4 = 1

2
a(pm + pt + pb). Hence, without loss of generality, we

will scale the lengths of the sides of the simplex to 2√
3
. As a result, pm + pt + pb = 1 and the

numbers pm, pt, pb reflect a probability distribution. We will follow this term to represent

strategies in two player 3-strategy games.

B

T

M

pt

pb
pm

Figure 3: Representing probabilities on a 2d-simplex

Now, let us draw the best response correspondence of Player 1 for various strategies of

Player 2: B1(σ2) will be drawn on the simplex of strategies of Player 2 - see Figure 4. For

this, we fix a strategy σ2 = (αL+βC+(1−α−β)R) of Player 2. We now identify conditions

on α and β to identify pure strategy best responses of Player 1. By the Indifference Lemma,

the mixed strategy best responses happen at the intersection of these pure strategy best

response regions. We consider three cases:

Case 1- T . T ∈ B1(σ2) if

3α ≥ 3β

3α ≥ 2.

Combining these conditions together, we get α ≥ 2
3
and α ≥ β. The second condition holds

if α ≥ 2
3
. So, we deduce that the best response region of T are all mixed strategies where L

is played with at least 2
3
probability. This is shown in Figure 4.
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Case 2 - M . M ∈ B1(σ2) if

3β ≥ 3α

3β ≥ 2.

This gives us a similar condition to Case 1: β ≥ 2
3
. The best response region of M is shown

in the simplex of Player 2’s strategies in Figure 4.

Case 3 - B. Clearly B ∈ B1(σ2) in the remaining regions and at all the boundary points

where B and T are indifferent and B and M are indifferent. This is shown in Figure 4 in

the simplex of Player 2’s strategy.

R

L

C

2

3
L + 1

3
R 2

3
L + 1

3
C

2

3
C + 1

3
R

2

3
C + 1

3
L

M

B

T

Figure 4: Best response map of Player 1

Once the best response map of Player 1 is drawn, we conclude that no best response

involves mixing T and M together. So, every mixed strategy best response involves mixing

B.

We now draw the best response map of Player 2. For this we consider a mixed strategy

αT + βM + (1− α − β)B of Player 1. For L to be a best response of Player 2 against this

strategy, we must have

3α+ 2(1− α− β) ≥ 3β + 2(1− α− β)

3α + 2(1− α− β) ≥ 2(α + β).

This gives us

α ≥ β

2 ≥ α + 4β.
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The line α = β is shown in Figure 4. To draw 2 = α+ 4β, we pick two points: (i) α = 0

and β = 1
2
and (ii) α+β = 1 and β = 2

3
. The line joining these two points depict 2 = α+4β.

Now, the entire best response region of L is shown in Figure 4.

An analogous argument shows that for C to be a best response we must have

β ≥ α

2 ≥ β + 4α.

The best response region of strategy C is shown in Figure 5. The remaining area is the best

response region of strategy R (including the borders with L and C).

B

T

M

1

2
T + 1

2
M

R

2

3
T + 1

3
M

1

2
M + 1

2
B

C

2

3
T + 1

3
M

1

2
T + 1

2
B L

Figure 5: Best response map of Player 2

Computing Nash equilibria. To compute Nash equilibria, we see that there is no best

response of Player 1 where T and M are mixed. Further, R is a best response of Player 2

when T and M are mixed. Hence, there cannot be a Nash equilibrium (σ1, σ2) such that

σ2(R) > 0. So, in any Nash equilibrium, Player 2 either plays L or C or mixed L and C but

puts zero probability on R.

Since no mixing of T andM is possible for Player 1 in Nash equilibrium, we must look at

the best response map of Player 2 when mix of T and B and mix ofM and B is played. That

corresponds to the two edges of the simplex corresponding to (T,B) and (M,B) in Figure

5. In that region, mixture of L and C is a best response when B is played with probability

1. So, in any Nash equilibrium where L and C is mixed Player 1 plays B for sure. But

then looking into the best response map of Player 1 in Figure 4, we see that Player 1 best

responds B for sure if Player 2 mixes αL+(1−α)C with α ∈ [1
3
, 2
3
]. The other pure strategy

Nash equilibria are (T, L) and (M,C).
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So, we can enumerate all the Nash equilibria of the game in Table 17 now:

(T, L), (M,C), (B, αL+ (1− α)C),

where α ∈ [1
3
, 2
3
].

8 Two Player Zero-Sum Games

The two player zero-sum games occupy an important role in game theory because of variety of

reasons. First, they were the first set of games to be theoretically analyzed by von-Neumann

and Morgenstern when they came up with the theory of games. Second, the zero-sum games

are found in many real-life applications - examples include any real game where one player’s

loss is another player’s gain. Before formally introducing the notion of a zero-sum game, we

describe another concept that we use here.

8.1 The Maxmin Value

Consider a game shown in Table 18. There is a unique Nash equilibrium of this game: (B,R)

- verify this. But, will Player 1 play strategy B? What if Player 2 makes a mistake in his

belief and plays L? Then, Player 1 will get −100 by playing B. Thinking this, Player 1 may

like to play safe, and play a strategy like T that guarantees him a payoff of 2. For Player 2

also, strategy R may be bad if Player 1 decides to play T . On the other hand, strategy L

can guarantee him a payoff of 0.

L R

T (2, 1) (2,−20)

M (3, 0) (−10, 1)

B (−100, 2) (3, 3)

Table 18: The Maxmin idea

The main message of the example is that sometimes players may choose to play strategy

to guarantee themselves some safe level of payoff without assuming anything about the

rationality level of other players. In particular, we consider the case where every player

believes that the other players are adversaries and are here to punish him - this is a very

pessimistic view of the opponents. In such a case, what can a player guarantee for himself?

If Player i chooses a strategy si ∈ Si in a game, then the worst payoff he can get is

min
s−i∈S−i

ui(si, s−i).
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Of course, we are assuming here that the strategy sets and the utility functions are such that

a minimum exists - else, we can define an infimum.

Definition 6 Themaxmin value for Player i in a strategic form game (N, {Si}i∈N , {ui}i∈N)
is given by

vi := max
si∈Si

min
s−i∈S−i

ui(si, s−i).

Any strategy that guarantees Player i a value of vi is called a maxmin strategy.

Note that the above definition allows us to consider games which are mixed extensions

of some finite game too. In that case, the max and min over strategy space is well defined

because the set of strategies is a compact space and the utility function is linear in (mixed)

strategies.

If si is a maxmin strategy for Player i, then it satisfies

min
s−i∈S−i

ui(si, s−i) ≥ min
s−i∈S−i

ui(s
′
i, s−i) ∀ s′i ∈ Si.

This also means that ui(si, s−i) ≥ vi for all s−i ∈ S−i.

In the example in Table 18, we see that v1 = 2 and v2 = 0. Strategy T is a maxmin

strategy for Player 1 and strategy L is a maximin strategy for Player 2. Hence, when players

play their maxmin strategy, the outcome of the game is (2, 1). However, there can be more

than one maxmin strategies in a game, in which case no unique outcome can be predicted.

Consider the example in Table 19. The maxmin strategy for Player 1 is B. But Player 2

has two maxmin strategies {L,R}, both giving a payoff of 1. Depending on which maxmin

strategy Player 2 plays the outcome can be (2, 3) or (1, 1).

L R

T (3, 1) (0, 4)

B (2, 3) (1, 1)

Table 19: More than one maxmin strategy

It is clear that if a player has a weakly dominant strategy, then it is a maxmin strategy

- it guarantees him the best possible payoff irrespective of what other agents are playing.

Hence, if every player has a weakly dominant strategy, then the vector of weakly dominant

strategies constitute a vector of maxmin strategies. This was true, for instance, in the

example involving the second-price sealed-bid auction. Further, if there are strictly dominant

strategies for each player (note such strategy must be unique for each player), then the vector

of strictly dominant strategies constitute a unique vector of maxmin strategies.
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The following theorem shows that a Nash equilibrium of a game guarantees the maxmin

value for every player.

Theorem 7 Every Nash equilibrium s∗ of a strategic form game satisfies

ui(s
∗) ≥ vi ∀ i ∈ N.

Proof : For any Player i and for every si ∈ Si, we know that

ui(si, s
∗
−i) ≥ min

s−i∈S−i

ui(si, s−i).

By definition, ui(s
∗
i , s

∗
−i) = maxsi∈Si

ui(si, s
∗
−i). Combining with the above inequality, we get

ui(s
∗
i , s

∗
−i) = max

si∈Si

ui(si, s
∗
−i) ≥ max

si∈Si

min
s−i∈S−i

ui(si, s−i) = vi.

�

8.2 Zero-sum games

We now look into two-player zero-sum games. Formally, a zero-sum game is defined as

follows.

Definition 7 A finite zero-sum game of two players is defined as N = {1, 2} and

(S1, S2), (u1, u2) with the restriction that for all (s1, s2) ∈ S1 × S2, we have

u1(s1, s2) + u2(s1, s2) = 0.

Because of this restriction, we can define a zero-sum two player game by a single utility

function u : S1 × S2 → R, where u(s1, s2) represents utility of Player 1 and −u(s1, s2)
represents the utility of Player 2.

h t

H (1,−1) (−1, 1)

T (−1, 1) (1,−1)

Table 20: Matching pennies

Consider the two player zero-sum game in Table 20. It is called the matching pennies

game - the strategies are sides of a coin, if the sides match then Player 1 wins and pays

Player 2 Rs. 1, else Player 2 wins and pays Player 1 Rs. 1. There is no pure strategy Nash
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equilibrium of this game. However, once we start looking at its mixed extension, we observe

some interesting facts. Suppose Player 2 plays αh + (1 − α)t. To make Player 1 indifferent

between H and T , we see that

α + (−1)(1− α) = −α + (1− α).

This gives us α = 1
2
. A similar calculation suggests that if Player 2 has to mix in best

response, Player 1 must play 1
2
H + 1

2
T . Hence, (1

2
H + 1

2
T, 1

2
h + 1

2
t) is the unique mixed

strategy Nash equilibrium of this game. Note that the payoff achieved by both the players

in this Nash equilibrium is zero.

Now, suppose Player 1 plays 1
2
H + 1

2
T , the worst payoff that he can get from Player

2’s strategies (in the mixed extension) can be computed as follows. If Player 2 plays h or

t Player 1 gets a payoff of 0. Hence, his worst payoff is 0. As a result, the maxmin value

of Player 1 is at least zero. We know (by Theorem 7) that the Nash equilibrium payoff is

at least the maxmin value. 2 Hence, the maxmin value is also zero. A similar calculation

suggests that the maxmin value of Player 2 is also zero. We show that this is true for any

finite two player zero-sum game.

The maxmin value of Player 1 in a zero sum game is denoted by

v1 := max
σ1∈∆S1

min
σ2∈∆S2

u(σ1, σ2).

The maxmin value of Player 2 in a zero sum game is denoted by

v2 := max
σ2∈∆S2

min
σ1∈∆S1

−u(σ1, σ2) = − min
σ2∈∆S2

max
σ1∈∆S1

u(σ1, σ2).

Any maxmin and minmax strategies of Player 1 and Player 2 respectively are called optimal

strategies.

The main result for (mixed extension of) two person zero-sum game is the following.

Theorem 8 The following are true for mixed extension of any two player zero-sum game.

1. The payoff from any Nash equilibrium (σ∗
1 , σ

∗
2) corresponds to (v1, v2). Hence, if (σ

∗
1, σ

∗
2)

is a Nash equilibrium, they are also the optimal (max-min) strategies.

2. v1 + v2 = 0.

3. If (σ∗
1, σ

∗
2) are max-min strategies, they are also a Nash equilibrium strategy profile.

2Theorem 7 continues to hold even we allow consider the mixed extension of a finite game.
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Proof : Proof of (1). Let σ∗ be a Nash equilibrium profile. Nash equilibrium condition

for Player 1 implies,

u(σ∗
1, σ

∗
2) = max

σ1∈∆S1

u(σ1, σ
∗
2) ≥ min

σ2∈∆S2

max
σ1∈∆S1

u(σ1, σ2) = −v2.

Note that by Theorem 7, −u(σ∗
1 , σ

∗
2) ≥ v2. Hence, we have

u(σ∗
1, σ

∗
2) = −v2 = max

σ2

min
σ1

u2(σ1, σ2).

Next, Nash equilibrium condition for Player 2 implies that for all σ2 ∈ ∆S2, we have

−u(σ∗
1, σ

∗
2) ≥ −u(σ∗

1 , σ2). Hence,

u(σ∗
1, σ

∗
2) = min

σ2∈∆S2

u(σ∗
1, σ2) ≤ max

σ1∈∆S1

min
σ2∈∆S2

u(σ1, σ2) = v1.

By Theorem 7, u(σ∗
1, σ

∗
2) ≥ v1. Hence, we get

−v2 = u(σ∗
1, σ

∗
2) = v1 = max

σ1

min
σ2

u(σ1, σ2).

Hence, if (σ∗
1, σ

∗
2) is a Nash equilibrium, they are also the optimal (max-min) strategies.

Proof of (2). Every game has a Nash equilibrium in mixed strategies. If σ∗ is a Nash

equilibrium of the zero-sum game, then the zero-sum game property ensures that

u1(σ
∗
1 , σ

∗
2) + u2(σ

∗
1, σ

∗
2) =

∑

s∈S

[

u1(s)σ
∗(s) + u2(s)σ

∗(s)
]

= 0.

By (1) above, u1(σ
∗
1, σ

∗
2) + u2(σ

∗
1 , σ

∗
2) = v1 + v2 = 0.

Proof of (3). Since (σ∗
1 , σ

∗
2) are max-min strategies of the players, we write

v1 = min
σ2

u(σ∗
1, σ2)

v2 = min
σ1

−u(σ1, σ∗
2) = −max

σ1

u(σ1, σ
∗
2).

Using (2), we get v1 + v2 = 0, and hence,

min
σ2

u(σ∗
1, σ2) = max

σ1

u(σ1, σ
∗
2).

But this implies that

u(σ∗
1, σ

∗
2) ≥ min

σ2

u(σ∗
1, σ2) = max

σ1

u(σ1, σ
∗
2) ≥ u(σ∗

1, σ
∗
2).
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Hence, the above inequalities are all equalities.

u(σ∗
1, σ

∗
2) = max

σ1

u(σ1, σ
∗
2) and u(σ∗

1, σ
∗
2) = min

σ2

u(σ∗
1, σ2).

This is equivalent to writing

u(σ∗
1, σ

∗
2) = max

σ1

u(σ1, σ
∗
2) and − u(σ∗

1, σ
∗
2) = max

σ2

−u(σ∗
1 , σ2).

Hence, (σ∗
1, σ

∗
2) is a Nash equilibrium. �

9 Correlated Equilibrium

Consider the mixed extension of the following game - usually called the game of “chicken”.

There are two players - N = {1, 2}. Player 1 has two pure strategies S1 = {T,B} and Player

2 has two pure strategies S2 = {L,R}. The payoffs are shown in Table 21. The story that

accompanies this game is that two drivers are racing towards each other on a single lane.

Each driver can either stay on or move away from the road. If both move away, then they

get a payoff of 6 each. If both stay on, then they get a payoff of 0. If one of them stays on

but the other moves away, then the one who stays on gets a payoff of 7 but the other one

gets a payoff of 2.

L R

T (6, 6) (2, 7)

B (7, 2) (0, 0)

Table 21: Game of chicken

There are three Nash equilibria of this game: (T,R), (B,L),
(

2
3
T + 1

3
B, 2

3
L+ 1

3
R
)

. Notice

that the mixed strategy Nash equilibrium puts a probability of 1
9
with which the worst

possible payoff profile (B,R) will be played. Now, consider the following “extended” game.

There is an outside observer (a traffic signal). The observer recommends each player privately

a pure strategy to play. Note that no player observes the recommendation of the other player.

Given his own recommended strategy, a player forms belief about the recommended strategy

of the other player, assuming that the other player follows the recommendation. He follows

his recommended strategy if and only if it is a best response given his belief about other

player’s recommended strategy.

Two natural confusions arise - (a) How does the observer recommend? and (b) How

do the players form beliefs? It is assumed that the observer has access to a randomization
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device which is public, i.e., players know the distribution from which the recommendations

are derived. Given the distribution of recommendation, players form beliefs by using Bayes’

rule - they compute conditional probabilities.

In the game in Table 21, suppose the observer recommends pure strategy profiles in Nash

equilibrium: (T,R) and (B,L) with probability p and (1−p). Then, given his recommended

strategy each player can uniquely infer the recommended strategy of the other player. Player

1 gets a recommendation of T means, Player 2 must have received a recommendation of R.

So, Player 1 forms a belief that Player 2 plays R with probability 1. But (T,R) is a Nash

equilibrium means, T is a best response to R. A similar logic shows that Player 1 will also

accept B if it is recommended. Same argument applies to Player 2. Hence, any convex

combination of pure strategy Nash equilibrium can be sustained as a correlated equilibrium

of this extended game. In particular p(T,R)+(1−p)(B,L) for any p is an equilibrium of this

game. The set of payoffs that can be obtained are convex combination of (7, 2) and (2, 7).

Can we get other equilibrium? Suppose the observer recommends (T,R), (B,L), and

(T, L) with probability 1
3
each. Then, if Player 1 observes T as a recommendation, then

he can infer that Player 2 will have R as recommendation with probability 1
2
and L as

recommendation with probability 1
2
. Hence, he forms belief that Player 2 plays 1

2
R + 1

2
L.

Is T a best response of Player 1 to this strategy? Playing T gives him 4 and playing B

gives him 3.5. So, T is a best response, and Player 1 accepts the recommendation. If Player

1 receives B as a recommendation, then he forms a belief that Player 2 must receive L as

recommendation. Since (B,L) is a Nash equilibrium, B is a best response to L. For Player

2, if he receives R as a recommendation, then he infers Player 1 must have received T and

that being a Nash equilibrium, he accepts the recommendation. If Player 2 receives L as a

recommendation, then he believes Player 1 must have received T as recommendation with

probability 1
2
and B as recommendation with probability 1

2
. Indeed, L is a best response to

this strategy. Hence, both the players agree to accept the recommendations of the observer

using this randomization device. The equilibrium payoff of both players from this is (5, 5)

which could not be obtained if we just randomize over Nash equilibria. Hence, an observer

using a public randomizing device allows players to get payoff outside the convex hull of

Nash equilibrium payoffs.

As the previous example illustrated, using public randomization allowed the players to

avoid the worst payoff (0, 0) by putting zero probability on that profile. This is impossible

in a mixed strategy - independent randomization. To be able to play strategy profile (T,R),

Player 2 must play R with some probability and that will mean playing (B,R) with some

probability.
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9.1 Correlated Strategies

A crucial assumption in mixed strategies is that players randomize independently. Each of

them have access to a randomizing device (say, a coin to toss or a random number generating

computer program) and these devices are independent. In some circumstances, players may

have access to the same randomizing device. For instance, players observe some common

event in the nature and decide to play their strategies based on this common event - say

weather in a particular area.

Consider the same example in Table 11. Suppose Player 1 plays A and Player 2 plays

a if it rains and Player 1 plays B and Player 2 plays b if it does not rain. Suppose the

probability of rain is 1
2
. This means that the strategy profiles (A, a) and (B, b) is played

with probability 1
2
each but other strategy profiles are played with zero probability. There is

strong correlation between the strategies played by both the players. Formally, a correlated

strategy ρ is a map ρ : S → [0, 1] with
∑

s∈S ρ(s) = 1. The correlated strategy discussed

above is shown in Table 22.

a b

A 1
2

0

B 0 1
2

Table 22: Correlated strategies - probability of all pure strategy profiles

An important fact to note is that a correlated strategy may not be obtained from a mixed

strategy. For instance, consider the correlated strategy in Table 22. If Player 1 and Player 2

play mixed strategies that generates the same distribution over strategy profile as in Table

22, then either 1 must put zero weight on A or 2 must put zero weight on b. This implies

that we cannot get the distribution in Table 22.

In general, the correlated strategy ρ ∈ ∆
(

∏

i∈N Si

)

and a mixed strategy σ ∈ ∏

i∈N ∆Si.

Every mixed strategy generates a correlated strategy. Hence, the set of distributions over

strategy profiles that can be obtained by correlated strategy is larger than the set of dis-

tributions generated by mixed strategies. Player i evaluates a correlated strategy ρ using

expected utility:

Ui(ρ) =
∑

s∈S
ui(s)ρ(s).
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9.2 Formal Definition

We will now define a correlated equilibrium based on the notion of correlated strategies. Let

Γ ≡ (N, {Si}i∈N , {ui}i∈N) be a finite strategic form game. To avoid confusion, we will refer

to strategies in Si for each i as actions of Player i.

For every probability vector (correlated strategy) p over S ≡ S1× . . .×Sn, an extended

game of Γ is defined as:

• An outside observer chooses a profile of pure actions s ∈ S using the correlated strategy

p.

• It reveals to each player i, his recommendation si but not s−i.

• Each player i chooses an action s′i ∈ Si after receiving his recommendation.

We denote this extended game as Γ(p). Consider the battle of sexes game in Table 23.

To remind, the game (mixed extension) has exactly three Nash equilibrium: (A, a), (B, b),

and (2
3
A+ 1

3
B, 2

3
a+ 1

3
b).

a b

A (1, 2) (0, 0)

B (0, 0) (2, 1)

Table 23: Correlated equilibria of battle of sexes

Now, a correlated equilibrium is described by a probability distribution over pure strategy

profiles: p(A, a), p(A, b), p(B, a), p(B, b). The extended game is shown in Figure 6. You can

think that the observer makes the first move of this game by announcing a recommendation

- which you can think of as a “state”. So, each recommendation, and hence, each pure

strategy profile, defines a state. Once the state is defined, players can take pure strategies

of the game Γ. Players are only given partial information about the state - this is because

they only know about their own recommendation. This is shown in Figure 6 by grouping

pairs of states. The red groups of states are for Player 1 - here, Player 1 receives the same

recommendation and he cannot distinguish between which of these states have occurred.

Similarly, the blue groups of states are for Player 2.

How do we analyze equilibria of such games? First, step is Players are Bayesian rational.

This means that given the probability distribution with which the Observer (Nature) draws

the states, Players use Bayes’ rule to compute their probability with which they are in
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Observer (Nature)

(A; a)
(A; b) (B; a)

(B; b)

A

B

a b a b a b a b

A

B

A

B

A

B

Figure 6: Representation of extended game

each state. So, Player 1 after observing A, believes that the probability of state (A, a) is
p(A,a)

p(A,a)+p(A,b)
.

Formally a strategy in this extended game is a different object compared to the strategy

in a strategic form game.

Definition 8 A strategy of Player i in the extended game Γ(p) is a map ψi : Si → Si, i.e.,

specifies an action for every possible recommended action.

For instance, consider the strategy, which we call the obedient strategy - for every

si ∈ Si, ψ
∗
i (si) = si for each i. We are interested in studying obedient strategies to be an

“equilibrium” of this extended game Γ(p). An equilibrium in this game requires two things:

(1) Bayesian rationality; and (2) Best response play (sometimes called sequential rationality).

Once Player i receives a recommendation si, he forms belief about the state. Given this belief

obedient strategy must maximize her payoff given that everyone else is obedient. In this case,

we call ψ∗ an equilibrium of the extended game Γ(p).

If Player i receives recommendation si, then his conditional belief that state is (si, s−i)

p(si, s−i)
∑

t−i
p(si, t−i)

,

where the denominator is positive from the fact that p(si, s−i) > 0. Then, his expected

payoff from following ψ∗
i (si) = si (given others are obedient) is

∑

s−i∈S−i

p(si, s−i)
∑

t−i
p(si, t−i)

ui(si, s−i).

His expected payoff from playing s′i (given others are obedient) is

∑

s−i∈S−i

p(si, s−i)
∑

t−i
p(si, t−i)

ui(s
′
i, s−i).
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Since the denominator is positive, we can say that si is best response if and only if

∑

s−i∈S−i

p(si, s−i)ui(si, s−i) ≥
∑

s−i∈S−i

p(si, s−i)ui(s
′
i, s−i).

This has to hold for all si which can come as a recommendation for player i, i.e., in the

support of p in the sense that p(si, s−i) > 0 for some s−i, and for all s′i ∈ Si.

This leads to the definition of a correlated equilibrium.

Definition 9 A correlated strategy p over S is a correlated equilibrium if for every

i ∈ N , for every si in the support of p and every s′i ∈ Si,

∑

s−i∈S−i

p(si, s−i)ui(si, s−i) ≥
∑

s−i∈S−i

p(si, s−i)ui(s
′
i, s−i).

In other words, a correlated strategy p over S is a correlated equilibrium if the strategy

profile ψ∗ is an equilibrium of the extended game Γ(p).

According to the definition, the following are the inequalities to be satisfied for the game

in Table 23.

p(A, a) ≥ 2p(A, b)

2p(B, b) ≥ p(B, a)

2p(A, a) ≥ p(B, a)

p(B, b) ≥ 2p(A, b).

Hence, we get the following inequalities:

p(A, a) ≥ max(2p(A, b),
1

2
p(B, a))

p(B, b) ≥ max(2p(A, b),
1

2
p(B, a)).

Trivial solutions exist when p(A, b) = p(B, a) = 0 and any solution with p(A, a) +

p(B, b) = 1. This gives us the convex hull of Nash equilibria. In general, this is a linear

system of inequalities. They can be described by their “extreme points”. To get one of the

extreme points, we can set 2p(A, b) = 1
2
p(B, a) = p(A, a) = p(B, b) and using the fact their

sum is 1, we get

p(A, b) =
1

9
, p(B, b) =

4

9
, p(A, a) = p(B, b) =

2

9
.

Notice that this is the mixed strategy Nash equilibrium of the game. This generates a payoff

of 2
3
for each player. As it turns out, the set of all payoffs that can be achieved by correlated

equilibrium is the convex hull of Nash equilibrium payoffs: (1, 2), (2, 1), (2
3
, 2
3
).
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This shows that the set of correlated equilibria are solutions to a finite set of inequalities

in a finite game. As result, they form a convex and compact set (in particular, a polytope,

defined by a system of linear inequalities).

Every Nash equilibrium σ∗ of Γ induces a probability distribution pσ∗ , where for every

(s1, . . . , sn),

pσ∗(s1, . . . , sn) = σ∗
1(s1)× . . .× σ∗

n(sn).

Below, we formally show that every Nash equilibrium induces a distribution over strategy

profiles that is a correlated equilibrium. This also shows that a correlated equilibrium always

exists.

Theorem 9 For every Nash equilibrium σ∗ of Γ, the induced correlated strategy pσ∗ is a

correlated equilibrium.

Proof : Note that pσ∗(s) > 0 if and only if for every i ∈ N , si is in the support of σ∗. Pick

agent i, si, s
′
i ∈ Si such that si is in the support of σ∗. We see that

∑

s−i∈S−i

pσ∗(si, s−i)ui(si, s−i) =
∑

s−i∈S−i

σ∗
1(s1)× . . .× σ∗

n(sn)ui(si, s−i) = σ∗
i (si)Ui(si, σ

∗
−i).

Further,

∑

s−i∈S−i

pσ∗(si, s−i)ui(s
′
i, s−i) =

∑

s−i∈S−i

σ∗
1(s1)× . . .× σ∗

n(sn)ui(s
′
i, s−i) = σ∗

i (si)Ui(s
′
i, σ

∗
−i).

Since si is in the support of Nash equilibrium at σ∗, it implies that σ∗
i (si) > 0. Further, by

the indifference lemma, si is a best response to σ∗
−i, and hence,

Ui(si, σ
∗
−i) ≥ Ui(s

′
i, σ

∗
−i).

This gives us that

∑

s−i∈S−i

pσ∗(si, s−i)ui(si, s−i) ≥
∑

s−i∈S−i

pσ∗(si, s−i)ui(s
′
i, s−i),

as required. �

10 A Foundation for Iterated Elimination

In this section, we discuss a foundation for eliminating strictly dominated strategies in a

finite game. The foundation is inspired by the idea of correlated strategies discussed earlier

- it extends the idea of correlated strategies to beliefs.
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To fix ideas, we are given a finite strategic form game: Γ := (N, {Si}i∈N , {ui}i∈N). We

are going to consider the mixed extension of this game. But we will only be concerned with

eliminating pure strategies from this mixed extension. To remind, Theorem 3 has told us

that if a pure strategy si is strictly dominated for Player i, every mixed strategy σi with si

in its support is also strictly dominated. Hence, eliminating a pure strategy also eliminates

some strictly dominated mixed strategies. However, as we have seen earlier, it may not

eliminate all strictly dominated mixed strategies. The foundation we provide here is about

iterated elimination of strictly dominated pure strategies.

10.1 Correlated Beliefs

Just like correlated strategies allow for probability distribution over strategy profiles, a gen-

eral system of belief for Player i must allow a probability distribution over S−i - it specifies

a probability of each of the strategy profile s−i being played. Such probabilities need not

be computed using independence of strategies of other players. So, belief of player i is a

map µi : S−i → [0, 1], with
∑

s−i
µi(s−i) = 1. Note that a mixed strategy profile σ induces

a belief for every player i: µi(s−i) := ×j 6=iσj(sj) for all s−i. These beliefs are generated by

independent probabilities of each player j 6= i. In general, beliefs may allow correlations.

We denote the payoff of Player i by playing strategy si given her belief µi as:

Ui(si, µi) =
∑

s−i

ui(si, s−i)µi(s−i).

Similarly, payoff of Player i playing mixed strategy σi given her belief µi is:

Ui(σi, µi) =
∑

si∈Si

Ui(si, µi)σi(si).

A strategy si ∈ Si is a best response with respect to a belief µi if

Ui(si, µi) ≥ Ui(σi, µi) ∀ σi ∈ ∆Si. (1)

We define the notion of never best response using correlated beliefs now.

Definition 10 A strategy si ∈ Si is a never-best response if it is not a best response

with respect to any belief µi. That is, a strategy si is a never best response if for every belief

µi ∈ ∆S−i, there exists a strategy σi such that

Ui(σi;µi) > Ui(si;µi).
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Similar to the definition of never best response, we can define a notion of strictly domi-

nated strategies now.

Definition 11 A strategy si ∈ Si is strictly dominated if there exists a strategy σi such

that for every belief µi ∈ ∆S−i,

Ui(σi;µi) > Ui(si;µi).

The only difference between strict domination and never-best response is the placement

of qualifiers: in never best response, we wrote “every belief”first and“there exists a strategy”

next, but in strictly dominated definition, we wrote them in reverse order.

We prove the equivalence of never-best response strategies and strictly dominated strate-

gies.

Theorem 10 A pure strategy of a player in a strategic form game is a never-best response

if and only if it is strictly dominated.

Proof : Clearly, every strictly dominated strategy is a never-best response strategy. For

the other direction, fix a player j in a strategic form game Γ ≡ (N, {Si}i∈N , {ui}i∈N) and

a strategy s̄j ∈ Sj , which is a never best response. Consider a new (artificial) game in

which there are just two players j and −j. The set of strategies available to Player j is

S ′
j := Sj \ {s̄j} and to Player −j is S−j (i.e., every strategy profile of players in N \ {j} is

interpreted as a strategy of Player (−j)). The utility of Player j at strategy profile (sj, s−j)

is:

vj(sj, s−j) = uj(sj , s−j)− uj(s̄j, s−j).

The payoff to Player −j is negative of payoff to Player j - hence, it is a zero-sum game.

Denote this game as Γ′ and consider its mixed extension ∆Γ′. We will abuse notation and

denote the payoff from a mixed strategy profile (σj , σ−j) to Player j as vj(σj , σ−j). Note that

a mixed strategy σ−j of Player (−j) is a belief of Player j in Γ and vice versa. Let (σ∗
j , σ

∗
−j)

be a Nash equilibrium of this game. Hence, strategy s̄j is a never-best response in Γ implies

for every mixed strategy σ−j of Player −j in Γ′ (i.e., a belief of Player j in Γ), there exists a

strategy σj such that Uj(σj , σ−j)− Uj(s̄j, σ−j) > 0, or, vj(σj , σ−j) > 0. Hence, the maximin

payoff of Player j is positive. By Theorem 8, we conclude that the Nash equilibrium payoff

of Player j is positive: vj(σ
∗
j , σ

∗
−j) > 0. Hence,

v−j(σ
∗
j , σ

∗
−j) = −vj(σ∗

j , σ
∗
−j) < 0.

Since (σ∗
j , σ

∗
−j) is a Nash equilibrium, we get that for every strategy σ−j of Player (−j), we

have

−vj(σ∗
j , σ−j) ≤ −vj(σ∗

j , σ
∗
−j) < 0,
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which gives

Uj(σ
∗
j , σ−j) > Uj(s̄j , σ−j) ∀ σ−j.

Hence, s̄j is strictly dominated for Player j. �

There is another reason why the above result is interesting. Even though the definition

of strictly dominated strategy is written in terms of belief, it can be easily written without

any explicit mention of beliefs. This is shown in the next lemma.

Lemma 8 A strategy si is strictly dominated for Player i if and only if there exists σi ∈ ∆Si

such that

Ui(σi, s−i) > Ui(si, s−i) ∀ s−i ∈ S−i. (2)

Proof : One direction follows from definition. For the non-trivial direction, suppose there

exists σi ∈ ∆Si such that Inequality 2 holds. Consider µi and note that

Ui(σi, µi) =
∑

s−i

Ui(σi, s−i)µi(s−i)

>
∑

s−i

Ui(si, s−i)µi(s−i) (By Inequality 2)

= Ui(si, σ−i).

Hence, si is strictly dominated. �

Lemma 8 that makes Theorem 10 more interesting. We can also establish that it is

enough to check for pure strategies in never best response.

Lemma 9 A strategy si is a never best response for Player i if and only if for all beliefs µi,

there exists s′i ∈ Si such that Ui(s
′
i, µi) > Ui(si, µi).

Proof : One direction is obvious. For the other direction, suppose si is a never best response

for Player i and pick a belief µi. By definition, there exists σi such that σi is a best response

with respect to belief µi.

Ui(σi, µi) > Ui(si, µi).

Expanding the above terms,

∑

s′i∈Si

Ui(s
′
i, µi)σi(s

′
i) > Ui(si, µi).
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Hence, if each s′i ∈ Si satisfies, Ui(s
′
i, µi) ≤ Ui(si, µi), then the above inequality cannot hold.

So, there is some s′i ∈ Si such that Ui(s
′
i, µi) > Ui(si, µi). This completes the proof. �

Remember that the equivalence in Theorem 10 is only valid if we allow for correlated

beliefs - of course, for two-player games these correlated belief is same as independent belief.

To show the subtle nature of the result, consider couple of examples. Consider the two

player game in Table 24 - the table only shows payoff of Player 1. Strategy C is not strictly

dominated. We will show there are beliefs of Player 1 on the strategies of Player 2 for which

he should play C. It is clear that if the beliefs put entire probability on a or b, C cannot be

a best response. But if he puts 1
2
probability on a and 1

2
probability on b, then C is a best

response.

a b

A 1 0

B 0 1

C 0.6 0.6

Table 24: Correlated beliefs example

To make things more interesting, consider a finite game with 3 players. Player 1 has three

strategies: {A,B,C}, Player 2 has two strategies {a, b}, and Player 3 has two strategies

{a′, b′}. We only show the payoff of Player 1 in Table 25.

(a, a′) (b, a′) (a, b′) (b, b′)

A 4 2 2 1

B 1 2 2 4

C 3 0 0 3

Table 25: Correlated beliefs example

Now, a belief of Player 1 is a function µ1 which assigns the following non-negative numbers

adding to 1:

µ1(a, a
′), µ1(b, a

′), µ1(a, b
′), µ1(b, b

′).

We see that strategy C is not strictly dominated for Player 1 - if αA + (1 − α)B strictly

dominates C, then when other players play (a, a′), we must have 4α + 1 − α > 3 and when

others play (b, b′) we must have α + 4(1 − α) > 3. Adding these two inequalities gives us

5 > 6, which is a contradiction.
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Now, suppose we only consider independent beliefs: so, Player 1 believes that Player 2

plays a with probability p2 and b with probability (1−p2); Player 3 plays a′ with probability

p3 and b′ with probability (1− p3). This results in the following beliefs:

µ1(a, a
′) = p2p3, µ1(b, a

′) = (1− p2)p3, µ1(a, b
′) = p2(1− p3), µ1(b, b

′) = (1− p2)(1− p3).

The payoffs of Player 1 from this belief is given below:

U1(A, µ1) = 4p2p3 + 2
[

(1− p2)p3 + p2(1− p3)
]

+ (1− p2)(1− p3)

U1(B, µ1) = p2p3 + 2
[

(1− p2)p3 + p2(1− p3)
]

+ 4(1− p2)(1− p3)

U1(C, µ1) = 3
[

p2p3 + (1− p2)(1− p3)
]

The difference in expected payoff are

U1(A, µ1)− U1(C, µ1) = 1 + p2 + p3 − 5p2p3

U1(B, µ1)− U1(C, µ1) = 4(p2 + p3)− 2− 5p2p3

We see that utility from A is better than B if and only if

[

[

U1(A, µ1)− U1(C, µ1)
]

−
[

U1(B, µ1)− U1(C, µ1)
]

≥ 0
]

⇔
[

p2 + p3 ≤ 1
]

.

But if p2 + p3 ≤ 1, then 1 ≥ p2 + p3 ≥ 2
√
p2p3. Hence, p2p3 ≤ 1

4
. Using this, we get

U1(A, µ1)− U1(C, µ1) = 1 + p2 + p3 − 5p2p3

= 1 + p2(1− p3) + p3(1− p2)− 3p2p3

≥ 1− 3p2p3

≥ 1

4
.

A similar argument shows that if p2 + p3 ≥ 1, then U1(B, µ1) − U1(C, µ1) > 0. Hence,

independent beliefs imply that C cannot be a best response to such beliefs.

However, consider the following correlated beliefs.

µ1(a, a
′) =

1

2
, µ1(b, a

′) = 0, µ1(a, b
′) = 0, µ1(b, b

′) =
1

2
.

Payoffs of Player 1 are now: U1(A, µ1) = U1(B, µ1) = 2.5,U1(C, µ1) = 3. Hence, C is a best

response. Notice that this correlated belief cannot be generated using independent beliefs.
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10.2 Correlated Rationalizability

The fact that pure strategy Nash equilibrium does not exist makes it problematic as a

solution concept some times. Mixed strategies are not entirely convincing since players play

pure strategies at the end of the game anyway. The notion of correlated rationalizability is

developed as a “set theoretic” pure strategy Nash equilibrium. Instead of predicting a unique

strategy to be played by each player, we will say that a player may play any strategy from

a set as long as it is best response with respect to some belief over the strategy sets chosen

by other players.

Definition 12 A profile of set of strategies (Z1, . . . , Zn) is rationalizable in the strategic

form game (N, {Si}i∈N , {ui}i∈N) if for every i ∈ N and every si ∈ Zi there is a belief µi

whose support is a subset of ×j 6=iZj such that

Ui(si, µi) ≥ Ui(s
′
i, µi) ∀ s′i ∈ Si,

i.e., si is a best response with respect to belief µi.

Note that the strategies in Zj for each j are only used to form beliefs - strategy profiles

involving strategies outside them get zero probability. The best response is with respect to

all the strategies.

Also, note that if a profile of set of strategies (Z1, . . . , Zn) is rationalizable and another

profile of set of strategies (Z ′
1, . . . , Z

′
n) is rationalizable then the profile of set of strategies

(Z1 ∪Z ′
1, . . . , Zn ∪Z ′

n) is also rationalizable. Hence, the set of rationalizable strategies is the

largest collection of {Zj}j that can be rationalized.

Consider the example in Table 26. ({A}, {a}) is not a set of rationalizable strategies.

This is because here there is only one degenerate belief: Player 1 must believe Player 2 plays

a and Player 2 must believe that Player 1 plays A. But a is not a best response if Player

1 plays A. On the other hand, ({A,C}, {a, b}) is a set of rationalizable strategies. How do

we verify this? A is a best response if a is played and C is a best response if b is played.

Similarly, for Player 2, a is a best response if C is played and b is a best response if A is

played.

The idea here is that we observe various (pure) strategies being played by each player.

When can we say that these strategies being played are best response to some belief of players

over the strategies played by other players? This is the rationalizability question.

An immediate claim is the following.

Lemma 10 Every strategy in the support of a Nash equilibrium is rationalizable.
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a b c

A (6, 2) (0, 6) (4, 4)

B (2, 12) (4, 3) (2, 5)

C (0, 6) (10, 0) (2, 2)

Table 26: Two Player Game

Proof : Suppose si is a strategy of Player i in the support Nash equilibrium σ∗. Now for

every j, Zj are all the strategies in the support of the Nash equilibrium σ∗ and the belief µj

is the product

×k 6=jσ
∗
k(sk) ∀ s−j.

By the definition of Nash equilibrium and the indifference lemma, each sj in the support of

σ∗
j is a best response of j with respect to the belief µj. �

One can also show that strategies used with positive probability in a correlated equilib-

rium are also rationalizable - this follows directly from the definition of correlated equilibrium.

In general, finding the set of rationlizable strategies can be quite cumbersome. Below, we

provide an easy method with the help of a cute result.

Couple of quick observations are worth making. First, if a strategy is strictly dominated,

then it cannot be rationalizable. But we can say more. We now remind ourselves the

definition of the iterated elimination procedure, but restricting attention to pure strictly

dominated strategy elimination in the mixed extension of Γ.

Definition 13 The profile of set of strategies (X1, . . . , Xn) survives iterated elimina-

tion of strictly dominated pure strategies if X ≡ ×j∈NXj and there is a collection

({X t
j}j∈N)T0 of sets that satisfy for each j ∈ N the following:

• X0
j = Sj and XT

j = Xj,

• X t+1
j ⊆ X t

j for each t < T ,

• for each t < T , every strategy in X t
j \X t+1

j is strictly dominated in the mixed extension

of the game Γt ≡ (N, {X t
i}i, {uti}i), where uti is the restriction of ui to strategy profiles

in this game.

• No strategy in XT
j is strictly dominated.

The theorem says that rationalizability and iterated elimination of strictly dominated

pure strategies are equivalent.
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Theorem 11 Suppose (Z1, . . . , Zn) is a profile of the largest set of rationalizable strate-

gies and (X1, . . . , Xn) is a profile of strategies available after iterated elimination of strictly

dominated pure strategies. Then,

Xi = Zi ∀ i ∈ N.

Proof : Let (Z1, . . . , Zn) be the largest set of rationalizable strategies for each player. We

will argue that Zi survives iterated elimination of strictly dominated strategies for each

i ∈ N . Suppose not. Then, consider the first stage t where strategy si ∈ Zi of some Player

i gets eliminated in iterated elimination procedure. Since this is the first period where such

a strategy is getting eliminated, all the strategies Zj of j 6= i still exists in the game Γt

in period t. Hence, si is strictly dominated in Γt implies (by Theorem 10) that si is a

never-best-response strategy for this game. Since si is rationalizable, there is a belief µi over

×j 6=iZj such that si is a best response with respect to µi. This is a contradiction to si being

a never-best-response in Γt since strategies in Zj are available in Γt. Hence, for all i ∈ N ,

Zi ⊆ Xi.

Now, we turn to the other direction, where we will show that for each Player i, Xi ⊆ Zi.

For this, we show that (X1, . . . , Xn) is a set of rationalizable strategies, and hence, each Xi

must belong to Zi. Pick si ∈ Xi. By definition every strategy in Xi is not strictly dominated

in the game ΓT with strategy sets Xi. So, by Theorem 10, every strategy in Xi is a best

response among strategies in Xi to some belief µi over X−i. So,

Ui(si, µi) ≥ Ui(s
′
i, µi) ∀ s′i ∈ Xi = XT

i .

We will show that for all t ∈ {0, . . . , T},

Ui(si, µi) ≥ Ui(s
′
i, µi) ∀ s′i ∈ X t

i .

Suppose this is not true. Then, there is some period t where

Ui(si, µi) ≥ Ui(s
′
i, µi) ∀ s′i ∈ X t+1

i . (3)

but

Ui(si, µi) < max
s′′i ∈Xt

i

Ui(s
′′
i , µi) = Ui(ŝi, µi),

where ŝi is a best response in Γt for Player i with respect to belief µi. By Theorem 10, ŝi is

not strictly dominated in Γt. Hence, ŝi ∈ X t+1
i . But this contradicts Inequality 3.
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This implies that Ui(si, µi) ≥ Ui(s
′
i, µi) for all s

′
i ∈ X0

i = Si. Hence, si is a best response

with respect to belief µi (with support ×j 6=iXj) in Γ. Hence, the collection of sets of strategies

(X1, . . . , Xn) is rationalizable. �

Since the procedure we defined for iterated elimination did not specify any order of

elimination, this also implies that order of elimination of strictly dominated strategies does

not matter.

10.3 Example: Bertrand Game

There are two firms {1, 2} producing the same good. Both the firms choose prices in [0, 1].

Depending on the prices chosen, p1 and p2, demand function for each firm i ∈ {1, 2} is given

by

Di(p1, p2) := 1− 2pi + pj.

Suppose the marginal costs for both the firms are zero, then the utility function of firm i is

ui(p1, p2) := pi(1− 2pi + pj).

Given any pj, the best response of firm i is the unique maximum point of the above strictly

concave function, which can be obtained by taking the first order condition:

1− 4pi + pj = 0.

or pi =
1
4
(1 + pj) ∈ [1

4
, 1
2
].

Notice that for every pj, when pi ∈ [0, 1
4
), the utility function of agent i is increasing and

when pi ∈ (1
2
, 1], utility function is decreasing. Hence, strategies [0, 1

4
) and (1

2
, 1] are strictly

dominated. So, the first round of elimination gives strategies, [1
4
, 1
2
].

Now, second round of elimination suggests, strategies [1
4
, 5
16
) and (3

8
, 1
2
] are strictly domi-

nated. So, the second round of elimination gives [ 5
16
, 3
8
].

This gives us the following sequence of strategy sets:

[
1

4
,
1

2
], [

5

16
,
3

8
], [

21

64
,
11

32
], [

85

256
,
43

128
], . . . .

So, the lower point of the intervals are

1

4
,
1

4
+

1

42
,
1

4
+

1

42
+

1

43
, . . . ,

This sequence converges to 1
3
. The upper point of the intervals are

1

4
+

1

4
,
1

42
+

1

4
+

1

42
,
1

43
+

1

4
+

1

42
+

1

43
, . . . .
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This sequence converges to 1
3
too. Hence, iterated elimination of strictly dominated strategies

lead to a unique outcome in this game: (1
3
, 1
3
), which is also the unique Nash equilibrium of

this game.

11 Supermodular Games

The concavity assumption made in Theorem 1 does not hold in many games. We now

discuss a class of games where we introduce a different set of sufficient conditions that

guarantee existence of pure strategy Nash equilibrium. These are called supermodular games.

Supermodular games capture the idea that strategies of players are complements of each

other. The main idea of a supermodular game is that the marginal utility of one player’s

utility is non-decreasing in the strategies of the other players.

11.1 Lattices and complete lattices

Lattices are abstract mathematical objects that are useful to define supermodular games.

The starting point of a lattice is an abstract set X - for most part of this section, you can

assume X is a subset of Rk for some k. We are given partial order (an reflexive, anti-

symmetric, and transitive but not necessarily complete) ≤ on X . If X ⊆ R
k, then ≤ is the

usual relation: x ≤ y if xi ≤ yi for each i ∈ {1, . . . , k}.

Given any subset S ⊆ X , an upper bound of S is an element x ∈ X such that y ≤ x for

all y ∈ S. Similarly, a lower bound of S is an element x ∈ X such that x ≤ y for all y ∈ S.

The least upper bound of S is an element x ∈ X such that for every upper bound x′ of S,

we have x ≤ x′. Similarly, the greatest lower bound of S is an element x ∈ X such that

for every lower bound x′ of S, we have x′ ≤ x. Many a times an upper bound and a lower

bound of a subset may not exist. If S is a rectangle in R
2, then the two corner points define

the greatest lower bound and least upper bound for the entire rectangle. Figure 7 illustrates

this. Let S = {(x1, y1), (x2, y2)} as shown and X = R
2. Then, the least upper bound is

(max(x1, x2),max(y1, y2)) and the greatest lower bound is (min(x1, x2),min(y1, y2)).

Definition 14 The pair (X,≤) is a lattice if for every {x, y} ⊆ X the greatest lower

bound and the least upper bound of {x, y} exist in X.

As discussed, when X = R
k, then the max(x, y) and min(x, y) provide the least upper

bound and greatest lower bound respectively, and since they lie in X , it is a lattice. Here
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(x1; y1)

(x2; y2)

(x2; y1) = (max(x1; x2);max(y1; y2))

(x1; y2) = min(x1; x2);min(y1; y2))

Figure 7: A lattice

are some more examples of lattices which are subsets of R2:

X := {(0, 0), (1, 0), (0, 1), (1, 1)}
X := {(0, 0), (1, 0), (0, 1), (100, 100)}

In the first lattice, the least upper bounds and greatest upper bounds are the min and max

points. But in the second lattice, the least upper bound of {(1, 0), (0, 1)} is (100, 100). If we

remove (1, 1) from the first X , then the resulting set has no upper bound for {(1, 0), (0, 1)},
and hence, is not a lattice.

We will be interested in complete lattices.

Definition 15 The pair (X,≤) is a complete lattice if for every S ⊆ X, the greatest

lower bound and the least upper bound of S exist in X.

Not every lattice is complete. For instance, X = (0, 1) is a lattice since for any pair of points

x, y ∈ X , we can find the greatest lower bound and least upper bound, but not for the entire

set X . Clearly, if X ⊆ R
k and X is a complete lattice, then it has to be compact.

We will be interested in functions on a lattice (X,≤). Let f : X → X . We say f is

monotone if for every x, y ∈ X with x ≤ y, we have f(x) ≤ f(y). As we know, non-

monotone functions need not have a fixed point. For instance, let X = [0, 1] and define

f : X → X as follows.

f(x) =







1 for x ∈ [0, 1
2
)

0 for x ∈ [1
2
, 1]

This f has no fixed points. It seems to be that this is caused by discontinuity of f . But

consider the following f :

f(x) =







0 for x ∈ [0, 1
2
)

1 for x ∈ [1
2
, 1]
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This is also a discontinuous function but now has a fixed point at 0. The difference is

monotonicity. Tarski’s fixed point theorem formalizes this.

Theorem 12 (Tarski’s Fixed Point Theorem) Let (X,≤) be a complete lattice. If f :

X → X is monotone, then f has a fixed point. Moreover, if P is the set of fixed points of f ,

then there is x, x̄ ∈ P such that for all x ∈ P ,

x ≤ x ≤ x̄.

Proof : Define the following set:

X̄ := {x ∈ X : x ≤ f(x)}.

Since (X,≤) is a complete lattice, there is a greatest lower bound x∗ ofX . Hence, f(x∗) ≥ x∗,

which implies that x∗ ∈ X̄ . So, X̄ is non-empty. Since (X,≤) is a complete lattice, there is

a least upper bound x̄ ∈ X of X̄ .

We argue that x̄ ∈ X̄ . For every x ∈ X̄ , we know x ≤ x̄. Monotonicity implies f(x) ≤
f(x̄). But x ∈ X̄ implies x ≤ f(x) ≤ f(x̄). Hence, f(x̄) is an upper bound on X̄. Since x̄ is

the least upper bound, we get x̄ ≤ f(x̄), which implies that x̄ ∈ X̄ .

We now show that x̄ is a fixed point of f . To do so, first note that for every x ∈ X̄ ,

we have x ≤ f(x), and monotonicity implies that f(x) ≤ f(f(x)). Hence, x ∈ X̄ implies

f(x) ∈ X̄ . This implies that f(x̄) ∈ X̄ . But if x̄ < f(x̄), then x̄ is not an upper bound for

X̄ . Hence, it must be that x̄ = f(x̄).

We can also define the following set:

X := {x ∈ X : f(x) ≤ x}.

The set X is non-empty because the the least upper bound x∗ of X must satisfy f(x∗) ≤ x∗.

We now consider the greatest lower bound of X , and denote it as x. For every x ∈ X , we

have x ≤ x. Hence, f(x) ≤ f(x). But x ∈ X implies that f(x) ≤ f(x) ≤ x. Hence, f(x) is

a lower bound for X . Since x is the greatest lower bound, we must have f((x)) ≤ x, which

implies that x ∈ X .

As earlier, for every x ∈ X , we have f(x) ≤ x. Hence, f(f(x)) ≤ f(x) for all x ∈ X . As

a result, for all x ∈ X , we have f(x) ∈ X . But, f(x) ≤ x. If f(x) < x, then x is not a lower

bound for X since f(x) ∈ X . Hence, f(x) = x.
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Thus, we have discovered two fixed points of f : x̄ ∈ X̄ and x ∈ X . Pick an arbitrary fixed

point x∗ ∈ X of f : x∗ = f(x∗). By definition, x∗ ∈ X̄ ∩X . Since x̄ ∈ X̄ is the least upper

bound of X̄ and x ∈ X is the greatest lower bound of X , we have,

x ≤ x∗ ≤ x̄.

�

11.2 Supermodularity and comparative statics

We will now focus attention on lattices defined on subsets of Eucliean spaces. Hence, the

underlying relation is the standard ≤ (or ≥). We will avoid explicit mention of this. Our

first definition is a definition of increasing differences across two lattices.

Definition 16 Let X ⊆ R
K and Y ⊆ R

L be two lattices. A function f : X × Y → R

satisfies increasing differences in (x, y) if for all x, x′ ∈ X with x′ ≥ x and for all y, y′ ∈ Y

with y′ ≥ y, we have

f(x′, y′)− f(x, y′) ≥ f(x′, y)− f(x, y).

To understand increasing differences, consider a function f : R2 → R and note that R2

is a lattice. Suppose f(x, y) = x(1− y). Now, f(1, 1)− f(0, 1) = 0 and f(1, 0)− f(0, 0) = 1.

Hence, such a function does not satisfy increasing differences - increasing y decreases the

marginal value of x. However, f(x, y) = x(1 + y) satisfies increasing differences.

A closely related concept is supermodularity. For any lattice, denote the least upper

bound of a pair of points x and y as x ∨ y and the greatest lower bound of a pair of points

x and y as x ∧ y.

Definition 17 Let X ⊆ R
K be a lattice. A function f : X ⊆ R is supermodular if for

all x, x′ ∈ X, we have

f(x ∨ x′) + f(x ∧ x′) ≥ f(x) + f(x′).

We state (without proof) some elementary facts about supermodularity and increasing

differences. We assume X and Y are two lattices below.

1. A function f : X → R is supermodular if and only if for every i, j ∈ {1, . . . , K}, and
every x−ij f(xi, xj, x−ij) satisfies increasing differences for all xi, xj .

2. A function f : X × Y satisfies increasing differences in (x, y) if and only if f satisfies

increasing differences for any pair (xi, yj) given any (x−i, y−j).
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3. If f is twice continuously differentiable on X = R
K , f is supermodular if and only if

∂2f

∂xi∂xj
≥ 0 for all xi, xj .

The following is an important result regarding monotone comparative statics on lattices.

Theorem 13 (Topkis Monotone Comparative Statics) Let X ⊆ R
K be a complete

lattice and T ⊆ R
L be a lattice. Suppose f : X × Y → R is supermodular and continuous on

X for every t ∈ T and satisfies increasing differences in (x, t). Define for every t ∈ T ,

x∗(t) := {x ∈ X : f(x, t) ≥ f(x′, t) ∀ x′ ∈ X}.

Then, the following are true:

1. for every t ∈ T , x∗(t) ⊆ X is a non-empty complete lattice.

2. Let x̄∗(t) and x∗(t) be the least upper bound and the greatest lower bound of x∗(t) at

each t. Then, x̄∗(t), x∗(t) ∈ x∗(t).

3. for every t, t′ ∈ T with t′ > t and for every x ∈ x∗(t) and x′ ∈ x∗(t′), we have

x ∨ x′ ∈ x∗(t′) and x ∧ x′ ∈ x∗(t).

4. for every t, t′ ∈ T with t′ > t we have

x̄∗(t′) ≥ x̄∗(t) and x∗(t′) ≥ x∗(t).

Proof : We skip (1) and (2)’s proof. For (3), pick any x, x′ ∈ x∗(t). We know that

f(x ∨ x′, t) + f(x ∧ x′, t) ≥ f(x, t) + f(x′, t).

Either f(x∨x′, t) ≥ f(x∧x′, t) or f(x∨x′, t) ≤ f(x∧x′, t). Suppose f(x∨x′, t) ≥ f(x∧x′, t).
Since x, x′ ∈ x∗(t), we get f(x, t) = f(x′, t), and hence, f(x∨x′, t) ≥ f(x, t). Since x ∈ x∗(t),

x∨x′ ∈ x∗(t). This implies that f(x∨x′, t) = f(x, t) = f(x′, t). But then, f(x∧x′, t) ≥ f(x, t),

implying that x ∧ x′ ∈ x∗(t). A similar proof works if f(x ∨ x′, t) ≤ f(x ∧ x′, t).

Now pick t, t′ ∈ T with t′ > t and x, x′ ∈ X with x′ ∈ x∗(t′) and x ∈ x∗(t). We know

that f(x, t) − f(x ∧ x′, t) ≥ 0. By increasing differences, we get f(x, t′) − f(x ∧ x′, t′) ≥ 0.

By supermodularity, we get f(x′ ∨ x, t′) − f(x′, t′) ≥ 0. Hence, x′ ∨ x ∈ x∗(t′). Hence, for

any x ∈ x(t) and x′ ∈ x∗(t′), we have x ≤ x′ ∨ x ≤ x̄∗(t′). Hence, x̄∗(t) ≤ x̄∗(t′).

Also, f(x ∨ x′, t′)− f(x′, t′) ≤ 0. By increasing differences, f(x∨ x′, t)− f(x′, t) ≤ 0. By

supermodularity, f(x, t)−f(x∧x′, t) ≤ 0. Since x ∈ x∗(t), we see that x∧x′ ∈ x∗(t). Hence,

for any x ∈ x(t) and x′ ∈ x∗(t′), we have x′ ≥ x ∧ x′ ≥ x∗(t). Hence, x∗(t) ≤ x∗(t′). �

This leads us to the definition of the supermodular game.
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Definition 18 A game (N, {Si}i∈N , {ui}i∈N) is supermodular if for every i ∈ N ,

• Si ⊆ R
Ki is a compact (and hence, complete) lattice,

• ui is continuous and supermodular in si for every s−i,

• ui satisfies increasing differences in (si, s−i).

Note that a supermodular game does not assume continuity of ui with respect to other

players strategies s−i. It also does not assume concavity of ui with respect to si. For

instance, if Si ⊆ R for every i, then ui is vacuously supermodular in si for every s−i. Hence,

we will only need continuity of ui in si (contrast this to concavity requirement in Theorem

1). Another important point: all the lattice-theoretic results we proved for lattices in R
K

can also be proved for finite lattices with a greatest element and a least element - this is

a general definition of a compact lattice. Hence, supermodular games can also be defined

when Si for each i is finite and a compact lattice. The result below will apply to such a case

also.

Now, we state the main result of this section.

Theorem 14 Every supermodular game has a pure strategy Nash equilibrium.

Proof : Pick any strategy profile s. For every i ∈ N and Bi(s−i) = {si : ui(si, s−i) ≥
ui(s

′
i, s−i) ∀ s′i}. Since Si and S−i are complete lattices, by Theorem 13, Bi(s−i) is a non-

empty complete lattice. Now, we define B̄i(s−i) as the lowest upper bound of Bi(s−i) - note

that this is a strategy in Bi(S−i) due to Theorem 13. Now, we can define for every strategy

profile s,

B̄(s) := (B̄1(s−1), . . . , B̄n(s−n)).

Hence, B̄ : S1 × . . .× Sn → S1 × . . .× Sn. By Theorem 13, if s′ ≥ s, then B̄i(s
′
−i) ≥ B̄i(s−i)

for all i ∈ N . Hence, B̄ is a monotone function defined on a complete lattice S1 × . . .× Sn.

By Theorem 12, a fixed point of B̄ exists, and it must be a Nash equilibrium. �

We now do an example to illustrate the usefulness of supermodular games. Consider the

classic Bertrand game, where two firms are producing the same good. Each firm chooses a

price: say p1 for firm 1 and p2 for firm 2. Suppose the prices lie in [0,M ] for some positive

real number M . The demand for firm i for a pair of prices pi, pj is given by

Di(pi, pj) = gi(pi) + pj ,
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where gi some continuous and decreasing function of pi. If the marginal cost of production

is c for both the firms, the utility of firm i is

ui(pi, pj) = (pi − c)(g(pi) + pj).

Note that ui is continuous and supermodular in pi for every pj (supermodularity is vac-

uously satisfied). For increasing differences, we pick p′i > pi and p
′
j = pj + δ for δ > 0. So,

we have

ui(p
′
i, p

′
j)− ui(pi, p

′
j) = (p′i − c)(gi(p

′
i) + p′j)− (pi − c)(gi(pi) + p′j)

= (p′i − c)(gi(p
′
i) + pj + δ)− (pi − c)(gi(pi) + pj + δ)

= (p′i − c)δ − (pi − c)δ + ui(p
′
i, pj)− ui(pi, pj)

= (p′i − pi)δ + ui(p
′
i, pj)− ui(pi, pj)

≥ ui(p
′
i, pj)− ui(pi, pj).

By Theorem 14, a pure strategy Nash equilibrium exists in this Bertrand game.

The existence of pure strategy equilibrium in supermodular game is an interesting result

because it does not require some concavity and continuity assumptions of Theorem 1. How-

ever, there are even more striking results one can establish for supermodular games. Below,

we show how we can compute a pure strategy Nash equilibria of a supermodular game.

We iterate through the best response map by successively eliminating strictly dominated

strategies. Initially, we set S0
i = Si for all i ∈ N . Let S0 ≡ (S0

1 , . . . , S
0
n). Denote by

s0 ≡ (s01, . . . , s
0
n) the greatest element of the lattice S.

Now, for every i ∈ N , choose

s1i = B̄i(s
0
−i) and S1

i = {si ∈ S0
i : ¬(si > s1i )}.

The first claim is that any si > s1i (i.e., si /∈ S1
i ) is strictly dominated by s1i . To see this, for

all s−i ∈ S−i, we have

ui(si, s−i)− ui(s
1
i , s−i) ≤ ui(si, s

0
−i)− ui(s

1
i , s

0
−i)

< 0,

where the first inequality followed from increasing differences and the second strict inequality

from the fact that s1i = B̄i(s
0
−i) and si /∈ Bi(s

0
−i).

Note that s1i ≤ s0i . We now inductively define a sequence. Having defined Sk−1
i and sk−1

i

for all i ∈ N , we define

ski = B̄i(s
k−1
−i ) and Sk

i = {si ∈ Sk−1
i : ¬(si > ski )}.
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As before, we note that for all si ∈ Sk−1
i \ Sk

i , si is strictly dominated by ski for all strategies

s−i ∈ Sk−1
−i . To see this, pick si ∈ Sk−1

i and s−i ∈ Sk−1
−i , and note that

ui(si, s−i)− ui(s
k
i , s−i) ≤ ui(si, s

k−1
−i )− ui(s

k
i , s

k−1
−i )

< 0,

where the first inequality followed from increasing differences and the second strict inequality

from the fact that ski = B̄i(s
k−1
−i ) and si /∈ Bi(s

k−1
−i ). Thus, {Sk

i }i defines a new game where

players eliminate strictly dominated strategies from the previous stage game with strategies

{Sk−1
i }i.
Further, note that if sk ≤ sk−1, then for every i ∈ N ,

sk+1
i = B̄i(s

k
−i) ≤ B̄i(s

k−1
−i ) = ski ,

where the inequality followed from the monotone comparative statics result of Topkis. This

implies that the sequence {sk}k is a non-increasing sequence which is bounded from below.

Hence, it has a limit point - denote this limit as s̄.

We now show that s̄ is a Nash equilibrium. To see this, we show that for all i ∈ N and

for all si ∈ Si, we have

ui(s
k+1
i , sk−i) ≥ ui(si, s

k
−i).

First ui(s
1
i , s

0
−i) ≥ ui(si, s

0
−i) for all si ∈ Si. Now assume that ui(s

k
i , s

k−1
−i ) ≥ ui(si, s

k−1
−i )

for all si ∈ Si. Now, choose si ∈ Si \ Sk
i . By definition ski ≤ si. Since s

k
−i ≤ sk−1

−i increasing

differences imply that

ui(s
k
i , s

k
−i) ≥ ui(si, s

k
−i).

But, sk+1
i = B̄i(s

k
−i). Hence, ui(s

k+1
i , sk−i) ≥ ui(s

k
i , s

k
−i) ≥ ui(si, s

k
−i). This shows that for all

si ∈ Si \ Sk
i ,

ui(s
k+1
i , sk−i) ≥ ui(si, s

k
−i).

Since sk+1
i = B̄i(s

k
−i), we know that for all si ∈ Sk

i ,

ui(s
k+1
i , sk−i) ≥ ui(si, s

k
−i).

This completes the argument that for all si ∈ Si, we have

ui(s
k+1
i , sk−i) ≥ ui(si, s

k
−i).

Taking limit, and using the fact that ui is continuous, we get

ui(s̄i, s̄−i) ≥ ui(si, s̄−i).
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Hence, s̄ is a Nash equilibrium of the original game.

Suppose there is another Nash equilibrium s̄′ such that s̄′i > s̄i for some i. Then, there is

a stage k of iterated elimination with sk as the greatest strategy profile. An sk can be chosen

such that s̄′i > ski > s̄i. We know that a Nash equilibrium of the original game is also a Nash

equilibrium of this game (strict iterated elimination preserves the set of Nash equilibrium -

Theorem 6). But s̄′i is strictly dominated in this game. Hence, it cannot be part of a Nash

equilibrium. This is a contradiction.

Similarly, we can start with s0 ≡ (s01, . . . , s
0
n) as the least element in S and identify the

limit point of an non-decreasing sequence as s. Using a similar proof technique, we can show

that s is also a Nash equilibrium. This will correspond to the least Nash equilibrium.

We now apply this idea to a Bertrand game. Suppose there are two firms producing the

same good. Both the firms choose prices in [0, 1]. Depending on prices p1, p2, the demand of

firm 1 is

Di(p1, p2) = 1− 2pi + pj .

Suppose the marginal cost is zero for both the firms. Then, utility of firm i is

ui(p1, p2) = pi(1− 2pi + pj).

Set S0
i = [0, 1]. The greatest element strategy profile is (1, 1). If one firm sets price equal

to 1, then ui(pi, 1) = 2pi(1 − pi). There is a unique best response to it - pi =
1
2
. Now, we

set S1
i = [0, 1

2
] and s1i =

1
2
for each i. Then, ui(pi,

1
2
) = pi(

3
2
− 2pi). This gives a unique best

response of 3
8
. So, we set S2

i = [0, 3
8
] and s2i =

3
8
. So, we get a sequence (1, 1

2
, 3
8
, 11
32
, . . .). Note

that this sequence is (1, 1
2
, 1
4
+ 1

4
1
2
, 1
4
+ 1

4
3
8
, . . .). Hence, the k-th term is

1

4
+

1

16
+ . . .+

1

4k
+
s0i
4k

As k tends to infinity, this becomes 1
3
. Hence, the greatest Nash equilibrium is (1

3
, 1
3
).

Now, we start from the least strategy profile (0, 0). Then, ui(pi, 0) = pi(1− 2pi). Hence,

the unique best response is pi =
1
4
. So, S1

i = [1
4
, 1] and s1i = 1

4
for each i. Then, ui(pi,

1
4
) =

pi(
5
4
− 2pi). Unique best response is 5

16
. Hence, we get a sequence (0, 1

4
, 1
4
+ 1

4
1
4
, . . .). Hence,

the k-th term is
1

4
+

1

16
+ . . .+

1

4k
+
s0i
4k
,

whose limit is the same 1
3
. Hence, the least Nash equilibrium is also (1

3
, 1
3
). So, (1

3
, 1
3
) is the

only Nash equilibrium.
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Important Note: As we saw in this example, the strategy space of players in many

games is a subset of R. In that case, the every compact subset of R will be a compact

lattice. Hence, the lattice requirement is vacuously satisfied. Further, supermodularity is

also vacuously satisfied. The only restriction that supermodular games impose is increasing

differences in (si, s−i) and continuity with respect to si.

12 Bayesian Games

Often, the strategic form game depends on some external factor. These factors may be

known to some agents with varying certainty. To make ideas clear, consider a situation in

which two agents are deciding where to meet. Each agent privately observes the weather in

his city but does not know the weather of the other agent’s city. Based on the weather in

the city, an agent has a set of actions available to him, and his utility will depend on the

weather in both the cities and the actions chosen by both the agents. Here, the weather

in each city is a signal that is privately observed by the player. The signal determines the

action set of the strategic game. The utility in the strategic form game is determined by the

signals realized by all the agents and the actions taken.

The kind of uncertainty in this example is about the weather in the cities. Each agent

uses a common prior to evaluate uncertainty using expected utility. In this example, there

is a probability distribution about the weather in both the cities. Note that since an agent

only observes weather in his own city, he can use Bayes rule to update the conditional

probabilities.

Note that the strategy of a player and his payoff functions are complicated objects in this

environment because (a) it depends on the signals players receive and (b) there is uncertainty

about the signals of other players. Harasanyi was the first to formally define an analogue of

a strategic game in this uncertain environment.

Definition 19 A Bayesian game (game of incomplete information) is defined by

• N : a finite set of players,

• Ti: set of types (signals) for each player i, and T = ×i∈NTi is the set of type vectors,

• p: a common probability distribution (belief or prior) over T with the restriction that

πi(ti) :=
∑

t−i∈T−i
p(ti, t−i) > 0 for each ti ∈ Ti and for each i ∈ N ,

• Ai(ti): the set of actions available to each Player i with type ti,
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Γ(t1; t2) Γ(t̂1; t2) Γ(t1; t̂2) Γ(t̂1; t̂2)

Nature

(t̂1; t̂2)(t1; t̂2)(t̂1; t2)(t1; t2)

p(t1; t2)

Figure 8: A Bayesian game

• ui(t, a): the payoff assigned by each Player i at type profile t ≡ (t1, . . . , tn) ∈ T when

action profile a ≡ (a1, . . . , an), where each aj ∈ Aj(tj) for all j ∈ N , is played.

A Bayesian game proceeds in a sequence where some of the associated uncertainties are

resolved.

• The type vector t ∈ T is chosen (by nature) using the probability distribution p.

• Each player i ∈ N observes his own type ti but does not know the types of other agents.

• After observing their types, each player i plays an action ai ∈ Ai(ti).

• Each player i receives an utility equal to ui(t, a) when the type profile realized is

t ≡ (t1, . . . , tn) and the action profile is a ≡ (a1, . . . , an).

Figure 8 illustrates a Bayesian game for two players with the type set of Player 1 being

{t1, t̂1} and that of Player 2 being {t2, t̂2}. As the Figure shows, a Bayesian game can be

described by a sequence of moves, where the first move is by Nature determining the type

vector of players. Figure 8 shows the four possible type vectors. Once the type vectors are

realized Players know the actions available to them (but not to others as they do not know

the types of others). Hence, there is still uncertainty about the game being played.

In most of the examples, we will make the assumption that for all t−i, t
′
−i,

ui((ti, t−i), a) = ui((ti, t
′
−i), a) for all a, for all ti, for all i ∈ N

This is called a private values model. It rules out the possibility that a player’s utility

depends directly on the type of other players. Notice that the action chosen by a Player may
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depend on his type in the game, and hence, indirectly, Player i’s utility will depend on the

type of other players (though the actions chosen by other players).

12.1 A simple example: market for lemons

Consider a used car market in which a car is in good condition with probability q ∈ [0, 1]

and and in bad condition with probability 1− q (call such cars lemons). There is one buyer

and one seller. The seller knows whether the the car is good or bad but the buyer does not

know the quality of the car. There is a market price for every used car, denoted by p. The

probability q is common knowledge.

The seller has two possible actions: sell and not sell. The buyer has two possible

actions: buy and not buy. If the car is good, then the buyer enjoys a value of 6 and the

seller enjoys a value of 5. If the car is bad, the buyer enjoys a value of 4 and the seller has

zero value for it. Notice that in both the states, it is “efficient” to trade the car.

What is the Bayesian game? First, the Nature informs the seller (and not the buyer) if

the car is good or bad. If the car is good, then the game in Table 27 is played. If the car is

bad, then the game in Table 28 is played. In this game, at the interim stage (i.e., the stage

just after the nature moves), the seller knows the complete state of the world and hence,

knows which game will be played. On the other hand, the buyer does not know which game

will be played.

Sell Not sell

Buy 6− p, p 0,5

Not buy 0,5 0,5

Table 27: Good car

Sell Not sell

Buy 4− p, p 0,0

Not buy 0,0 0,0

Table 28: Bad car

12.2 Strategy and Utility

Because of uncertainty, the players do not even know the action set available to other players.

So, they do not know which strategic form game is being played. Note that the action set
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depends on the type of the player. Further, the utility depends on the type vector realized

and the actions taken by all the players.

Strategies in such games are complicated objects. To remind, a strategy must describe

the action to be taken for every possible contingency. Hence, here also, a strategy must

describe what action to take for every signal/type that the player receives.

A strategy of Player i in a Bayesian game is a map si : Ti → ∪ti∈Ti
Ai(ti) such that

si(ti) ∈ Ai(ti) for all ti ∈ Ti. Thus, a strategy prescribes one action for every type.

What is the payoff of Player i from a strategy profile s ≡ (s1, . . . , sn)? There are two

ways to think about it: ex-ante payoff, which is computed before realization of the type, and

interim payoff, which is computed after realization of the type. Ex-ante payoff from strategy

profile s is

Ui(s) :=
∑

t∈T
p(t)ui(t, (s1(t1), . . . , sn(tn))).

Here, if type profile t is realized, then action profile (s1(t1), . . . , sn(tn)) is played according

to the strategy profile s. Hence, the payoff realized by Player i at type profile t is just

ui(t, (s1(t1), . . . , sn(tn))). Then, Ui(s) computed using expectation from this.

The interim payoffs are computed by updating beliefs after realizing the types. In par-

ticular, once Player i knows his type to be ti ∈ Ti, he computes his conditional probabilities

as follows. For every t−i ∈ T−i,

pi(t−i|ti) :=
p(ti, t−i)

∑

t′
−i∈T−i

p(ti, t′−i)
=
p(ti, t−i)

πi(ti)
,

where we will denote πi(ti) ≡
∑

t′
−i∈T−i

p(ti, t
′
−i) and note that it is positive by our assump-

tion. The interim payoff of Player i with type ti from a strategy profile s−i of other players

and when he takes action ai ∈ Ai(ti) is thus

Ui((ai, s−i)|ti) :=
∑

t′
−i∈T−i

pi(t
′
−i|ti)ui(t, (ai, s−i(t

′
−i))).

If the beliefs are independent, then observing own type gives no extra information to the

players. Hence, no updating of prior belief is required by the players.

An easy consequence of this definition is the following. Consider Player i and a strategy

profile (si, s−i)

∑

ti∈Ti

Ui((si(ti), s−i)|ti)πi(ti) =
∑

ti∈Ti

πi(ti)
∑

t−i∈T−i

pi(t−i|ti)ui(t, (si(ti), s−i(t−i)))

=
∑

t∈T
p(t)ui(t, (si(ti), s−i(t−i))) = Ui(s). (4)
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Note: The above expressions are for finite type spaces, but similar expressions (using

integrals) can also be written with infinite type spaces. Below is an application with infinite

type spaces.

In the example in Section 12.1, the strategy of a seller is a map

sℓ : {good,bad} → {sell, not sell}.

Since the buyer has no type in this example, its strategy is

sb ∈ {buy, not buy}.

12.3 Bayesian Equilibrium

As we saw, there are two points at which a player may evaluate his utility: ex-ante or interim.

Depending on that the notion of equilibrium can be defined. The ex-ante notion coincides

with the idea of a Nash equilibrium.

Definition 20 A strategy profile s∗ is a Nash equilibrium in a Bayesian game if for each

player i and each pure strategy si,

Ui(s
∗
i , s

∗
−i) ≥ Ui(si, s

∗
−i).

There is also an interim way of defining the equilibrium. This is called the Bayesian

equilibrium, and is the common way of defining equilibrium in Bayesian games.

Definition 21 A strategy profile s∗ is a Bayesian equilibrium in a Bayesian game if for

each player i, each type ti ∈ Ti, and each action ai ∈ Ai(ti),

Ui((s
∗
i (ti), s

∗
−i)|ti) ≥ Ui((ai, s

∗
−i)|ti) ∀ ti ∈ Ti.

Informally, it says that a player i of type ti maximizes his expected/interim payoff by

following s∗i given that all other players follow s∗−i.

The first property that we show is that (with finite type spaces) a strategy profile is a

Nash equilibrium if and only if it is a Bayesian equilibrium. In other words, a player has

a profitable deviation in Bayesian game before he learns his type if and only if he has a

profitable deviation after he learns his type. This result will use the fact that probability of

every type occurring is positive.

Theorem 15 Suppose type space of each player is finite. A strategy profile is a Bayesian

equilibrium if and only if it is a Nash equilibrium.
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Proof : Consider a strategy profile s∗. Suppose s∗ is a Bayesian equilibrium. Then, for

every i ∈ N , for every ti ∈ Ti, and every ai ∈ Ai(ti), we have

Ui((s
∗
i (ti), s

∗
−i)|ti) ≥ Ui((ai, s

∗
−i)|ti).

For any strategy si : Ti → ∪tiAi(ti) with si(ti) ∈ Ai(ti) for all ti, we know from Equality

4 that

Ui(si, s
∗
−i) =

∑

ti∈Ti

πi(ti)Ui((si(ti), s
∗
−i)|ti) ≤

∑

ti∈Ti

πi(ti)Ui(s
∗
i (ti), s

∗
−i|ti) = Ui(s

∗
i , s

∗
−i).

Hence, s∗ is a Nash equilibrium.

Now, suppose that s∗ is a Nash equilibrium. Assume for contradiction that s∗ is not a

Bayesian equilibrium. Then, there is some i ∈ N and some ti ∈ Ti with ai ∈ Ai(ti) such that

Ui((ai, s
∗
−i)|ti) > Ui((s

∗
i (ti), s

∗
−i)|ti). (5)

Now, construct a new strategy si such that si(ti) = ai but si(t
′
i) = s′i(t

′
i) for all t

′
i 6= ti.

Now, observe the following:

Ui((si, s
∗
−i)) =

∑

t′i 6=ti

πi(t
′
i)Ui((si(t

′
i), s

∗
−i)|t′i) + πi(ti)Ui((si(ti), s

∗
−i)|ti)

=
∑

t′i 6=ti

πi(t
′
i)Ui((s

∗
i (t

′
i), s

∗
−i)|t′i) + πi(ti)Ui((si(ti), s

∗
−i)|ti)

>
∑

t′i 6=ti

πi(t
′
i)Ui((s

∗
i (t

′
i), s

∗
−i)|t′i) + πi(ti)Ui((s

∗
i (ti), s

∗
−i)|ti)

= Ui(s
∗
i , s

∗
−i),

where the strict inequality followed from Inequality 5 and the fact that πi(ti) > 0 for all i

and for all ti. This contradicts the fact that s∗ is a Nash equilibrium. �

The equivalence result needs type spaces to be finite. In general, we will consider Bayesian

games where type space is not finite. In such games a Bayesian equilibrium will continue

to imply a Nash equilibrium but the converse need not hold. So, we will use the solution

concept Bayesian equilibrium in all the Bayesian games that we analyze.

But do all Bayesian games admit a Bayesian equilibrium? Which Bayesian games admit

a Bayesian equilibrium? There is a long literature on this topic, which we will skip. Just like

Nash equilibrium, there is a well-behaved class of games that admit a Bayesian equilibrium.

One simple way to think of an existence result is to allow for mixed actions for every type.
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Essentially, we enrich the action space but keep the finite nature of type space. That is,

after every ti, the set of actions available to a player is ∆Ai(ti), where Ai(ti) is finite. This

will be the analogue of the mixed strategy. Formally, a mixed strategy of Player i is a map

σi : Ti → ∪ti∈Ti
∆Ai(ti) such that for every ti ∈ Ti, σi(ti) ∈ ∆Ai(ti). The utility of player

i from such a mixed strategy will be evaluated by taking expectation. A mixed strategy

Bayesian equilibrium always exists if action spaces are finite and type spaces are finite - a

result which we will not prove.

13 First-price Auction

We will study a model of selling a single indivisible object. Each agent derives some utility

by acquiring the object - we will refer to this as his valuation. In the terminology of the

Bayesian games, the valuation is the type of the agent.

We will study auction formats to sell the object. This will involve payments. A central

assumption in auction theory is that utility from monetary payments is quasi-linear, i.e.,

if an agent gets utility v from the object and pays an amount p, then his net utility is

v − p.

Implicitly, this assumes risk neutral bidders - the net utility of a bidder is his net payoff.

Another fundamental assumption that is commonly made is that of no externality, i.e.,

if an agent does not win the object then he gets zero utility. The auction that we will study

will involve zero payments by the agent who does not win the object. We will assume that

all the bidders draw their value from some interval [0, w] using a distribution F (same for all

the bidders). We also assume that F admits a density function f such that f(x) 6= 0 for all

x ∈ [0, w]. It is possible that the interval is the whole non-negative real line, in which case,

we will abuse notation to let w = ∞. But the mean of this distribution will be finite.

A random variable that will come handy is the highest of (n− 1) values: we denote it by

G. In particular, we will be interested to know what is the probability that (n− 1) bidders

have value less than or equal to x: this is precisely

G(x) = [F (x)]n−1.

First-price auction. The first-price auction is probably the most popular format of

auction. Like in the Vickrey auction, the highest buyer wins the object in the first-price

auction too. We assume that in case of a tie for the highest bid, each bidder gets the

good with equal probability. We denote the probability of winning at a profile of bids
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b ≡ (b1, . . . , bn) as φj(b) for each buyer j ∈ N . Note that φj(b) = 1 if bj > maxk 6=j bk and

φj(b) = 0 if bj < maxk 6=j bk.

Given a profile of bids b ≡ (b1, . . . , bn) of bidders, the payoff to bidder j with value xj is

given by

πj(b) = φj(b)
[

xj − bj
]

Unlike the Vickrey auction, the first-price auction has no weakly dominant strategy (ver-

ify). To see this, note that a bidder who bids her valuation as bid will get a payoff of zero

when she wins the object. Hence, her expected payoff from bidding her valuation is zero.

Clearly, bidding slightly less than her valuation generates higher expected payoff if others

are bidding truthfully. So, bidding your valuation is no longer a weakly dominant strategy.

Hence, we adopt the weaker solution concept of Bayesian equilibrium. In fact, we will restrict

ourselves to equilibria where bidders use the same bidding function which are technically well

behaved.

In particular, for any bidder j ∈ N , a strategy βj : [0, w] → R+ is his bidding function.

The focus in our study will be monotone symmetric equilibria, where every bidder uses

the same bidding function. So, we will denote the bidding function (strategy in the Bayesian

game) by simply β : [0, w] → R+. We assume β(·) to be strictly increasing and differentiable.

Bayesian equilibrium requires that if every bidder except bidder i follows β(·) strategy,
then the expected payoff maximizing strategy (over all strategies, including non-symmetric

ones) for bidder i must be β(x) when his value is x. Note that if bidder i with value x bids

β(x), and since everyone else is using β(·) strategy, increasing β ensures that the probability

of winning for bidder i is equal to the probability that x is the highest value, which in turn

is equal to G(x). Thus, we can define the notion of a symmetric (Bayesian) equilibrium in

this case as follows. Suppose a bidder bids b and other bidders follow a symmetric strategy

β. Then this bidder wins if each other bidder bids less than b, which is possible if their

value is β−1(b). So, the probability of a bidder winning the object by bidding b when others

follow β strategy is G(β−1(b)). If b = β(x), i.e., this bidder also bids according to β, then

this probability is just G(x). Hence, the notion of Bayes-Nash equilirbium reduces to the

following definition.

Definition 22 A strategy profile β : [0, w] → R+ for all agents is a symmetric Bayesian

equilibrium if for every bidder i and every type x ∈ [0, w]

G(x)(x− β(x)) ≥ G(β−1(b)) (x− b) ∀ b ∈ R+.

Remember that due to symmetry, G(x) indicates the probability of winning in the auction

when the bidder bids β(x), and (x− β(x)) is the resulting payoff.
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Theorem 16 A symmetric equilibrium in a first-price auction is given by

βI(x) =
1

G(x)

∫ x

0

yg(y)dy.

Remark. The interpretation of this bid function is as follows. A bidder with type/value

x for the object bids an amount equal to his conditional expectation of the highest value of

other bidders, where the conditioning is done on the fact that he has the highest value.

Proof : Suppose every bidder except bidder j follows the suggested strategy. The suggested

strategy generates non-negative payoff. Let bidder j bid b. Notice that if other bidders

follow βI , the maximum they can bid is βI(w). So, bidder j can focus on bidding no more

than βI(w) - any bid strictly more than βI(w) can be improved by bidding βI(w). So, it is

without loss of generality to consider b ∈ [0, βI(w)]. Hence, any bid b can be mapped to a z

such that βI(z) = b. Then the expected payoff from bidding βI(z) = b when his true value

is x is

π(b, x) = G(z)
[

x− βI(z)
]

= G(z)x−
∫ z

0

yg(y)dy

= G(z)x− zG(z) +

∫ z

0

G(y)dy

= G(z)
[

x− z
]

+

∫ z

0

G(y)dy,

where, we have integrated by parts in the fourth equality 3. Hence, we can write

π(βI(x), x)− π(βI(z), x) = G(z)(z − x)−
∫ z

x

G(y)dy.

Now, if z > x, then we see that

G(z)(z − x)−
∫ z

x

G(y)dy ≥ G(z)(z − x)− (z − x)G(z) = 0,

where the inequality follows from the fact G(z) ≥ G(y) for all y ∈ [x, z]. If z < x, then we

see that

G(z)(z − x)−
∫ z

x

G(y)dy = G(z)(z − x) +

∫ x

z

G(y)dy ≥ G(z)(z − x) + (x− z)G(z) = 0,

3To remind, integration by parts
∫

h1(y)h
′

2(y)dy = h1(y)h2(y)−
∫

h′

1(y)h2(y)dy.
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where the inequality again follows from monotonicity of G. Hence, bidding according to

βI(·) is a symmetric equilibrium. �

From the proof of the Theorem 16, it can be seen that if a bidder with value x bids β(z)

with z > x, then his loss in payoff is the shaded area above the G(·) curve in Figure 9. On

the other hand, if he bids β(ẑ) with ẑ < x, then his loss in payoff is the shaded area below

the G(·) curve in Figure 9.

y (valuation)

G(y)

w

1

(0; 0) x zẑ

Loss due to overbidding

Loss due to underbidding

Figure 9: Loss in first-price auction by deviating from equilibrium

We now prove that this is the unique symmetric equilibrium in the first-price auction.

Suppose there is a symmetric equilibrium β in the first-price auction. Now, consider any

bidder j. Assume that he realizes a true value x, and wants to determine his optimal bid

value b. In equilibrium, b = β(x).

Notice that when a bidder realizes a value zero, by bidding a positive amount, he makes

a loss. So, β(0) = 0. By bidding b, expected payoff of bidder j with value x is

G(β−1(b))(x− b).

A necessary condition for maximum is the first order condition, which is obtained by differ-

entiating with respect to b.

g(β−1(b))

β ′(β−1(b))
(x− b)−G(β−1(b)), (6)

where we used g is the density function of G and β(β−1(b)) = b. If β is an equilibrium

bidding strategy, Expression 6 must equal zero for all x when b = β(x). This implies for all
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x we must have

G(x)β ′(x) + g(x)β(x) = xg(x)

⇔ d

dx
(G(x)β(x)) = xg(x).

Integrating both sides, and using β(0) = 0, we get

β(x) =
1

G(x)

∫ x

0

yg(y)dy.

This is the same symmetric equilibrium we had derived in Theorem 16. Hence, this is the

unique symmetric equilibrium in the first-price auction.

The equilibrium bid in the first-price auction can be rewritten as

βI(x) = x−
∫ x

0

G(y)

G(x)
dy.

This amount is less than x. Notice that G(y)
G(x)

= (F (y)
F (x)

)n−1. Hence, the amount of lowering

of bid vanishes to zero as the number of bidders increase, and the equilibrium bid amount

approaches the true valuation.

Hence, the expected payment in the first price auction for a bidder with value x can be

written as

πI(x) = G(x)β(x) =

∫ x

0

yg(y)dy.

Now, consider the second-price auction. A bidder with value x pays an amount equal to

the highest of other (n − 1) values if he is the highest valued bidder. Hence, his expected

payment is the probability that he has the highest value (which is G(x)) times the conditional

expected value of the highest of other values:

πII(x) = G(x)
1

G(x)

∫ x

0

yg(y)dy =

∫ x

0

yg(y)dy = πI(x).

Notice that the expected revenue from a first-price auction is

n

∫ w

0

πI(x)f(x)dx.

which is also equal to the expected revenue from the Vickrey auction: n
∫ w

0
πII(x)f(x)dx.

This leads to an important result in auction theory, first proved by Vickrey.

Theorem 17 (Revenue equivalence) Suppose values of bidders are distributed indepen-

dently and identically. Then the expected revenue from the first-price auction and the second-

price auction is the same.
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It is instructive to look at the following example. Suppose values are distributed uniformly

in [0, 1]. So, F (x) = x and G(x) = xn−1. So, β(x) = x − 1
xn−1

∫ x

0
yn−1dy = x − x

n
= n−1

n
x.

So, in equilibrium, every bidder bids a constant fraction of his value.

Question. Can you think of an asymmetric equilibrium of a first-price auction? Is there

a non-truthful asymmetric equilibrium of second-price auction?

14 Bilateral Trading

The bilateral trading is one of the simplest model to study Bayesian games. It involves two

players: a buyer (b) and a seller (s). The seller can produce a good with cost c and the buyer

has a value v for the good. Suppose both the value and the cost are distributed uniformly

in [0, 1].

Now, consider the following Bayesian game. The buyer announces a price pb that he is

willing to pay and the seller announces a price ps that she is willing to accept. Trade occurs

if pb > ps at a price equal to pb+ps
2

. If pb ≤ ps, then no trade occurs.

The type of the buyer is his value v ∈ [0, 1] and the type of the seller is his cost c ∈ [0, 1].

A strategy for each agent is to announce a price given their types. In other words, the

strategy of the buyer is a map pb : [0, 1] → R and ps : [0, 1] → R.

If no trade occurs, then both the agents get zero payoff. If trade occurs at price p, then

the buyer gets a payoff of v − p and the seller gets a payoff of p− c.

Theorem 18 There is a Bayesian equilibrium (p∗b , p
∗
s) in the bilateral trading problem with

uniformly distributed types in [0, 1], where for every v, c ∈ [0, 1],

p∗b(v) =
2

3
v +

1

12
, p∗s(c) =

2

3
c+

1

4
.

Proof : Suppose the seller follows strategy p∗s. Then he never quotes a price above 2
3
+ 1

4
= 11

12
.

So, the buyer should never quote a price above 11
12

as a best response - this is because any

price strictly above 11
12

can be improved by lowering it a little further, and hence, cannot be a

best response. Similarly, the seller quotes a minimum price of 1
4
. So, the buyer can guarantee

himself zero payoff by quoting a price of 1
4
. Since quoting any price below 1

4
also ensures

zero payoff, it is without loss of generality to consider those strategies where the buyer never

quotes a price below 1
4
.

Suppose he quotes a price πb when his value is v. Then, trade occurs if the p∗s(c) < πb or

c < 3
2
πb − 3

8
. Note that since 1

4
≤ πb ≤ 11

12
, we have 0 ≤ 3

2
πb − 3

8
≤ 1.
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Let xb ≡ 3
2
πb − 3

8
. Then the expected payoff of buyer from bidding πb at type v is

∫ xb

0

(

v − πb + p∗s(c)

2

)

dc =

∫ xb

0

(

v − πb +
2
3
c+ 1

4

2

)

dc

=
(

v − πb
2

− 1

8

)

xb −
1

6
x2b

=
(

v − 1

3
xb −

1

4

)

xb −
1

6
x2b

= (v − 1

4
)xb −

1

2
x2b .

This is a strictly concave function in πb, hence, the first order condition gives the unique

maximum of the unconstrained problem. The first order condition gives (v − 1
4
) − xb = 0.

This implies that xb =
3
2
πb − 3

8
= v− 1

4
. Hence, πb =

2
3
v+ 1

12
. Note that πb ∈ [ 1

12
, 9
12
] satisfies

our constraint. Hence, it is a best response to p∗s strategy of the seller.

A similar optimization exercise solves the seller’s problem. Suppose the buyer follows

strategy p∗b . Then, the buyer quotes a minimum of 1
12

and a maximum of 3
4
. Then the seller

should never quote less than 1
12

because such a strategy will not maximize his expected payoff.

Suppose he quotes πc, then trade occurs if πc <
2
3
v + 1

12
, which reduces to v > 3

2
πc − 1

8
≥ 0

since πc ≥ 1
12
. Further, 3

2
πc − 1

8
≤ 1 since πc ≤ 3

4
. Denote xc =

3
2
πc − 1

8
. Hence, the expected

payoff of the seller at type c is given by

∫ 1

xc

(πc +
2
3
v + 1

12

2
− c

)

dv =

∫ 1

xc

(1

2
πc +

1

24
− c+

1

3
v
)

dv

=

∫ 1

xc

(1

3
xc +

1

12
− c+

1

3
v
)

dv

=
(1

3
xc +

1

12
− c

)

(1− xc) +
1

6
(1− x2c).

Again this is a strictly concave function and its maximum can be found by solving the first

order condition. The first order condition gives us

1

3
(1− xc)−

(1

3
xc +

1

12
− c

)

− 1

3
xc = 0.

This gives us xc =
3
2
πc − 1

8
= c+ 1

4
, which gives the unique best response as πc =

2
3
c+ 1

4
. �

There are other Bayesian equilibria of this game. However, this equilibrium can be

shown to be unique in the class of strategies where players use strategies linear in their

type. One notable feature of this equilibrium is that trade occurs when p∗b(v) > p∗s(c), which

is equivalent to requiring 2
3
v + 1

12
> 2

3
c + 1

4
. This gives v − c > 1

4
. Note that efficiency

will require trade to happen when v > c - such trades will be possible if there is complete
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Figure 10: Efficiency loss in bilateral trade with incomplete information

information. Hence, there is some loss in efficiency due to incomplete information. This is

in general an impossibility - you cannot construct any Bayesian game whose equilibrium will

have efficiency in Bayesian equilibrium in this model (more on this in some advanced course).

The region of trade in this particular equilibrium and efficiency loss is shown in Figure 10.

15 Simple Lemons Problem

Consider a car seller who has a car. If she sells the car at price p, she enjoys a utility of

p. Else, she enjoys a utility of θ ∈ [0, 1]. The type of the seller is θ ∈ [0, 1] and it is drawn

using a uniform distribution. A buyer interested in the car does not know θ. His payoff is

a + bθ − p if he buys the car at price p and zero if he does not buy the car. Assume that

a ∈ [0, 1) and b ∈ (0, 2) with a + b > 1. Notice that this is not a private values model since

the buyer’s payoff depends on the private information of the seller.

The game is as follows. The buyer announces an offer price and the seller announces a

set of prices she will accept. Trade happens if the buyer offer price belongs to the set of

prices seller announces. Since buyer does not know anything, his strategy is just a price

p ∈ [0, 1]. Since the seller knows her type, her strategy is a map s such that s(θ) ⊆ [0, 1] for

each θ ∈ [0, 1]. Since the seller gets payoff p if her car is sold at p or else gets θ, her weakly

dominant strategy is to have s(θ) = [θ, 1] for each θ.

Given this, what is the best response of the buyer. If the buyer posts a price p, then

it is accepted if p ∈ [θ, 1] or p ≥ θ. So, his payoff is non-zero whenever θ ≤ p. Hence, his

expected payoff is
∫ p

0

(a + bθ − p)dθ = ap− p2 +
b

2
p2.

Hence, his best response will maximize this expression. First-order condition gives a− 2p+
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bp = 0 or p = a
2−b

. Hence, the unique Bayes-Nash equilibrium is: the buyer offers price a
2−b

and the seller offers s(θ) = [θ, 1].

Notice that if a = 0 we have b > 1. So, for all θ > 0 we have θ < bθ. Hence, there is

gains from trade. However, the Bayes-Nash equilibrium has p = 0 and for all θ > 0, trade

never happens.

Another interesting feature is what is called winner’s curse. Note that ex-ante expected

value of θ (consider this the quality of the car) is 1
2
. But once a buyer offers a price p and

conditional on this price being accepted, the expected quality of the car is p

2
≤ 1

2
. These

effects are direct consequence of the fact that seller’s private information influences the payoff

of the buyer.

16 Repeated Games

16.1 Basic Ideas - The Repeated Prisoner’s Dilemma

Consider the Prisoners’ Dilemma (PD) game in Table 29. Recall that a dominant strategy

equilibrium of this game is (L1, L2), and it is the unique Nash equilibrium of the game.

L2 R2

L1 2,2 6,1

R1 1,6 5,5

Table 29: Prisoner’s Dilemma

Now, suppose the game is played twice with the actions at the end of every stage is

observed by all the players, and the payoff of a player at the end of the game is the sum of

payoff at the end of each stage.

We can think of reduced strategic form of this game. In this reduced form, Player

i ∈ {1, 2} has a complex strategy. First, she needs to choose an action for Stage 1. Second,

she needs to choose an action for every observed action profile of Stage 1 for Stage 2. For

instance, if she has observed, (L1, R2) being played in Stage 1, her Stage 2 choice of an action

can be contingent on that. This leads to a very complex strategy structure of the game in

reduced form.

Instead of looking at the reduced form, we can also analyze the game backwards. In par-

ticular, suppose we require that starting at every period, players must play Nash equilibrium

of the reduced form from that period onwards. Call this a subgame perfect equilibrium. Since

the unique Nash equilibrium of the game is (L1, L2), the players will play (L1, L2) in second
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stage in any subgame pefect equilibrium. Given this, the players now know that they will get

a payoff of 1 in the second stage. So, we can add (1, 1) to the payoff matrix in the first stage,

and then compute a Nash equilibrium of the overall game. This still gives a unique Nash

equilibrium of (L1, L2). Hence, the outcome of this game in a subgame perfect equilibrium

is (L1, L2) in each period (i.e., in period 1 players play (L1, L2) and in period 2 players play

(L1, L2) irrespective of what they observed in period 1).

This argument can be generalized. Let G = (N, {Ai}i∈N , {ui}i∈N ) denote a strategic-form
game of complete information. The game G is called the stage game of the repeated game.

Definition 23 Given a stage game G, let G(T ) denote the finitely repeated game in

which G is played T times with actions taken by of all players in the preceding stages observed

before the play in the next stage, and payoffs of G(T ) are simply the sum of payoffs in all T

stages.

Our arguments earlier lead to the following proposition (without formally defining notions

of equilibrium).

Proposition 1 If the stage game G has a unique Nash equilibrium, then for any finite

repetition of G, the repeated game G(T ) has a unique subgame perfect outcome: the Nash

equilibrium of the stage game G is played in every stage.

There are two important assumptions here: (a) the stage game has a unique Nash equilibrium

and (b) the stage game is repeated finite number of times. We will see that if either of the

two assumptions are not present then it is possible for players to get better payoffs.

We now modify the PD game by introducing a new strategy for every player. The new

PD game is shown in Table 30. There are two Nash equilibria of this game: (L1, L2) and

(R1, R2).

L2 M2 R2

L1 1,1 5,0 0,0

M1 0,5 4,4 0,0

R1 0,0 0,0 3,3

Table 30: A Game with Multiple Nash Equilibrium

Now, suppose the stage game in Table 30 is repeated twice. Then, using the arguments

earlier, we can say that in every stage playing either of the Nash equilibria is subgame perfect.

But, we will show that there exists a subgame perfect equilibrium in which (M1,M2) is played

in the first stage.
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Consider the following strategy of the players: if (M1,M2) is played in the first stage, then

play (R1, R2) in the second stage; if any other outcome happens in the first stage, then play

(L1, L2) in the second stage. This means, in the first stage of the game, the players are looking

at a payoff table as in Table 31, where second stage payoff (3, 3) is added to (M1,M2) and

second stage payoff (1, 1) is added to all other strategy profiles. The addition of different

payoffs to different strategy profiles changes the equilibria of this game. Now, we have

three pure strategy Nash equilibria in Table 31: (L1, L2), (M1,M2), and (R1, R2). Hence,

((M1,M2), (R1, R2)) constitute a subgame perefect equilibrium of this repeated game. Thus,

existence of multiple Nash equilibrium in the stage game allowed us to achieve cooperation

in the fist stage of the game. Notice that (M1,M2) is not a Nash equilibrium of the stage

game.

L2 M2 R2

L1 2,2 6,1 1,1

M1 1,6 7,7 1,1

R1 1,1 1,1 4,4

Table 31: Analyzing Payoffs of First Stage

This is part of a general argument: if G is a static game of complete information with

multiple Nash equilibria, there may be subgame perfect outcomes of the finitely repeated

game G(T ) in which for any stage t < T , the outcome in stage t is not a Nash equilibrium.

16.2 A Formal Model of Infinitely Repeated Games

Let G ≡ (N, {Ai}i∈N , {ui}i∈N) be a strategic form game. When we repeat such a stage

game G, we will assume that players observe all the actions taken in each period. At any

period, let at denote the action profile chosen by players. The sequence of actions profile

(a1, . . . , at−1) that leads to current period will be called the history of period t.

An infinitely repeated game of G is defined by G∞ ≡ (G,H, {u∗i}i∈N), where

• H = ∪∞
t=1H

t are the set of all possible histories, with H1 ≡ ∅ denoting the null history,

H t denoting the possible histories till period t, and H∞ denoting all infinite length

histories.

• u∗i : H
∞ → R+ for every i ∈ N is a utility function that assigns every infinite history

a payoff for Player i.
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A history is terminal if and only if it is infinite.

Strategies in a Repeated Game.

What is a strategy of a player in an infinitely repeated game? Remember, a strategy

needs to assign an action for every possible situation. This means that we need to assign an

action at every period for every possible history. Thus, strategy of Player i is a collection of

infinite maps {sti}∞t=1, where

sti : H
t → Ai.

Since a strategy seems to be a really complicated (infinite) object here, it is difficult to

imagine it. One easy way to think of a strategy is a machine (or automaton). The machine

for Player i has the following components.

• A set Qi of states.

• An element q0i ∈ Qi, indicating the initial state.

• A function fi : Qi → Ai that assigns an action to every state.

• A transition function τi : Qi × A → Qi that assigns a state for every state and every

action profile.

States represent situations that Player i cares about. We give an example showing how

a strategy in Prisoner’s Dilemma can be modeled as a machine. The strategy we consider is

called a trigger strategy. It chooses the cooperate action C as long as the history consists

of all players choosing C. Else, it chooses D. We only care about two states here: whether

everyone chosen C in the past or not. We will denote this as C and D respectively. Since

we want to choose C in the first period, we set q0i := C for each i. Now, fi(C) = C and

fi(D) = D. The transition function looks as follows for each i:

τi(C, (C,C)) = C, τi(X , (X, Y )) = D if (X , (X, Y )) 6= (C, (C,C)).

This is an example of a strategy which is relatively simple. Note that the number of

states here is finite. As one can see that we can construct strategies that care about more

number of states (possibly infinite). For our purposes, the kinds of strategies that we will

use will require machines with finite state space.

Payoffs in Repeated Games.
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Fix a strategy profile of players s ≡ (s1, . . . , sn). This strategy profile leads to outcomes

in each stage/period. Denote by vti , the payoff due to this strategy profile in period t. So,

agent i has an infinite stream of payoffs {vti}∞t=1 from this strategy profile. Similarly, if there

is another strategy profile s′, then it will generate an infinite stream of payoffs {wt
i}∞t=1. As a

result, if Player i has to compare outcomes of two strategy profiles, it compares two infinite

streams of payoffs: {vti}∞t=1 and {wt
i}∞t=1.

Hence, to properly compare outcomes of two strategy profiles, players need to have pref-

erence over infinite utility streams. There are many ways to compare infinite utility streams.

We give some example. Take any two infinite utility streams v ≡ {vt}∞t=1 and w ≡ {wt}∞t=1.

We will write v ≻ w whenever we want to say v is strictly preferred to w.

• Utilitarianism. There is some integer N ≥ 1 such that v ≻ w if and only if
∑N

t=1 v
t >

∑N

t=1w
t.

• Limit of means. There exists ǫ > 0 such that v ≻ w if and only if 1
T

∑T
t=1 v

t −
1
T

∑T

t=1 w
t > ǫ holds for all but finite number of T .

• Overtaking. There exists ǫ > 0 such that v ≻ w (strict relation) if and only if
∑T

t=1 v
t −∑T

t=1w
t > ǫ holds for all but finite number of T .

The first criteria is quite simple but it naturally ignores some future payoffs. The other

two criteria are quite incomplete. The most standard way is to use a discounted criterion.

In this way, we have a discount factor δ ∈ (0, 1) which is same for all the players. Player i

attaches a payoff equal to
∞
∑

t=1

δt−1vti ,

to the payoff stream {vti}∞t=1. Here, δ can either be interpreted as the discount factor of

agents or the probability with which the game continues to the next period. For instance,

if there is a payoff stream that generates payoffs v ≡ (1, 1, 1, . . .), then the payoff from this

stream is 1(1+ δ+ δ2 + . . .) = 1
1−δ

. Note that even though the payoff is 1 in each period, we

get a different payoff overall. It is often convenient to assign a payoff of

(1− δ)

∞
∑

t=1

δt−1vti ,

to the payoff stream {vti}∞t=1. This normalizes the payoff and makes it easy to compare it

with the stage game payoff. Note that comparisons across two infinite stream of payoffs still

remain the same.
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Obviously, discounting puts different weights on payoffs of different periods. Particularly,

future is valued less than present. Note that changes in payoff in a single period may matter

in the discounting criteria. To see this, compare v ≡ (1, 1, . . .) and w ≡ (1+ǫ, 1−ǫ, 1−ǫ, . . .),
where ǫ ∈ (0, 1). Payoff from v is 1 and payoff from w is (1+ǫ)(1−δ)+(1−ǫ)δ = 1+ǫ−2ǫδ =

1 + ǫ(1− 2δ). This is greater than 1 if and only if δ > 1
2
.

Similarly, look at the payoff streams v ≡ (1,−1, 0, 0, . . .) and w ≡ (0, 0, 0, . . .). The

payoff from w is zero but the payoff from v is (1 − δ)2. Hence, for any δ ∈ (0, 1), v is

preferred to w. However, consider the stream v′ ≡ (−1, 1, 0, 0, . . .). This generates a payoff

of (1− δ)(−1 + δ) = −(1− δ)2. Hence, v′ is worse than w. This shows that the discounting

puts more emphasis on current payoffs than future payoffs.

This is contrasted in the following two streams of payoffs v ≡ (0, 0, 0, . . . , 1, 1, 1, . . .) and

w ≡ (1, 0, 0, . . .). The payoff stream v has M zeros and then all 1s. The payoff from v is δM

and from w is (1 − δ). For every δ, there is a M such that w is preferred to v. But for a

fixed M , we can find δ close to 1 such that v is preferred to w.

Given a strategy profile, s ≡ (s1, . . . , sn), we get a unique stream of action profiles {at}∞t=1

associated with this strategy profile. Note how this action profile is obtained - first, each

player i plays a1i := s11(∅). Having generated the action profiles ht ≡ (a1, . . . , at−1), player i

plays ati ≡ sti(h
t). From this, we can compute the utility of Player i as

u∗i (s) := (1− δ)
∞
∑

t=1

δt−1ui(a
t).

Having defined strategies and payoffs, we are now ready to define the equilibrium concepts

for repeated games. For this, we refer to the original infinitely repeated game G∞ and the

infinitely repeated game starting at any arbitrary period t and history ht as G∞
t,ht. For every

t and every ht ∈ H t, the infinitely repeated game G∞
t,ht is referred to as a subgame of G∞.

Of course, G∞ = G∞
1,∅ and G∞ is a subgame of itself.

Definition 24 A strategy profile s ≡ (s1, . . . , sn) is a Nash equilibrium of the infinitely

repeated game G∞ if for every i ∈ N , for every s′i, we have

u∗i (si, s−i) ≥ u∗i (s
′
i, s−i).

A strategy profile s is a subgame perfect equilibrium if its restriction from any period t

and any history ht is a Nash equilibrium of the subgame G∞
t,ht.
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16.3 Folk Theorems: Illustrations

There are two interesting take-aways from the results of repeated games. First, repeated

games allow for a large set of payoffs to be achieved in Nash and subgame perfect equilibrium.

Such theorems are called Folk Theorems. The second take-away is the kind of strategies

that support such equilibrium payoffs. Such strategies are very common in many social

interactions. To be able to establish folk theorems using such common real-life strategies

give a strong foundation for such results.

We will now illustrate the basic idea behind the folk theorems using the Prisoner’s

Dilemma example - see Table 32. We first show that there are subgame perfect equilib-

ria where cooperation can be achieved.

L2 R2

L1 1,1 -1,2

R1 2,-1 0,0

Table 32: Prisoner’s Dilemma

Proposition 2 Suppose δ ≥ 1
2
. Then, there is a subgame perfect equilibrium in the Pris-

oner’s Dilemma game (Table 32), where both the players play (L1, L2) in every period.

Proof : We describe the following strategy. Each player i follows Li if the history consists

of both players playing (L1, L2). If the history is different from (L1, L2) play in each period

in the past, i plays Ri. The strategy stated here is called a trigger strategy. Fix Player 1 and

assume that Player 2 is following the trigger strategy stated in the Proposition. We show

that following the trigger strategy is optimal for Player 1. We need to consider two types of

subgames.

Case 1. We consider a subgame where the history so far has been (L1, L2). In that case,

following L1 gives Player 1 a payoff of 1. Playing R1 in some periods has the following

consequence. In the first period he plays R1 he gets a payoff of 2 since Player 2 plays L2.

But in subsequent periods Player 2 plays R2. So, he gets a maximum payoff of 0. As a

result, his payoff is less than (1− δ)
(

1+ δ+ . . .+ δt−1 +2δt
)

, where t is the first period from

this subgame where he deviates. Remember the truthful payoff stream is (1, 1, 1, . . .). The

deviated payoff stream payoff is less than the payoff stream (1, 1, . . . , 2, 0, 0, 0, . . .). Then, it

is sufficient to compare the payoff streams (1, 1, 1, . . .) and (2, 0, 0, . . .). The later one gives

a payoff of 2(1− δ). But δ ≥ 1
2
implies that 1 ≥ (1 − δ)2. Hence, no deviation is profitable
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in this subgame.

Case 2. We consider a subgame where the history involves action profiles other than

(L1, L2). In that case, Player 2 is repeatedly playing R2 in this subgame. But if Player 2 is

playing R2, Player 2 gets a payoff stream of (0, 0, . . .) by Playing R1 in every period but gets

a payoff stream where in every period he gets payoff less than or equal to 0 by playing some

other strategy.

Hence, the specified strategy is a Nash equilibrium in this subgame. �

16.4 Nash Folk Theorem

The trigger strategies used in Proposition 2 can be used to establish a general result about

what payoffs can be achieved in a Nash equilibrium of G∞.

The important payoff for folk theorems is the minmax value. Define the minmax value

of player i in the stage game G as

vi = min
a−i

max
ai

ui(ai, a−i),

where (ai, a−i) denotes an action profile of the stage game. This is the minimum payoff player

i can be held to by its opponents (using pure actions), given that he plays best response

to the action profile a−i. Let ui(ai, a−i) = vi for player i. Then, we call ai = (ai, a−i) the

minmax action profile against player i. Notice that this includes an action for Player i

also.

As an example, consider the game in Table 33. Consider Player 1 (the game is symmetric,

so calculations for Player 2 is similar). When Player 2 plays L2, maximum Player 1 can get

is 2. When she plays M2, Player 1 can guarantee 7, and when she plays R2, Player 1 can

guarantee 4. Hence, the minmax payoff of Player 1 is 2. Notice that the max-min payoff is

calculated differently. The idea there is that the opponents are punishing a player and what

is the best a player can do with such opponents. So, here when Player 1 plays L1, opponent

can punish him by playing R2, which gives him 1. Similarly, for M1 and R1, the payoffs are

1 and 1 respectively too. So, max-min payoff of Player 1 is only 1.

The reason minmax values are important is the following lemma.

Lemma 11 By best responding to other players’ actions, Player i can guarantee herself a

payoff of vi in every period of the infinitely repeated game (regardless of the value of δ).
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L2 M2 R2

L1 2,2 6,1 1,1

M1 1,6 7,7 1,1

R1 1,1 1,1 4,4

Table 33: Minmax payoffs

Proof : Let ai be a best response of Player i for some a−i of other players in the stage game.

Then,

ui(ai, a−i) = max
a′
i

ui(a
′
i, a−i) ≥ min

a′
−i

max
a′
i

ui(a
′
i, a

′
−i) = vi.

Hence, Player i can guarantee at least vi in the stage game every period.

Now, suppose player i plays a best response to the actions of other players in each period

of G∞. This guarantees him vi in every period irrespective of the strategy played by other

players. Hence, a player i is guaranteed of a payoff of vi by this strategy in G∞. So, any

strategy that does not guarantee vi will have a deviation where Player i just best responds

to the actions of other players in every period. �

Hence, Player i is guaranteed to get at least vi payoff in any pure action Nash equilibrium

of the repeated game. In particular, Lemma 11 asserts that any strategy profile that does

not ensure a payoff of vi for Player i has an easy deviation for Player i - strategy where he

best responds other players’ actions in each period. So, we have no hope of sustaining an

equilibrium where some Player i gets less than vi. The message of the folk theorems will be

that this condition is almost necessary and sufficient for an equilibrium payoff.

Definition 25 A payoff profile v = (v1, . . . , vn) is strictly enforceable if for every i ∈ N ,

we have vi > vi.

Figure 11 gives a pictorial description of the strictly enforeable payoffs for the game in

Table 33. The folk theorem we prove next says that all pure action profiles in the strictly

enforceable region can be outcome of Nash equilibrium play in infinite repeatation of a stage

game. Hence, a significant portion of the payoff profile can be sustained as equilibrium.

Theorem 19 (Pure Nash Folk Theorem) Suppose v is a strictly enforceable payoff pro-

file and there exists an action profile a in the stage game G such that ui(a) = vi for all i ∈ N .

Then, there exists a δ ∈ [0, 1), such that for all δ > δ, there is a Nash equilibrium of G∞

with discount δ where a is played in every period.
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Player 1 payoff

Player 2 payoff

v
2
= 2

v
1
= 2

Payoffs in Nash equilibrium of G1

Convex hull of pure action profile payoffs

Figure 11: Strictly enforceable payoff profiles

Proof : Suppose v is a strictly enforceable feasible payoff profile and there exists an action

profile a in the stage game G such that ui(a) = vi for all i ∈ N . Consider the following

strategy. It is described by (n+2) states: (a) normal state (b) i-punishment state (these are

n states), and (c) more-punishment state. The initial state is normal state. In normal state,

the strategy recommends playing ai to each Player i.

Consider Player j. If the state is normal and every player i ∈ N plays ai in a period,

then the state remains normal in the next period. If the state is normal and a unique player

i ∈ N does not play ai (here i can be equal to j), then the state becomes i-punishment.

If the state is normal and more than one player in N does not play ai, then state

becomes more-punishment. Once the state becomes i-punishment for some i, it stays the

same irrespective of the actions in subsequent periods. Similarly, once the state becomes

more-punishment, it stays so irrespecitve of the actions in subsequent periods.

The strategy for Player j requires him to play aj in normal state; play the action aij ,

corresponding to the minmax action profile against Player i, in i-punishment state, and play

some fixed action (does not matter which one) in more-punishment state.

The strategy is shown in Table 36.

To see this strategy profile can be sustained in Nash equilibrium, first observe that the

payoff from equilibrium is vi ≡ (ui(a)) for Player i. Suppose all the other players except i

follows the prescribed strategy. Let the best response to a−i give Player i a payoff v̄i in

88



Predecessor state Action profile observed Current state Recommended action

Normal a Normal aj

Normal (a′i, a−i) i-punishment aij
Normal (a′S, aN\S) with |S| > 1 more-punishment Any fixed action

i-punishment a′ i-punishment aij
more punishment a′ more punishment Any fixed action

Table 34: Trigger strategy for Nash folk theorem

the stage game G:

v̄i = max
a′
i
∈Ai

ui(a
′
i, a−i).

If Player i deviates, then he gets a maximum payoff of v̄i. This maximum payoff he gets

in the first period he deviates and thereafter he is punished, and hence, gets a payoff less

than or equal to vi. Hence, if he deviates in period t, his maximum possible payoff from

deviation is (the original payoff can be less than this):

(1− δ)
(

vi + δvi + . . .+ δt−1v̄i + δtvi + δt+1vi + . . .
)

For deviation to be not profitable, we need to ensure that

vi ≥ (1− δ)
(

vi + δvi + . . .+ δt−1v̄i + δtvi + δt+1vi + . . .
)

.

Expanding the LHS, we get

(1− δ)
(

vi + δvi + δ2vi + . . .
)

.

Canceling common terms in expanded LHS and RHS, we need to ensure that

δt−1v̄i + δtvi + δt+1vi + . . . ≤ δt−1vi + δtvi + δt+1vi + . . . .

This means, we need to ensure that v̄i(1− δ) + δvi ≤ vi.

This is equivalent to ensuring

δ ≥ v̄i − vi
v̄i − vi

.

Define

δ :=
v̄i − vi
v̄i − vi

.

Note that by assumption v̄i ≥ vi > vi. Hence, δ ∈ [0, 1). This proves the claim. �
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The exact version of folk theorems involve use of mixed actions by players in each period.

We do not discuss strategies that involve mixed actions by players in each period.

One of the issues with the Nash folk theorem is the strategies required to sustain the

Nash equilibrium is very extreme - it requires you to punish the deviant for infinite number

of periods. This (or even punishment for some long periods) may not be a reasonable threat.

For instance, consider the game in Table 35. Theorem 19 says that (T, L) is achievable in

Nash equilibrium of G∞ for sufficiently patient players as long as the Column player can

punish deviations by action R. This will hurt the Row player but the Column player is also

badly hurt. In fact L is a dominant strategy for Column player. This motivates the next set

of results that require subgame perfect equilibrium - even punishments need to happen in

equilibrium.

L R

T 6,6 0,-100

B 7,1 0,-100

Table 35: A Stage game

16.5 The One-Shot Deviation Principle

The one-shot deviation principle is a useful tool in the repeated games setting. It says that

to verify if a certain strategy is a best response to others strategies at every period and

every history, we need to verify optimality of this strategy at every period and every history

by deviation at that history. To understand this, we remind the notion of payoff path of

a strategy profile. Given a strategy profile s, each agent i plays action s1i (∅) in period 1.

Denote this action profile as a1. Now, inductively define action profile at given that we

have defined (a1, . . . , at−1). The action profiles (a1, . . . , at−1) is exactly the history ht that

is relevant in period t for computing payoffs since it will be reached if strategy profile s is

played. So, ati := sti(h
t) for each i ∈ N . Now, the payoff path is (a1, a2, . . .). It is clear that

if agents play strategy profile s, then repeated game will see action profiles (a1, a2, . . .) and

the payoff to each agent i ∈ N is thus

u∗i (s) = (1− δ)

∞
∑

t=1

δt−1ui(a
t).

Using the same idea, we can also think of a payoff path of a strategy profile s starting

from a history ht in period t. This means we pretend as if the game has reached history ht
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and the infinite sequence of action profiles that will be played from history ht due to strategy

s. This is the infinite sequence of action profiles that will generate payoffs to agents once we

start the game at ht.

Once we understand the notion of a payoff path, the one-shot deviation principle is not

hard to understand. We start from a useful lemma, which basically says that if there is

a unilateral deviation from a strategy, then there is a unilateral deviation from a strategy

which differs at finite histories.

Lemma 12 Suppose for some player i ∈ N and some strategy profile s−i of other players,

we have u∗i (s
′
i, s−i) > u∗i (si, s−i) for some si and s

′
i. Then, there exists a strategy s′′i which

differs from si at finite histories such that u∗i (s
′′
i , s−i) > u∗i (si, s−i).

Proof : If si and s
′
i differ from each other at finite histories, we are done (s′′i can be chosen

to be s′i). Suppose si and s′i differ from each other at infinite histories. Without loss of

generality, assume that si and s
′
i differ from each other from period 1 - if they do not differ

from period 1, consider the restrictions of these strategies from the first period onwards when

they differ from each other, and treat it as period 1. Let (a1, a2, . . .) be the action profiles

played in (s′i, s−i) on the payoff path. Hence,

u∗i (s
′
i, s−i) = (1− δ)

∞
∑

t=1

δt−1ui(a
t).

Let M be the largest difference in payoff of player i across any pair of action profiles in the

stage game G. So, M = maxx,y∈A[ui(x) − ui(y)]. Further, let γ := u∗i (s
′
i, s−i) − u∗i (si, s−i).

By definition γ > 0. Let t̂ > 1 be such that Mδ t̂−1 < γ

2
. Clearly, such a t̂ can be found since

δ < 1. Let (bt̂, bt̂+1, . . .) be the action profiles due to strategy profile (si, s−i) on its payoff

path starting from history (a1, . . . , at̂−1) onwards.
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Hence, we can now write

γ = u∗i (s
′
i, s−i)− u∗i (s) = (1− δ)

t̂−1
∑

t=1

δt−1ui(a
t) + (1− δ)

∞
∑

t=t̂

δt−1ui(a
t)− u∗i (s)

= (1− δ)

t̂−1
∑

t=1

δt−1ui(a
t) + (1− δ)

∞
∑

t=t̂

δt−1
[

ui(a
t)− ui(b

t)
]

+ (1− δ)

∞
∑

t=t̂

δt−1ui(b
t)− u∗i (s)

< (1− δ)

t̂−1
∑

t=1

δt−1ui(a
t) + (1− δ)

∞
∑

t=t̂

δt−1ui(b
t)− u∗i (s) + (1− δ)

∞
∑

t=t̂

δt−1M

= (1− δ)
t̂−1
∑

t=1

δt−1ui(a
t) + (1− δ)

∞
∑

t=t̂

δt−1ui(b
t)− u∗i (s) + δ t̂−1M

< (1− δ)
t̂−1
∑

t=1

δt−1ui(a
t) + (1− δ)

∞
∑

t=t̂

δt−1ui(b
t)− u∗i (s) +

γ

2
.

Hence, we get

γ

2
< (1− δ)

t̂−1
∑

t=1

δt−1ui(a
t) + (1− δ)

∞
∑

t=t̂

δt−1ui(b
t)− u∗i (s). (7)

Now, we can construct a new strategy s′′i as follows: s′′i and si coincide everywhere except

of the payoff path of (s′i, s−i) from period 1 to period t̂− 1. On the payoff path of (s′i, s−i),

s′′i plays ati at period t when t ∈ {1, . . . , t̂ − 1}. Hence, the payoff path of (s′′i , s−i) is

(a1, . . . , at̂−1, bt̂, bt̂+1, . . .). This gives a payoff equal to:

u∗i (s
′′
i , s−i) = (1− δ)

t̂−1
∑

t=1

δt−1ui(a
t) + (1− δ)

∞
∑

t=t̂

δt−1ui(b
t) (8)

Using Inequality (7) and Inequality (8), we get

γ

2
< u∗i (s

′′
i , s−i)− u∗i (s).

Since γ > 0, we get that u∗i (s
′′
i , s−i) > u∗i (si, s−i). �

We will now prove the one-shot deviation principle. Given any strategy si, we consider

the restriction of this strategy from an arbitrary t-period history ht and denote it as sh
t

i . We

denote the restriction of strategy profile s from history ht as sh
t

. Notice that sh
t

i defines a

feasible strategy of Player i in subgame G∞
t,ht .
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Definition 26 A pair of strategies si and s̄i of Player i are one-shot deviation at history

ht if sti(h
t) 6= s̄ti(h

t) and for all (t′, ht
′

) 6= (t, ht), we have st
′

i (h
t′) = s̄t

′

i (h
t′).

So, a one-shot deviation strategy just changes action at exactly one history and leaves

action at every other history unchanged. We denote the payoff Player i starting from history

ht from strategy profile s as uh
t

i (s). This is the payoff that Player i will receive if she reaches

history ht and players play according to s from ht onwards.

Definition 27 A strategy si is one-shot deviation (OSD) optimal for s−i for Player i

if for every history ht and every s′i which is one-shot deviation at history ht, we have

uh
t

i (si, s−i) ≥ uh
t

i (s′i, s−i).

The following theorem is the one-shot deviation principle.

Theorem 20 (One-shot deviation principle) Suppose for every i ∈ N , strategy si is

OSD optimal for s−i. Then strategy profile s is a subgame pefect equilibrium of G∞.

Proof : Suppose s is not a subgame perfect equilibrium. Then, there is another strategy s′i
of some Player i such that in some subgame G∞

t,ht , strategy s′i (restricted to this subgame)

is a best response to s−i (restricted to this subgame) but si (restricted to this subgame) is

not. Without loss of generality assume t = 1 and ht = ∅ - this essentially means that we

pretend as if the game started from this history. Hence, we have u∗i (s
′
i, s−i) > u∗i (si, s−i). By

Lemma 12, we can assume that s′i and si differ from each other at finite histories. Further,

we can also assume that they only differ on the payoff path of (s′i, s−i) - if it differs outside

the payoff path, then it does not influence the payoff from (s′i, s−i). Let t̂ be the last period

where there is a history ht̂ such that s′i and si differ from each other.

At history ht̂ on the payoff path of (s′i, s−i), Player i’s total payoff from (s′i, s−i) ( which is

u∗i (s
′
i, s−i)) can be broken down into two parts: (i) payoff by the action profiles in ht̂ and (ii)

the continuation payoff, which is δ t̂−1uh
t̂

i (s′i, s−i). Note that si and s
′
i are one-shot deviation

at history ht̂. By the OSD optimality of si, the second payoff is smaller than δ t̂−1uh
t̂

i (si, s−i).

Hence, if we change s′i from ht̂ onwards to si, i.e., we set the action of Player i at history ht̂

to st̂i(h
t̂), we get a new strategy which is also better than si. The new strategy differs from

si from period t̂− 1 onwards (on the payoff path of (s′i, s−i)). We can now go to period t̂− 1

and repeat this procedure till we come to period 1, where we rediscover si. Since at every

step of the procedure, we get a new strategy that does weakly better than s′i for Player i, we

will be able to conclude that si is better than si, which is a contradiction. �
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16.6 Perfect Folk Theorem - Reversion to Nash

To make punishments credible, we must require Nash equilibrium at every subgame. This is

the main motivation for using subgame perfect equilibrium. For every history, players must

be playing Nash equilibrium strategies starting from that history. The following is quite

immediate.

Proposition 3 Suppose a is a Nash equilibrium of G. Then playing a at every period for

every history is a subgame perfect equilibrium of G∞.

Proof : This follows from the one-shot deviation principle. If this strategy is not subgame

perfect equilibrium, then there is some history ht at which a Player i has a one-shot deviation,

where he plays a′i. But the payoff from such a deviation only differs from the the prescribed

strategy by ui(ai, a−i) − ui(a
′
i, a−i), which is non-negative because a is a Nash equilibrium.

This completes the proof. �

Now, denote by v∗i the worst payoff of Player i over all Nash equilibria action profiles in

G. Also, denote the corresponding Nash equilibrium profile as a∗,i. We are now ready to

state a mild version of the perfect folk theorem.

Theorem 21 (Pure Perfect Folk Theorem with Nash Reversion) Suppose a is any

action profile such that ui(a) > v∗i for all i ∈ N . Then, there exists a δ ∈ (0, 1) such that for

all δ ∈ (δ, 1), there is a subgame perfect equilibrium of G∞ where a is played in every period

on equilibrium path.

Proof : We describe a strategy that is a subgame perfect equilibrium. It is described

by (n + 2) states: (a) normal state (b) i-punishment state (n such states), and (c) more-

punishment state. The initial state is normal state. In normal state, the strategy recommends

playing ai to each Player i.

Consider Player j. If the state is normal and every player i ∈ N plays ai, then the state

remains normal. If the state is normal and a unique player i ∈ N does not play ai (here

i can be equal to j), then the state becomes i-punishment. If the state is normal and more

than one player in N does not play ai, then state becomes more-punishment. Once

the state becomes i-punishment, it remains so irrespective of the actions taken by all the

players. Similarly, if the state becomes more-punishment, it remaisn so irrespective of the

actions taken by other players.
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The strategy for Player j requires him to play aj in normal state, play the action a∗,ij

corresponding to the worst Nash equilibrium profile of Player i (giving Player i a max-

imum payoff of v∗i ) for i-punishment state, and play an action corresponding some fixed

Nash equilibrium (does not matter which one) in more-punishment state.

The strategy is shown in Table 36.

Predecessor state Action profile observed Current state Recommended action

Normal a Normal aj

Normal (a′i, a−i) i-punishment Worst Nash for Player i - a∗,ij

Normal (a′S, aN\S) with |S| > 1 more-punishment Any fixed Nash action

i-punishment a′ i-punishment Worst Nash for Player i - a∗,ij

more punishment a′ more punishment Any fixed Nash action

Table 36: Trigger strategy for perfect folk theorem

In any history which is either a i-punishment state or a more-punishment state, the strat-

egy recommends playing a Nash equilibrium. By Proposition 3, this is a Nash equilibrium

of this subgame.

The only complicated history is the one which is in normal state. Fix a Player i and

suppose others are following s−i. If Player i follows si, then he gets a payoff of ui(a). By

the one-shot deviation principle, we need to check deviations in one history of this subgame.

Suppose Player i deviates and plays another action a′i in some period. He gets a payoff of

ui(a
′
i, a−i) in this period, but we move to i-punishment state in the subsequent periods. As

a result, he gets a payoff of v∗i after that. Hence, his payoff from deviation is

(1− δ)ui(a
′
i, a−i) + δv∗i .

Hence, to be a subgame perfect equilibrium, we will need that

ui(a) ≥ (1− δ)ui(a
′
i, a−i) + δv∗i .

This can be assured if we make sure the following holds:

ui(a) ≥ (1− δ) max
a′′i ∈Ai

ui(a
′′
i , a−i) + δv∗i .

Denote maxa′′i ∈Ai
ui(a

′′
i , a−i) = di(a−i). Then, we need to ensure that ui(a) ≥ (1−δ)di(a−i)+

δv∗i . This is true if

δ >
di(a−i)− ui(a)

di(a−i)− v∗i
= δ.
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Note that di(a−i) ≥ ui(a) > v∗i ensures that δ ∈ [0, 1). In other words, for δ ∈ (δ, 1), the

recommended strategy is a subgame perfect equilibrium. This completes the proof. �

16.7 Exact Versions of the Folk Theorems

Exact version of the Nash folk theorem and perfect folk theorem says that every strictly

enforceable feasible payoff can be attained as a Nash equilibrium. The same statement is

true for subgame perfect equilibrium under some additional conditions of the feasible payoff

state.

Definition 28 A payoff profile v ≡ (v1, . . . , vn) is feasible if for every action profile a in

the stage game G, there exists λa ∈ [0, 1] with
∑

a′∈A λa′ = 1 and for every i ∈ N

vi =
∑

a′

λa′ui(a
′).

Let V denote the set of all feasible profiles. The set of all feasible payoff profiles is denoted as

Conv(V ). These are payoffs that can be obtained by taking convex combination of different

pure action profiles. In particular, if V = {v : v = u(a) ∀ a ∈ A}, then Conv(V ) is just the
convex hull of V - all vectors obtained by taking convex combination of vectors in V .

One way to interpret the feasible payoffs is that these are all the payoffs that can be

obtained by playing correlated strategies (not necesssarily correlated equilibrium). Correlated

strategies require a public randomization device. So, achieving payoffs in Conv(V ) requires

public randomization. This requires mixed/correlated strategies. A mixed strategy of an

agent chooses a mixed action profile at every period. Now, the minmax payoff is determined

using mixed action profiles. The problem with mixed actions is that it is difficult to detect

deviations. This has led to a wide literature on monitoring technologies in repeated games.

We give some informal idea about how the folk theorems look.

L R

T 3,0 1,-2

B 5,4 -1,6

Table 37: A Stage game

Consider the game in Table 37. We draw its feasible payoff vector in Figure 12. The

minmax values of both the players are also shown in Figure 12. It is possible that the number

of extreme points of this polytope is less than the number of action profiles. Check for a
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game with two players and two pure actions with payoffs: (1, 1), (2, 2), (3, 3), (4, 4). Here,

the feasible payoff vector set is a straight line joining (1, 1) and (4, 4).

Player 1’s Payoff

Player 2’s
Payoff

1,0

1,−2

−1,6

5,4

3,0

Minmax Payoff Vector

Feasible Payoff Polytope

Nash Reversion Region

Figure 12: Feasible Payoff Vectors and Minmax Values

It is clear that any action profile of the stage game leads to a feasible payoff vector. But

if the players choose their mixed actions independently, then it is possible that some feasible

payoff vector may not be attained - this is something we have seen earlier.

For this reason to achieve any payoff in the feasible payoff vector, the players should

use public randomization device, and everyone observes the outcome of this device, and play

a strategy according to this. The public randomization device randomizes amongst the

(pure strategy) payoff vectors of the stage game. Based on the payoff vector chosen by the

randomizing device, everyone chooses the corresponding strategy. An analogous proof to

Theorem 19 and its subgame perfect version using public randomization device can be done

to establish the exact folk theorems. They will say that every strictly enforceable feasible

payoff can be achieved in Nash and subgame perfect equilibrium. The subgame perfect

version of these theorems use more detailed “punishment and reward” strategies and extra

technical condition. We state the theorem without a proof - the theorem is due to Fudenberg

and Maskin.

Theorem 22 Suppose either Conv(V ) has dimension n or n = 2. Then, for every strictly

enforceable feasible payoff vector, there is a discount factor (sufficiently close to 1) such that

the infinitely repeated game generates the same payoff vector in a subgame perfect equilibrium.
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Proof : We will only give a partial proof here. We will assume that Conv(V ) has dimension

n. Take a payoff vector v which is strictly enforceable such that there exists a pure action

profile a with ui(a) = vi for all i ∈ N (a pure action profile generates the payoff in the stage

game - this can be dispensed away if we allow for correlated action profiles with publicly

observable randomization). We will show that v can be a payoff profile in a subgame perfect

equilibrium of the infinitely repeated game.

Take a payoff profile v′ in the interior of the set of strictly enforceable payoff vectors and

ǫ > 0 but sufficiently small such that for every i ∈ N ,

vi < v′i < vi

vi := (v′1 + ǫ, . . . , v′i−1 + ǫ, v′i, v
′
i+1 + ǫ, . . . , v′n + ǫ) is a strictly enforceable payoff vector.

The full dimension assumption ensures that such v′ and ǫ can be chosen. The payoff vector

vi is a ǫ-reward for everyone except Player i with respect to strictly enforceable payoff

vector v′. Assume that there is a pure action profile āi which generates the payoff vi (this

can be dispensed away if we allow for correlated action profiles with publicly observable

randomization).

Now, choose a T such that

T >
maxa′∈A ui(a′)−mina′∈A ui(a′)

v′i − vi
. (9)

The strategy profile is a little complicated to describe with many states. As in earlier

proofs, at every state, if more than one player deviates from recommendation, we do not

need to worry - this will never happen in equilibrium - we can just reset the game by coming

to the normal state. So, we ignore those transitions from here on.

• Normal state. This is the initial state. It recommends playing aj to Player j. If

Player i does not play ai in normal state, then we enter punishment−i state. Else,
we stay in normal state.

• Punishment−i state. In this state, each Player j plays the minmax action aij of

Player j. Once we enter punishment−i and everyone has been playing ai, we stay in

this state for exactly T periods, and then enter post-punishment−i state. If some

player j does not play aij in punishment−i state, we enter punishment−j state.

• post-punishment−i state. In this state, each player j plays āij . If Player j does

not play āij in this state, we enter punishment−j state. Else, we stay in this state.

98



It is a matter of routine checking using one-shot deviation principle and Inequality (9

that the strategy is a subgame perfect equilibrium (though calculations are messy, the idea

here is that we reward players to punish another player by giving them ǫ extra, and that

allows them to not deviate from punishment). �

For n = 2, the proof is simple. It uses a different type of strategy, which we illustrate

below using an example. The stage game is shown in Table 38.

L C R

T 2,2 2,1 0,0

M 1,2 1,1 -1,0

B 0,0 0,-1 -1,-1

Table 38: A Stage game

Notice that the minmax payoff vector is (0, 0). The unique pure Nash equilibrium is

(T, L). Using Theorem 21 is not so useful here. But the exact version of the folk theorem as-

sures that (T, L), (T, C), (M,L), (M,C) are possible to get in a subgame perfect equilibrium.

We show below how (M,C) is possible.

Theorem 23 Suppose δ ≥ 1
2
. Then, there is a subgame perfect equilibrium of the infinitely

repeated game of the stage game in Table 38 such that (M,C) is played in every period on

equilibrium path.

Proof : The strategy used classifies each history in each period as two states: (a) normal

state (b) punishment state. A normal state recommends agents to play (M,C) and a pun-

ishment state recommends agents to play (B,R). The initial period (with null history) is a

normal state.

Now, we can inductively define the state of every history. For every history in period

t, there is a history in period (t − 1) that leads to this history, called the predecessor. If

the predecessor is in normal state, and agents play (M,C), the current history (of period t)

becomes a normal state. If the predecessor is in punishment state, and agents play (B,R),

the current history becomes a normal state. Else, the current history becomes punishment

state.

In other words, deviations (both in normal and punishment state) are punished for one

period by staying in punishment state. These kind of strategies are called carrot and stick

strategies.
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Hence, we can classify each history as a normal state or punishment state and look at

deviations in each of them. Since the game is symmetric, we fix Player 1 without loss of

generality and assume that Player 2 follows this strategy. If Player 1 follows the strategy,

then he gets a payoff of 1. We consider two types of subgames.

Normal state. This is a subgame which starts from a normal state history. If the rec-

ommendation is followed, then player 1 gets 1. By the one-shot deviation principle, we only

need to consider deviation in one period. If Player 2 plays C, then the maximum payoff

of Player 1 by deviating is 2 in that period. Since this is a one period deviation, Player 1

follows the strategy from next period onwards. Since the next period will have a punishment

history, he will undergo punishment and receive −1, and then normal state prevails, and he

gets 1 from there onwards. The total payoff from deviation is thus computed as:

(1− δ)
(

2 + δ(−1) + δ2 + δ3 + . . .
)

= (1− δ)(1− 2δ) + 1.

Since δ ≥ 1
2
, this expression is less than or equal to 1. Hence, deviation is not profitable.

Punishment state. This is a subgame which starts from a punishment state history. If

the recommendation is followed, then Player 1 gets punished in this period and gets (−1),

which is followed by normal state that gives 1 in each period. So, the total payoff is

(1− δ)
(

− 1 + δ + δ2 + . . .
)

= 1− 2(1− δ).

The one-shot deviation will mean that Player 1 deviates in this period. Best deviation is to

play T get 0. But this will result in a punishment in the next period and normal play from

there on. Thus, the resulting payoff is

(1− δ)
(

0 + δ(−1) + δ2 + δ3 + . . .
)

= 1− (1 + 2δ)(1− δ).

Note that since δ ≥ 1
2
, we have 1 + 2δ ≥ 2. Hence, deviation is not profitable.

So, we conclude that deviation in any subgame is not profitable. This implies that the

recommended strategy is a subgame perfect equilibrium. �

The proof of the perfect Folk Theorem uses similar ideas but the punishment phase can

last for more than one period (this is because the result is for general games). The number

of periods the punishments last depend on the parameters of the problem.
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16.8 An application: tacit collusion

Consider two firms {1, 2} in a Bertrand competition setting. We have already studied the

stage game corresponding to this model. In the stage game firms set prices p1, p2 ∈ [0, 1].

Given the prices (p1, p2), the demand for firm i is:

Di(p1, p2) = 1− 2pi + pj .

Given this demand function, the utility of firm i at prices (p1, p2) is given by

ui(p1, p2) = piDi(p1, p2) = pi(1− 2pi + pj).

There is a Nash equilibrium of this game where firms set prices p∗1 = p∗2 =
1
3
- verify this. In

fact, iterative elimination of never best-responses lead to this unique outcome. Notice that

the equilibrium utilties of the firms are given by:

ui(p
∗
1, p

∗
2) =

1

3
(1− 2

3
+

1

3
) =

2

9
.

Now, suppose this game is repeated infinitely with a common discount factor δ ∈ (0, 1).

We will show that the if firms are sufficiently patient (i.e., δ is sufficiently high), then firms

can sustain price p̄1 = p̄2 = 1
2
. We can sustain this using simple Nash reversion trigger

strategies. So, in normal state, firms choose p̄1 = p̄2 = 1
2
. If any firm deviates, we go to

punishment state, where firms play p∗1 = p∗2 =
1
3
. We do not need to worry about punishment

state histories, since we play Nash equilibrium there. In normal state history, playing p̄i gives

firm i a constant payoff of 1
2
(1− 1 + 1

2
) = 1

4
. By one-shot deviation principle, we only check

deviation in one period. If firm i deviates, then his maximum payoff can be computed as

follows. If it sets a price of x, then given that other firm is setting a price of 1
2
, its utility is

x(1 − 2x+
1

2
) = x(

3

2
− 2x).

This is maximized at x = 3
8
giving the firm a payoff of 9

32
in that period. However, in

susbsequent period, the firm gets only 2
9
- Nash equilibrium payoff. Hence, the total payoff

is:

(1− δ)(
9

32
+ δ

2

9
+ δ2

2

9
+ . . .) = (1− δ)

17

288
+

2

9

So, for subgame perfect equilibrium, we need

1

4
≥ (1− δ)

17

288
+

2

9

⇔ 1

36
≥ (1− δ)

17

288

⇔ δ ≥ 9

17
.
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Player 1

Player 2

(u1(b), u2(a))

Accepts

(0, 0)

Rejects

Proposes a

Player 2

(u1(a), u2(b))

Accepts

(0, 0)

Rejects

Proposes b

Figure 13: Extensive form game with perfect information

Hence, firms can maintain a price of p̄1 = p̄2 =
1
2
in the subgame perfect equilibrium with

payoff 1
4
> 2

9
= ui(p

∗
1, p

∗
2) (i.e., achieving a payoff greater than stage game Nash equilibrium

payoff). So, even though firms do not communicate and form a collusion, a form of tacit col-

lusion emerges in equilibrium of repeated play. This is an empirically observed phenomenon.

Consider the interpretation that δ is the probability with which firms will compete in the next

period over this product. In markets, where established firms are competing over products

that are used for long horizons, we see that prices are higher than stage game equilibrium.

However, when firms compete over products with a deadline (say, Christmas tree sale), then

prices are lower (closer to one-stage game Nash equilibrium prices).

17 Extensive Form Games

In many situations strategic interactions between agents happen sequentially. Unlike in

strategic form games, agents move sequentially in such games. We consider some examples

first.

Suppose two players are deciding how to share two indivisible objects {a, b}. First, Player
1 proposes an allocation. Player 2 observes the proposal of Player 1 and then decides whether

to accept or reject the proposal. If Player 2 rejects, then no player gets any object. If Player

2 accepts the proposal, then each receives the proposed allocation of Player 1. Each player

i ∈ {1, 2} only cares about his own object and has a utility function ui ≡ (ui(a), ui(b)),

indicating his utility for the objects.

This situation can be modeled as an extensive game of perfect information. This is

usually depicted by a game tree.
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An important feature of this game is that Player 2 has completely observed what Player

1 has proposed. His action is contingent on what he has observed so far in the game. Such

games are called extensive form games with perfect information, i.e., where every player has

perfectly observed what has happened so far in the game at every point. The outcomes of

the game are realized after the game ends. Players assign payoffs to this terminal stages

of the game - this will involve assigning payoffs to every possible sequence of moves in the

game.

Figure 13 depicts the extensive form game using a tree. The payoffs of the agents are

written in the leaf nodes.

A strategy in such a game is a complex object. It must state the action to be taken for

every contingent path that can be taken in this game.

We now look at another example where perfect information is absent. Suppose two friends

are trying to meet. Friend 1 observes the weather in his city, which is either rain or sunny.

Then, he decides to either go to Friend 2’s place or stay at home. If Friend 1 stays at home,

Friend 2 does not do anything and the game ends. If Friend 1 comes to Friend 2’s place,

she either takes him for dinner or cooks at home. Crucial here is the fact that Friend 2 does

not observe the weather in Friend 1’s city, which Friend 1 has observed. However, Friend

2 observes whether he Friend 1 has come to her place or not. But Friend 2 does not know

if Friend 1 has come from a sunny city or rainy city. In that sense, though the game has

sequential nature, the information is not perfect in this game.

There is a way to represent this game as an extensive form game with imperfect infor-

mation. This is done by introducing the dummy player (Nature) who creates the imperfect

information. Nature makes the first move by taking either the action “Rainy” or “Sunny”.

The action of Nature is observed by Friend 1 but not by Friend 2. After observing the action

of Nature, Friend 1 takes either of the actions “Stay home” or “Go to Friend 2”. Friend

1 can now come to Friend 2 from a Sunny city or a Rainy city. This idea is captured by

an information set, where a bunch of nodes in the game are combined together to capture

Friend 2’s uncertainty about where she is in the game. Irrespective of where she is in the

game, she observes that Friend 1 has come to her place, and then she chooses one of the

actions “go out” or “stay in”.

Figure 14 shows the extensive form game with information set. The information set of

Player 2 is shown in dashed rectangle - it consists of two nodes in the game tree. At this

information set, Player 2 does not know if Player 1 has come from a sunny city or rainy city.

Each of the possible paths in the game are assigned a payoff for each player. Further,

games of imperfect information also specify probabilities/priors of uncertain moves of Nature.
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Nature

Player 1

(y1, y2)

At home

Player 2

(x1, x2)

Cooks

(x′

1
, x′

2
)

Out

Goes out

Sunny with prob p

Player 1

Player 2

(z1, z2)

Cooks

(z′
1
, z′

2
)

Out

Goes out

(y′
1
, y′

2
)

At home

Rainy with prob p

Figure 14: Extensive form game with information sets

These are used to compute expected payoffs on information sets.

18 Extensive Form Games with Perfect Information

We now formally define the notion of an extensive form game. We start from the most basic

extensive game - a perfect information game, where every player at every node in the game

knows what path/history has brought him to that node.

To formally define an extensive form game, we need to define a cycle-free graph. A graph

G = (V,E) is a set of a vertices V and subset of unordered pairs E ⊆ V ×V such that for all

{i, j} ∈ E, i 6= j. A cycle in a graph G is a sequence of distinct vertices v1, . . . , vk with k > 2

such that {v1, v2}, . . . , {vk−1, vk}, {vk, v1} are all edges of the graph. A graph G is cycle-free

if there are no cycles in G.

A path in a graphG is a sequence of distinct vertices v1, . . . , vk such that {v1, v2}, . . . , {vk−1, vk}
are all edges of the graph. A graph is connected if there is a path from every vertex to every

other vertex. A connected and cycle-free graph is called a tree.

An important property of a tree graph is that there is a unique path from every vertex to

every other vertex. From every tree G = (V,E), we can construct a rooted tree by choosing

a root vertex r ∈ V . A rooted tree is represented by G ≡ (V,E, r). In a rooted tree, G, a

vertex v is called the child of v′ if there is an edge {v, v′} and v′ is in the unique path from

root r to v. The set of all children of a vertex v is denoted by C(v). Any vertex v with no
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children, i.e., C(v) = ∅ is called a leaf vertex.

An example of a rooted tree is shown in Figure 15. The root of this tree is shown. The

leaves of the tree are {v3, v6, v7, v8, v9, v10}. For child: v5 is the only child of v2, whereas v1

has two children: {v3, v4}.

r

v1

v3 v4

v7 v8

v2

v5

v9 v10

v6

Figure 15: An example of a rooted tree

The backbone of an extensive form game is a rooted tree.

Definition 29 An extensive form game of perfect information is

Γ ≡
(

N, (V,E, r), {Vi}i∈N , {A(x)}x∈V , {ui}i∈N
)

,

where

• N is the set of players

• (V,E, r) is a game tree, where

– Each non-leaf vertex x ∈ V specifies a player, called the decision maker at x, in

N who will take an action at this vertex.

– Each leaf or terminal vertex x ∈ V is a payoff vertex.

– Each edge {x, y} ∈ E represents an action, in particular decision maker at x takes

an action specified by this edge to reach vertex y.

– Root vertex r specififes the first player in N to take an action.
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• A(x) is the set of actions available at vertex x (they identify the set of edges from x

which lie on the path from x to all the leaf nodes). Note that if x is a leaf vertex, then

A(x) is an empty set.

• {Vi}i∈N is a partitioning of the set of decision vertices. Hence, Vi represents the set of

decision vertices where Player i takes action.

• For every player i ∈ N , ui(x) assigns a payoff for every terminal vertex x to Player i.

We note here that the set of vertices/edges in a game tree may be infinite. This can

happen because of two reasons: (1) the set of actions available at a vertex may be infinite

and/or (2) the set of stages (i.e., lengths of paths) of the game may be infinite. At every

vertex x in an extensive form game, the unique path from root r to vertex x conveys a lot of

information: it contains information about who are the players who have taken what action

to reach from r to x. It is standard to denote this information on the path as history hx

at vertex x. In fact, an alternate representation of an extensive form game is to just specify

the history at every vertex.

Consider the following example of Figure 13. There is only one vertex, the root vertex,

where Player 1 is the decision maker. For all other non-leaf nodes, Player 2 is the decision

maker. Player 1 has two actions available to him - the two proposals he can make to Player

2. In each of his vertices, Player 2 has the same two actions (Accept, Reject) available to

him. The payoffs of both the players are shown on the leaf vertices.

A strategy for a player in an extensive game must specify what he will do at each of his

decision vertices. Hence, you can imagine a Player telling a computer to play on his behalf.

In that case, he does not know ex-ante which decision vertices will be reached. So, he gives

the computer a complete contingent plan of what actions must be taken at every decision

vertex.

Formally, a strategy of player i ∈ N is a map

si : Vi → ∪x∈Vi
A(x) such that si(x) ∈ A(x) ∀ x ∈ Vi.

Notice that there are certain games, where every player moves only once - these games

are said to satisfy the single move property. However, there are games in which the single

move property is not satisfied. In those games, if a strategy specifies a certain action at a

decision vertex, that may ensure that certain decision vertex is never reached. But that does

not exclude us from describing what action to take in those unreached vertices.

To see this, consider the game in Figure 16, where Player 2 moves twice. If Player 2 plays

a strategy where he says he “Calls Player 1” at the first vertex, then exactly one more of his
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decision vertex will be reached. But a strategy for Player 2 must specify his action at all the

decision vertices. This is crucial to evaluating his and his opponent’s options.

Player 2

Player 1

(y1, y2)

At home

Player 2

(x1, x2)

Cooks

(x′

1
, x′

2
)

Out

Goes out

Calls Player 1

Player 1

Player 2

(z1, z2)

Cooks

(z′
1
, z′

2
)

Out

Goes out

(y′
1
, y′

2
)

At home

Does not call Player 1

Figure 16: Extensive form game without single move property

19 Equilibrium for Extensive Form Games

We discuss equilibrium concepts for extensive form games. One naive way of doing that is

to represent it as a strategic form game, and then apply the solution concepts of strategic

form games. Representing an extensive form game as a strategic form game is quite easy:

for every player i and every strategy of i in the extensive form game corresponds to a pure

strategy in the strategic form game. The payoff from a strategy profile can then be computed

from the game tree. This is because each strategy profile in the extensive form game maps

to a unique terminal vertex of the game tree. This is called the reduced normal/strategic

form of the extensive game. For a strategy profile s in an extensive form game Γ, we let xs

as the terminal vertex reached because of the strategy profile s. Then, the payoff of agent i

from a strategy profile s is ui(xs).

Definition 30 A strategy profile s ≡ (s1, . . . , sn) is a Nash equilibrium of Γ if for all i ∈ N

and for all s′i
ui(x(si,s−i)) ≥ ui(x(s′i,s−i)).

107



This definition just says that consider the reduced-form strategic form game and con-

sider the Nash equilibrium of that game. In other words, it ignores all the extensive form

(sequential) play of players actions in the game. Hence, Nash equilibrium is not the correct

solution concept for extensive form games. We illustrate this with an example.

Consider the game in Figure 17. The reduced strategic form representation of this game

Player 1

Player 2

(0, 0)

L

(2, 1)

R

D

(1, 2)

U

Figure 17: Nash equilibrium

is shown in Table 40. From this, one concludes that the game has two pure strategy Nash

equilibria: (U, L) and (D,R).

L R

U (1, 2) (1, 2)

D (0, 0) (2, 1)

Table 39: Reduced strategic form of the game in Figure 17

But note that once the game has reached the information set of Player 2, he will play

R. So, playing L is not credible for Player 2. Then, Player 1 can take this information into

account while choosing his action. Player 1 clearly prefers playing D over U since Player

2 cannot threaten him credibly to play L. Hence, the equilibrium (U, L) is not a good

prediction of the game.

The main idea here is that the equilibrium (U, L) specifies a strategy L for Player 2 which

is not a credible strategy - once the decision vertex of Player 2 is reached, he will never play

this.

As we discussed above, a strategy profile leads to a unique terminal vertex with a unique

path from root to the terminal vertex. Hence, an equilibrium strategy profile will not touch on
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many decision vertices - these are called off-equilibrium path decision vertices. One primary

requirement in extensive form game equilibrium is that action of every player must be optimal

starting at every decision vertex, and not just decision vertices reached on equilibrium path.

19.1 Subgame Perfect Equilibrium

We now discuss a refinement to Nash equilibrium for extensive form game. This is the single-

most important solution concept for extensive form games. it enforces and formalizes the

idea of credibility by using the notion of subgames.

The subgame of an extensive form game of perfect information

Γ ≡
(

N, (V,E, r), {Vi}i∈N , {A(x)}x∈V , {ui}i∈N
)

,

starting at x ∈ V , where x is not a leaf vertex, is an extensive form game

Γ(x) ≡
(

N, (V (x), E(x), x), {Vi(x)}i∈N , {A(x′)}x′∈V (x), {ui}i∈N),

where the the (x) in the above notation means that the restriction of the original game

starting from vertex x and its children, and children of its children etc. If a subgame of Γ

starts at x, we will denote the utility function of each player i in this subgame Γ(x) by uxi .

Note that a game is a subgame of itself. So, every game has a subgame. Game in

Figure 16 has many subgames: there are two subgames starting with Player 1’s two decision

nodes; there are three subgames starting with Player 2’s three decision nodes. In general,

the number of subgames in a game equals the number of decision nodes in the game.

Definition 31 A strategy profile s is a subgame perfect equilibrium (SPE) of the

extensive form game Γ if for every subgame of Γ the strategy profile s restricted to that

subgame is a Nash equilibrium of the subgame.

Since Γ itself is a subgame of the game Γ, it follows that every SPE is a Nash equilibrium

- hence, SPE is a refinement of Nash equilibrium. We document this as a fact below.

Fact 2 Every subgame perfect equilibrium is a Nash equilibrium.

The game in Figure 17 has a unique SPE. To see this, the subgame starting from decision

vertex of Player 2 has only one player. In that, Player 2 playing R is a dominant strategy.

So, out of the two Nash equilibria of the entire game (subgame), only the one with R being

played by Player 2 survives. Hence, (D,R) is the unique SPE.
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Figuring out Nash equilibrium of subgames can be quite a complicated task. In games

with perfect information, this can be avoided because of a well known equivalence of subgame

perfect equilibrium with the one-shot deviation property. This idea is very similar to the

one-shot deviation principle in the repeated games setting. Two strategies si and s′i are

one-shot deviation at decision vertex x if si(x) 6= s′i(x) but si(y) = si(y) for all y 6= x and

y ∈ Vi.

Definition 32 A strategy si of Player i is one-shot deviation (OSD) optimal for s−i

if for every decision vertex y ∈ Vi of Player i and each strategy s′i of Player i which is a

one-shot deviation from si at y, we have

uyi (x(si,s−i)) ≥ uyi (x(s′i,s−i)).

A fundamental result is that these notions are the same. The result below allows for

a decision vertex to have arbitrary (possibly infinite) number of actions - hence, the game

tree may have infinite number of vertices. However, it restricts itself to games having finite

number of stages. To understand the notion of stage, let L(x) denote the length of the

longest path from a decision vertex x to any terminal vertex reachable from x. We will say

a game Γ has finite number of stages if L(x) is finite for each decision vertex x.

Before we go into the theorem, for every strategy profile s and every subgame Γ(y) we

clarify the notion of a payoff path. It consists of sequence of nodes starting with y as

follows: (y = y0, y1, . . . , yk), where yk is a payoff vertex, and for every j ∈ {0, 1, . . . , k − 1},
the following holds: yj+1 is the decision vertex obtained from yj when the deciding agent,

say i (i.e., yj ∈ Vi), takes action si(yj). Every strategy profile induces a payoff path from

every decision vertex, leading to a payoff vertex. This gives its payoff.

The proof strategy for OSD optimality equivalent to subgame perfect equilibrium is much

simpler than the repeated game version because of finite number of stages.

Theorem 24 Let Γ be an extensive form game of perfect information and finite number of

stages. Then the following are equivalent.

1. s is a subgame perfect equilibrium.

2. For every i ∈ N , si is OSD optimal for s−i.

Proof : The implication (1) ⇒ (2) is immediate from definitions. This is because OSD

optimality only requires optimality over one-shot deviation strategies but subgame perfect

equilibrium requires it over a larger set of strategies.
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(2) ⇒ (1). Suppose s is a strategy profile satisfying (2) but not a subgame perfect equilib-

rium. Then, there is a subgame Γ(y), which is rooted at y, such that for some i ∈ N , there is

another strategy s′i such that uyi (x(s′i,s−i)) > uyi (x(si,s−i)). Let P
′ ≡ (y′0 = y, y′1, . . . , y

′
k) be the

payoff path of (s′i, s−i). Let P ≡ (y0 = y, y1, . . . , yℓ) be the payoff path of (si, s−i). Let yj be

the first vertex in P ′ and P where these paths are different. It is without loss of generality

to look at the subgame Γ(yj). Hence, we assume (without loss of generality) j = 0.

First, we restore the actions of Player i to the action according to si at all decision

vertices which do not lie in P ′. In other words, consider a strategy s′′i such that s′′i (z) = si(z)

if z /∈ P ′∩Vi and s′′i (z) = s′i(z) if z ∈ P ′∩Vi. Hence, the payoff path of (s′′i , s−i) and (s′i, s−i)

are the same: P ′. Thus, uyi (x(s′′i ,s−i)) > uyi (x(si,s−i)).

Now, let y′j ∈ Vi be the last vertex on the path P ′ where s′′i (yj) 6= si(yj). Then,

in the subgame Γ(yj), strategy s′′i and si are one-shot deviations at yj. Hence, setting

s′′i (yj) = si(yj) improves the payoff in the subgame Γ(yj) due to OSD optimality. We repeat

this procedure backwards from yj along the path P ′ till we restore the entire path P ′ to

actions recommended by si and improving the payoff in each restoration. This will give us

uyi (x(si,s−i)) > uyi (x(si,s−i)), which is a contradiction. �

Finally, an easy method to compute a strategy profile satisfying one-shot deviation prin-

ciple in finite extensive form game is the following. Start with a decision vertex just before a

terminal vertex. Specify an action that leads to the highest payoff for the decision maker of

that vertex among all possible actions - in case of ties, all possible actions leading to highest

payoff are specified. If such an optimal action leads to terminal vertex z, then replace this

decision vertex and the subsequent subgame by terminal vertex z. Repeat this procedure. If

indifferences occur, this will lead to multiple strategy profiles surviving. This procedure is

called the backward induction procedure.

Definition 33 A strategy profile that survives the above procedure is said to be a strategy

profile surviving the backward induction procedure.

An easy corollary of Theorem 24 is the following.

Corollary 1 A strategy profile is a subgame perfect equilibrium if and only if it survives

the backwards induction procedure.

In the game in Figure 17, Player 2 plays R. Then we replace the subgame starting at

the decision vertex of Player 2 by payoff (2, 1). Now, Player 1 chooses D in this new game.

Hence, the unique outcome of the backward induction procedure is (D,R).
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Consider the game in Figure 18. There are three players: two entrant firms and one

incumbent firm. The entrants decide sequentially whether to stay out (O or o) or enter the

market (E or e). If they stay out they get zero. If they enter, then the incumbent can fight

(f/f ′/f ′′) or accommodate (a/a′/a′′). If both entrants stay out, the incumbent gets 5. If the

entrant accommodates, the per firm profit is 2 for duopoly and −1 for triopoly. On top of

this, if the incumbent fights, then it costs 1 for the incumbent and 3 for entrants. The game

is described in Figure 18.

If we solve this game by backward induction procedure, then the incumbent always

accommodates. Given this, entrant firm 2 enters in his left-most information set but stays

out in the right-most information set. Given this, entrant firm 1 enters. This illustrates the

idea of a first-mover advantage in extensive form games.

Player 1

Player 2

(0, 0, 5)

o

Player 3

(0,−1, 1)

f

(0, 2, 2)

a

e

O

Player 2

Player 3

(−1, 0, 1)

f ′

(2, 0, 2)

a′

o′

Player 3

(−4,−4,−2)

f ′′

(−1,−1,−1)

a′′

e′

E

Figure 18: Backward induction

How do we describe the subgame perfect equilibrium of this game? We need to specify

the actions at every information set: (E, (e, o′), (a, a′, a′′)). You can verify that there are

many Nash equilibria of this game. Hence, Nash equilibrium has very less predictive power

in this game but the subgame perfect equilibrium leads to a unique outcome.

Backward induction can be a very demanding solution in games where players need to

move many times. This is because it requires players to anticipate actions down the game

tree. A sharp example of this fact is given a well known game called the centipede game.

Two players start with 1 unit of money each. Each player can either decide to continue C or
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stop S. If anyone stops, then the game ends and each take their piles. If a player continues,

then the opponent gets to take action but his pile is reduced by 1 while the opponent’s pile is

increased by 2. The play ends when both the players reach 100. Suppose Player 1 moves first.

Unique prediction due to backward induction is Player 1 stops in the first chance resulting

in (1, 1). The subgame perfect equilibrium specifies action S at every decision vertex. This

is also the unique Nash equilibrium of this game.

In lab experiments, agents have usually continued for some time. This is a general critique

of equilibrium in extensive form game that no satisfactory refinement can predict such an

outcome.

We will often refer to all these notions to be the definition of a subgame perfect equilibrium

in such games. An immediate corollary of Theorem 24 is that a subgame perfect equilibrium

in pure strategies always exist - this follows from the fact that the backward induction

procedure always generates at least one pure strategy profile. If there are no indifferences

in payoffs, the backward induction procedure generates a unique strategy profile, which is

referred to as the backward induction solution.

20 Mixed and Behavior Strategies

We have defined pure strategies in an extensive form game as a map that defines what

action a player will take in each of his decision vertices. There are two natural ways to define

randomized strategies in this environment. The first one says that we define a probability

distribution over the set of all pure strategies. This is the notion of a mixed strategy.

Formally, a mixed strategy of Player i is σi ∈ ∆
∏

x∈Vi
A(x).

Consider the game in Figure 19. Player 1 has two pure strategies - we roughly write it

as {x, y} to denote that in his only decision vertex, he can either choose action x or action

y. Similarly, the pure strategies of Player 2 can be written as {Aa,Ar,Ra,Rr}, where Aa
indicates that in his left-most decision vertex he plays A and in the other decision vertex, he

plays a - similar interpretations can be made for other pure strategies. A mixed strategy of

Player 1 will be σ1(x), σ1(y) such that σ1(x) + σ1(y) = 1. A mixed strategy of Player 2 will

be σ2(Aa), σ2(Ar), σ2(Ra), σ2(Rr) such that

σ2(Aa) + σ2(Ar) + σ2(Ra) + σ2(Rr) = 1.

Another way to specify random behavior in this game is to specify a probability distri-

bution at each decision vertex. A behavior strategy of Player i specifies a probability

distribution bxi over Ai(x) for each of his decision vertices x. Hence, bi ∈ ∏

x∈Vi
∆A(x).
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Player 1

Player 2

(3, 3)

A

(4, 0)

R

x

Player 2

(1, 2)

a

(2, 1)

r

y

Figure 19: Extensive form game with perfect information

Notice that every behavior strategy naturally induces a probability distribution over pure

strategies, and hence, is a mixed strategy.

In the game in Figure 19, Player 2 will have to specify two maps: b12(A), b
1
2(R) with b

1
2(A)+

b12(R) = 1 and b22(a), b
2
2(r) with b

2
2(a) + b22(r) = 1. Note that the induced mixed strategy of

Player 2 can be computed by multiplying the respective probabilities: for instance, σ2(Aa) =

b12(A)b
2
2(a). Thus, specifying randomization using a behavior strategy assumes independence

across decision vertices - when a player reaches his decision vertex, he randomizes over the

actions at that decision vertex only.

Since mixed strategies allow for correlation, not every mixed strategy can be induced from

behavior strategies. To see this, consider the game in Figure 19. Suppose b12(A) =
1
2
= b12(R)

and b22(a) =
1
3
, b22(r) =

2
3
. The mixed strategy generated is

σ2(Aa) =
1

6
, σ2(Ar) =

1

3
, σ2(Ra) =

1

6
, σ2(Rr) =

1

3
.

Now, consider the following mixed strategy of Player 2,

σ2(Aa) =
1

3
, σ2(Ar) =

1

6
, σ2(Ra) = 0, σ2(Rr) =

1

2
.

If there is a behavior strategy of Player 2 that generates this mixed strategy, then we must

have b12(R) = 0 or b22(a) = 0, which will then imply that either σ2(Rr) or σ2(Aa) is zero, a

contradiction. The main idea here is that behavior strategy does not allow for correlation

present in this mixed strategy.

But such correlation is strategically unnecessary. This is because decision vertices are

reached sequentially. To make ideas precise, fix a player i and a mixed strategy σ−i of other

players. By specifying a behavior strategy bi, we induce a probability distribution over the
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terminal vertices of the game tree by the play (bi, σ−i). Similarly, each σi also induces a

probability distribution over terminal vertices by the play (σi, σ−i).

Formally, let ρ(x; σ) denote the probability that a terminal vertex x is reached by playing

a strategy profile σ. How is ρ computed? Remember, there is a unique path from the root

vertex to x in Γ. Then, ρ(x; σ) is the multiplication of playing each of the actions along this

path (which can be computed from σ).

We illustrate with the above example. In the above example, suppose Player 1 plays the

behavior/mixed strategy where he plays x and y with equal probability. Suppose Player 2

plays strategy σ2. Then what is the probability of reaching the terminal vertex with payoff

(3, 3)? It can be reached if Player 1 plays x and Player 2 either plays Aa or Ar. Hence, the

required probability is

σ1(x)×
[

σ2(Aa) + σ2(Ar)
]

=
1

4
.

A similar calculation reveals the following distribution over terminal vertices

(1

4
,
1

4
,
1

6
,
1

3

)

,

where we have written the probabilities of terminal vertices from left to right.

A similar calculation for behavioral strategies can also be done. It can be verified that

both the mixed strategy and the behavior strategies give rise to the same distribution over

terminal vertices. When computing the probability of a terminal node, we somehow con-

structed a behavior strategy by adding up all the pure strategies in the support of the pure

strategy that lead to this terminal vertex. It so turned out that it was indeed a behavior

strategy that we had earlier stated.

Definition 34 A behavior strategy bi and a mixed strategy σi of Player i are outcome

equivalent if for every mixed strategy σ−i of other players, the probability distributions

induced over the terminal vertices by (bi, σ−i) and (σi, σ−i) are the same.

Formally, Harold Kuhn established the following theorem.

Theorem 25 In every extensive game of perfect information, every mixed strategy of a

player is outcome equivalent to a behavior strategy.

The proof involves constructing particular behavior strategies for every mixed strategy.

Though the proof is notationally quite involved, the idea is relatively straightforward. We

illustrate this with an example. Consider Player 2 in the game in Figure 20. Consider a

mixed strategy of Player 2 as σ2(Lℓ) = σ2(Lr) =
1
3
, σ2(Rℓ) =

1
12
, σ2(Rr) =

1
4
.
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Suppose Player 1 plays pu (for U) and pd (for D) as his mixed strategy. We need to con-

struct behavior strategies which is outcome equivalent to this. Consider the decision vertex

2 of Player 2. A natural candidate of his behavior strategy is the conditional probability

of agent 2 playing ℓ (and r can be computed similarly) given that this decision vertex is

reached:
σ2(Lℓ)pu

σ2(Lℓ)pu + σ2(Lr)pu
=

σ2(Lℓ)

σ2(Lℓ) + σ2(Lr)
.

Similarly, the candidate behavior strategy for the first decision node of Player 2 is

(σ2(Lℓ) + σ2(Lr)).

These candidates for behavior strategy generates the following probability of reaching the

decision vertex with payoff (4, 1):

(σ2(Lℓ) + σ2(Lr))pu
σ2(Lℓ)

σ2(Lℓ) + σ2(Lr)
= puσ2(Lℓ),

which is also the probability of reaching this decision vertex by strategy profile (pu, σ2).

Doing the calculations reveal that the probability distribution induced on terminal ver-

tices (3, 1), (3, 0), (4, 1), (2, 2) respectively are pu
1
3
, pu

1
3
, pu

1
3
, pd

2
3
.

Clearly, to achieve these probabilities Player 2 must play 1
3
on R at his first decision

vertex. So, he plays L with probability 2
3
. Then, to ensure equivalent outcome, he should

play ℓ and r with probability 1
2
each. Hence, we computed behavior strategy of playing ℓ of

Player 2 at his second decision vertex by the following conditional probability:

σ2(Lℓ)

σ2(Lℓ) + σ2(Lr)
=

1

2
.

The proof of Kuhn’s theorem formalizes this and shows that such computations are always

possible.

Because of this result, we will only talk about behavior strategies from now onwards. The

equivalence between one-shot deviation property and subgame perfect equilibrium (Theorem

24) continues to hold even with behavior strategies since we allowed for infinite action sets

in Theorem 24. However, conceptually, a behavior strategy in an extensive form game is

a complicated object - after all, players observe others playing a pure action and not the

randomization. One way to think of it is that though players choose pure actions, the ran-

domization device they use is public - this is referred to as public randomization. This issue is

bypassed by the backward induction procedure because it is based on beliefs down a decision

vertex.
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Player 2

Player 1

(3, 0)

D

Player 2

(4, 1)

ℓ

(2, 2)

r

U

L

(3, 1)

R

Figure 20: Extensive form game: illustration of Kuhn’s theorem

Indifference. If there are indifferences, then many pure and mixed strategies will survive

backward induction and all of them will be subgame perfect equilibrium. To illustrate this,

consider the following example in Figure 21.

Player 1

Player 2

(−1, 0)

L

(1, 0)

R

D

(0, 1)

U

Figure 21: Backward induction with indifference

In the game in Figure 21, Player 2 is indifferent between his strategies L and R. Suppose

he plays L, then optimal strategy for Player 1 is to play U . On the other hand if Player 2

plays R, then Player 1 chooses D. So, (U, L) and (D,R) are two subgame perfect equilibria.

If Player 2 randomizes αL+(1−α)R. Player 1 gets 0 by playing U and 1−2α by playing D.
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If α > 1
2
, then Player 1 playing U is optimal. If α < 1

2
, then Player 1 playing D is optimal.

If α = 1
2
, then Player 1 randomizing βL + (1 − β)D for any β ∈ [0, 1] is optimal. All these

correspond to subgame perfect equilibria of this game.

Infinite horizon and action sets. There are extensive games where the number of

stages is infinite. For such games, the process of backward induction is not defined. However,

the notion of subgame perfect equilibrium is still well defined. We need to consider subgames,

and the strategies should consist of equilibrium behavior in each subgame.

Another important remark is that with finite number of stages, backward induction is well

defined even if agents have infinite set of actions in a decision vertex. However, the optimal

response may be empty with infinite set of actions. So, wherever the optimal response map

is non-empty, we can easily define the backward induction process. The following application

illustrates this point clearly.

20.1 Alternative Offers Bargaining

We now visit an application of subgame perfect equilibrium. In this problem, two players are

bargaining over 1 unit of money. They will bargain for T +1 periods starting from period 0.

In even periods (starting at 0), Player 1 offers a split (ot, 1−ot), where ot ∈ [0, 1] is Player 1’s

share. If Player 2 accepts, the game ends. Else, we move to the next period. In odd periods,

Player 2 offers a split. If no split is accepted at the end of period T , then the game ends

with each player getting 0. Money received in period t is discounted by δt, where δ ∈ (0, 1).

This game has perfect information, finite number of stages, but infinite set of actions at

each decision vertex. There are many tied utilities too. But surprisingly, it has a unique

subgame perfect equilibrium.

To understand the game better, consider just a one-period T = 1 case. Player 1 offers a

split (o1, 1− o1) and Player 2 can either accept or reject. In all the decision vertices, where

Player 2 gets a positive offer, he accepts. In the decision vertex where Player 2 gets zero

offer, he is indifferent. Knowing this, we now apply backward induction on Player 1. Player

1’s optimal is not clearly to give a positive split to Player 2 because that is dominated. If

Player 2 rejects a zero offer with positive probability y, then Player 1 gets a payoff of 1− y,

which is dominated by Player 1 offering (1 − y

2
, y
2
). Hence, again Player 2 rejecting a zero

offer with positive probability and accepting a positive offer implies Player 1 has no optimal

action at his decision vertex. Hence, the backward induction procedure does not provide any

strategy of Player 1 for such a strategy of Player 2. On the other hand, if Player 2 accepts

Player 1’s zero offer with probability 1, then Player 1’s optimal action is to offer (1, 0). This
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will be a subgame perfect equilibrium. This forms the basis of the theorem below.

Theorem 26 In the alternative offers bargaining game, there is a unique subgame perfect

equilibrium, where the initial offer is accepted. As T → ∞, the equilibrium payoffs converge

to ( 1
1+δ

, δ
1+δ

).

Proof : Suppose T is even. Then, in the last period, Player 1 offers. Consider the subgame

from this period. It consists of a decision vertex for Player 1 where he offers a split (oT , 1−oT )
and a decision vertex for Player 2 for each offer of Player 1. In the decision vertex, Player 2

must accept any positive offer. But it can accept, reject, or randomize on zero offer. Then,

consider the offer of Player 1. Player 1 cannot offer positive amount to Player 2 since he can

improve it by giving half of that - hence, there is a one-shot deviation. So, Player 1 must

offer 0 amount to Player 2. Now, if Player 2 rejects such an offer, then both get zero. Hence,

if Player 2 randomizes with α probability reject and (1− α) probability accept, then Player

1 offering 0 gets a payoff of (1 − α)δT . But Player 1 can do better by offering Player 2 an

amount 1
2
α (which Player 2 will accept). Hence, if Player 2 rejects with positive probability,

then offering 0 is not a best response of Player 1. So, offering 0 and getting rejected with

some probability is not a subgame perfect equilibrium. Thus, offering 0 and accepting 0 is

the unique subgame perfect equilibrium outcome from period T .

We now repeat this idea. Essentially, at each subgame an offer must be made such that

the opponent is indifferent between accepting and rejecting and the opponent must accept.

By backward induction, we proceed as follows.

1. In period T , Player 1 offers (1, 0), which Player 2 accepts. Resulting payoffs are (δT , 0).

2. In period (T − 1), Player 1 can assure himself of δT . So, he accepts any offer giving

him at least δT . So, Player 2 offers (δ, 1− δ) which gives payoff (δT , δT−1 − δT ).

3. In period (T − 2), Player 2 can assure himself of δT−1 − δT . So, Player 1 offers (1 −
δ + δ2, δ − δ2), which gives payoff (δT−2 − δT−1 + δT , δT−1 − δT ).

Continuing in this manner, we get

4. In period 0, Player 1 offers (1− δ + δ2 − . . .+ δT , δ− δ2 + . . .− δT ) ≡ (1+δT+1

(1+δ)
, δ−δT+1

(1+δ)
),

which is accepted by Player 2. Note that the limit of T → ∞ is ( 1
1+δ

, δ
(1+δ)

).

If T is odd, a similar analysis yields an offer by Player 1 equal to (1−δT+1

(1+δ)
, δ+δT+1

(1+δ)
), whose

limit T → ∞ is also ( 1
1+δ

, δ
(1+δ)

). �
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21 Games with Imperfect Information

In games with imperfect information a player may not observe the entire history at every

decision vertex. Hence, when he reaches his decision vertex, there is uncertainty about which

decision vertex he is really in. To make complete sense of this uncertainty, the set of actions

available at each of these uncertain decision vertices must be same. This idea is captured by

the notion of an information set. Consider the following examples given below.

Player 1

Player 2Player 2 Player 2

`

m

r

T B T B T B

(0; 0) (1; 3) (3; 1) (2; 3) (1; 2) (2; 2)

Figure 22: Strategic form game as an extensive form game

1. Strategic form games. Every strategic form game can be represented as an exten-

sive form game of imperfect information. To see this consider a strategic form game

of two players: N = {1, 2}. In the strategic form game, each player i ∈ N chooses an

action from his strategy Si simultaneously. So, think of an extensive form game, where

one of the players, say 1, moves first. However, the action of Player 1 is not observed

by Player 2. This can be depicted by an extensive form game. Suppose S1 = {ℓ,m, r}
and S2 = {T,B}. Then, the game is shown in Figure 22.

Notice that when Player 2 takes her action in Figure 22, she does not know which

decision vertex she is in - so her three decision vertices are bundled in one information

set.

2. Bayesian games. In Bayesian games, there is a clear sequential nature of play. First,

Nature draws the type of each player, but informs them privately. Hence, the action

of Nature’s move is observed to corresponding players only. We illustrate this with a

simpler version of bilateral trading, where seller’s cost c is known to both the buyer and

the seller. At the beginning, buyer’s value v is drawn from {vL, vH} with probabilities

πL and πH respectively. Then, the seller announces one of two prices: pL and pH . The

buyer observes the prices and chooses either to accept or reject the offer. If accepted,

trade happens at the announced price of the seller. Else, no trade happens.
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This game is shown as a game of imperfect information in Figure 23. Here, the imper-

fect information is generated by the private nature of Nature’s move. Since the seller

does not know the type of the buyer, he does not know which decision vertex he is in

when he announces a price. Hence, his decision vertices are bundled in one information

set.

Nature

SellerSeller

BuyerBuyerBuyerBuyer

πH πL

H L

pH pLpH pL

A R A R A R A R

Figure 23: Bilateral trading (one-sided asymmetry) as an extensive form game

The idea of an information set is formalized below.

Definition 35 In an extensive form game the information set of Player i is a non-empty

subset Ui ⊆ Vi and a subset of actions A(Ui), such that at each x ∈ Ui we have A(x) = A(Ui).

The only additional information in an extensive form game with imperfect information

is a specification of information sets. In particular, for every player i, we specify a partition

{U j
i }j of the decision vertices Vi of Player i, where each U j

i is an information set. Now, set

of actions are specified for each information set. Another important specification is that we

allow for moves by a player, who we denote by 0, called Nature. So, there will be a subset of

decision vertices V0, where Nature takes some actions. The probability of these actions are

specified and known to all players in the game - Nature is not strategic.

Formally, an extensive form game of imperfect information can be defined similar to a

game of perfect information with some minor modifications given as follows.

Definition 36 An extensive form game of imperfect information is

Γ ≡ (N, V, E, r, {Vi}i∈N∪{0}, {U j
i }ji∈N , {A(U j

i )}ji∈N , {px}x∈V0
, {A(x)}x∈V0

, {ui}i∈N ),

where

• {U j
i }ji∈N is a partition of Vi for each Player i ∈ N ,

• A(U j
i ) specifies the actions available at each information set U j

i for Player i,
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• px specifies a probability distribution at each of Nature’s decision vertex x ∈ V0 over

his set of actions A(x).

Note that if every information set contains a single vertex, then the game is of perfect

information.

The strategy and the idea of subgame is suitably changed in a game of imperfect in-

formation. Since the player is unsure about the vertex he has reached in an informa-

tion set, his strategy must specify an action at every information set. We will denote by

Ui ≡ {U1
i , . . . , U

k
i } the collection of information sets of Player i.

Formally, a strategy of player i ∈ N is a map si : Ui → ∪
U

j
i ∈Ui

A(U j
i ) such that si(U

j
i ) ∈

A(U j
i ) for all U

j
i ∈ Ui.

In the game in Figure 14, each player’s information set is a singleton, except for Player

2, who has a single information set with two vertices. His strategy must specify what he will

do at this information set.

The definition of a subgame is just the subtree starting from a decision vertex. If the

game is of imperfect information, we need to worry about information sets. In particular,

when we consider a subtree, for every Player and every information set of this player, all the

vertices of this information set either belongs to the subtree or does not intersect with the

subtree. So, Γ(x) will be a subgame if for every i ∈ N and for every U j
i ∈ Ui either U

j
i lies

in the subtree in Γ(x) or it has an empty intersection with the subtree in Γ(x).

The game in Figure 14 has only one subgame, i.e., the game itself. This is because every

other subgame will only have part of the information set of Player 2.

21.1 Perfect Recall

Consider the following game in Figure 24. Player 2 is forgetful here. He forgets whether he

had called Player 1 or not earlier. As a result, when Player 1 reaches his home, he does not

know whether Player 2 has come because of his call or without his call. Thus, Player 2 has

an information set consisting of two decision vertices.

Games in which players remember the entire sequence of information (history) from root

to their every information set are players with perfect recall. Formally, Player i has perfect

recall if at every information set U j
i and every pair of vertices x, x′ ∈ U j

i , the information

observed by Player i to reach x and x′ from root are identical. An extensive form game

in which all the players have perfect recall is called a game with perfect recall. We will

exclusively focus attention on games in which all the players have perfect recall.
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Player 2

Player 1

(y1, y2)

At home

Player 2

(x1, x2)

Cooks

(x′

1, x
′

2)

Out

Goes out

Calls Player 1

Player 1

Player 2

(z1, z2)

Cooks

(z′1, z
′

2)

Out

Goes out

(y′1, y
′

2)

At home

Does not call Player 1

Figure 24: Extensive form game without perfect recall

22 Equilibria for Games of Imperfect Information

In games where there is imperfect information, subgame perfect equilibrium can still be

applied but backward induction is not well-defined in such games. Moreover, subgame perfect

equilibrium may be a useless solution concept in which there is imperfect information. To

see this, consider the game in Figure 25. This game has only one subgame. Hence, the set

of Nash equilibria are equivalent to the set of subgame perfect equilibria. The problem with

subgame perfect equilibrium in this game is that it does not use any beliefs of Player 2. As

a result, it puts no restriction on his optimal choice when his information set is reached. To

appropriately define behavior in information sets, any equilibrium must also define beliefs

and equilibrium choices must be consistent with these beliefs. This is the basic idea behind

defining equilibrium refinements in games of imperfect information.

22.1 Perfect Bayesian Equilibrium

To understand the problem with subgame perfect equilibrium further in such games, consider

the reduced-form strategic-form game of the game in Figure 25. It is shown in Table 40.

The Nash equilbria of this strategic-form game consists of (A,L), (C, αL + (1 − α)R),

where α ≤ 1
3
. The idea of sequential rationality requires that each player must behave

rationally once his information set is reached. To be able to do this, players must form
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Player 1

Player 2

(4, 0)

L

(−3,−1)

R

A

Player 2

(2, 1)

L

(−1,−1)

R

B

(0, 2)

C

Figure 25: Imperfect Information

L R

A (4, 0) (−3,−1)

B (2, 1) (−1,−1)

C (0, 2) (0, 2)

Table 40: Reduced strategic form of the game in Figure 17

beliefs about where they are inside their information set, and act optimally according to this

belief. The nature of beliefs that is permissible results in different solution concepts.

For instance, if we specify a strategy profile, where Player 1 plays A with probability 1
3

and B with probability 1
2
, then this equilibrium knowledge is enough to pin down the beliefs

of Player 2. Remember, that Player 2 has correct belief about equilibrium behavior of Player

1. Hence, his belief of the information set can be deduced from this: total probability of

reaching this information set is 5
6
, and individual conditional probabilities are (2

5
, 3
5
). Of

course, here we cannot apply this principle if a strategy profile does not reach a particular

information set since conditional probabilities are not defined at those information sets. So,

sequential rational behavior can be with respect to any belief at such information sets.

Formally, in an extensive form game with imperfect information, the belief of Player i is

a map µj
i : U

j
i → [0, 1] for each j such that

∑

x∈Uj
i
µj
i (x) = 1 for all j. We write the collection

of beliefs of Player i as µi: this specifies a probability distribution for each of his information

sets.

Given a strategy profile σ, we can compute the probability with which each decision

vertex is reached in an extensive form game. We denote this as Pσ(x). The probability with

with an information set U j
i is reached given σ is Pσ(U

j
i ) =

∑

x∈Uj
i
Pσ(x).
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Definition 37 Belief µi of Player i is Bayesian given a strategy profile σ if for every

information set U j
i reached with positive probability in the strategy profile σ, we have for all

x ∈ U j
i ,

µj
i (x) =

Pσ(x)

Pσ(U
j
i )
.

Sequential rationality now extends to this setting as follows.

Definition 38 A strategy σi of Player i at information set U j
i is sequentially rational

given strategies σ−i and beliefs µi if for all σ′
i, we have

∑

x∈Uj
i

µj
i (x)ui(σi, σ−i|x) ≥

∑

x∈Uj
i

µj
i (x)ui(σ

′
i, σ−i|x).

A strategy σi of Player i is sequentially rational given σ−i and µi if it is sequentially

rational at all information sets.

An equilibrium here in an imperfect information extensive form game involves specifying

strategies and beliefs. Beliefs have to be consistent in the form of Bayesian and strategies

have to be sequentially rational. The pair of strategy profile and belief profile is called an

assessment.

Definition 39 An assessment (σ, µ) is a perfect Bayesian equilibrium (PBE) if for

every Player i

• µi is Bayesian given σ

• σi is sequentially rational given σ−i and µi.

In the game in Figure 25, for every belief of Player 2, L is a strictly dominant action.

Given this, Player 1 must play A irrespective of his beliefs. Hence, the unique PBE of this

game is (A,L, µ2(B) = 1). In general, a PBE does not allow players to play a strictly

dominated action, while a Nash equilibrium does not preclude this off equilibrium path. A

fact that we do not prove here but state is: every PBE is a Nash equilibrium.

22.2 Sequential Equilibrium

However, PBE allows for any arbitrary beliefs off equilibrium path. This can lead to unsat-

isfactory predictions in certain games. The following example illustrates this. Consider the

game in Figure 26. In this game, what beliefs of Player 2 induce him to play ℓ? Suppose he
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puts µ probability on his left decision vertex and (1 − µ) on the other. Then, his payoff by

playing ℓ is 2− µ and his payoff from playing r is 3− 4µ. So he plays ℓ if µ > 1
3
, r if µ < 1

3
,

and mixes ℓ and r otherwise. But Player 1 plays his dominant strategy D in his second

information set. So, what should Player 1 play in PBE in the first information set? Suppose

he mixes αL + (1 − α)R, where α > 0. Then, µ = 1 is the only Bayesian belief - note this

information set is reached in equilibrium now. Then Player 2 must play ℓ. This means that

α = 1. If Player 1 plays R, then any belief is allowed for Player 2. But for Player 1 to choose

R in equilibrium, Player 2 must play r - if he plays ℓ, then he is better of choosing L and

then D to get payoff 2. For Player 2 to play r, the belief should be µ ≤ 1
3
. There are other

PBE where Player 2 mixes also.

Now, let us consider the PBE ((R,D), r;µ ≤ 1
3
). It is not reasonable to assume that

Player 2 plays r in his information set since he knows that U is never played by Player

1. Another amazing feature of this game is its subgame perfect equilibrium. The subgame

starting with the second information set of Player 1 has one Nash equilibrium - Player 1

chooses his dominant strategy D and Player 2 best responds with ℓ. Given this, Player

1 chooses L in the first information set. Hence, ((L,D), ℓ) is a unique subgame perfect

equilibrium of this game. Thus, the PBE is not a refinement of subgame perfect equilibrium.

Player 1

Player 1

Player 2

(2, 1)

ℓ

(−2,−1)

r

D

Player 2

(−5, 2)

ℓ

(−5, 3)

r

U

L

(0, 2)

R

Figure 26: Problems with PBE

To get rid of this unpleasant feature of PBE, a refinement is proposed. The refinement

aims to put some consistent beliefs on information sets that are not reached in equilibrium.

126



Definition 40 An assessment (σ, µ) is a sequential equilibrium if

1. µ is consistent given σ: There exists a sequence of completely mixed strategy profile

{σk}k such that (i) limk σ
k = σ and if µk are the unique Bayesian beliefs for σk, then

limk µ
k = µ.

2. σ is sequentially rational given µ.

The new condition here from PBE is consistency, which requires that if Players make

some small mistakes from equilibrium, the beliefs should be close to the Bayesian beliefs

corresponding to those small mistakes. Note that the sequence we construct need not be

unique, and different sequences may lead to different beliefs.

The following proposition says that every sequential equilibrium is also a perfect Bayesian

equilibrium.

Proposition 4 If µ is consistent given σ, it is Bayesian given σ. Hence, every sequential

equilibrium is also a perfect Bayesian equilibrium.

Proof : Very informal. For this, we pick an information set U j
i of Player i which is

reached with positive probability in σ. Bayesian belief says that for every x ∈ U j
i ,

µj
i (x) =

Pσ(x)

Pσ(U
j
i )
.

Any perturbation σǫ, will generate a belief µǫ, which is computed by computing Pσǫ(x)

and Pσǫ(U j
i ). As the perturbations approach zero, Pσǫ(x) and Pσǫ(U j

i ) approach Pσ(x) and

Pσ(U
j
i ) respectively - this happens because σǫ approaches σ and the linear way in which

probabilities are computed. So, as long as Pσ(U
j
i ) is non-zero, these limits give you µj

i (x).

�

In extensive form games with imperfect information, the one-shot deviation principle con-

tinues to hold. Hence, in such games, it is enough to check for deviations at one information

set at a time.

The following theorem, whose proof we skip, establishes that a sequential equilibrium is

refinement of subgame perfect equilibrium.

Theorem 27 Every sequential equilibrium is a subgame perfect equilibrium. Every com-

pletely mixed strategy Nash equilibrium is a sequential equilibrium.
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The second part of Theorem 27 follows trivially by taking the sequence of strategies same as

the equilibrium strategy.

Let us now revisit the game in Figure 26. First, look at the subgame perfect equilibrium

((L,D), ℓ). If we consider mixed strategies, where σk
1 (R) = ǫkR, σ

k
1 (L) = 1− ǫkR and σk

1 (D) =

1− ǫkD, σ
k
1(U) = ǫkD. Then,

µ =
(1− ǫDk )(1− ǫkR)

1− ǫkR
→ 1.

Note that perturbation of Player 2’s strategy is not necessary here. Hence, µ = 1 is a

consistent belief given this strategy profile. We already know that this strategy profile is

sequentially rational given µ. Hence, it is a sequential equilibrium.

Now, can there be a sequential equilibrium where Player 1 chooses (R,D) and Player

2 chooses r. If we perturb the strategies of Player 1, then we reach the information set of

Player 2 with positive probability where the belief on the (L,D) decision vertex must be

very high. As a result, Player 2 must choose ℓ here to be sequentially rational. Hence, no

sequential equilibrium will choose Player 2 playing r with positive probability if Player 1

plays (R,D).

A comment about existence of PBE and sequential equilibrium is that if games have

perfect recall, then these equilibria always exist.

22.3 Example: A signaling game

We give an example to illustrate the notions of PBE and sequential equilibrium. This

example is usually called a simpler version of the signaling game. There are two agents in

this example - see Figure 27. Agent 1 has two types - High or Low, their probabilities are

as shown in Figure 27. Agent 1’s type is not observed by Agent 2 but his action, which is

either N or E, is observable by Agent 2. After observing Agent 1’s action, Agent 2 takes an

action, which is either U or D. The payoffs are as shown in Figure 27.

We now compute some of the PBE of this game. Before doing so, we observe that Agent

1 of type High strictly prefers E to N. Hence, in any PBE, Agent 1 must choose E at his

decision vertex corresponding to High type. We now look at various PBE of this game.

Denote the belief of Agent 2 on his left information set as µL for the top decision vertex and

1 − µL for the bottom decision vertex. Similarly, denote the belief of Agent 2 on his right

information set as µR for the top decision vertex and 1− µR for the bottom decision vertex.

• Separating PBE. High type Agent 1 chooses E but Low type Agent 1 chooses N. If

such a PBE exists, then all the information sets of Agent 2 is reached in equilibrium. By

128



Nature

Agent 1Agent 2

Agent 2

Agent 2

Agent 2

U

D

U

D

U

DD

U

EN

EN

High

Low

p = 0:8

1− p = 0:2

2; 1

2; 0

4; 0

2; 1

5; 4

3; 1

2; 0

3; 1
Agent 1

Figure 27: Signaling game

Bayesian rationality, Agent 2’s belief must satisfy: µL = 0, µR = 1. Then, sequential

rationality of Agent 2 implies that he must choose D in the left information set and U

in the right information set. Finally, we verify that Agent 1 is sequentially rational. As

argued, the High type choosing E is sequentially rational. For the Low type, choosing

N gives a payoff of 2 and choosing E gives a payoff of 2 also. Hence, Agent 1’s strategy

is sequentially rational. So, we can describe the separating PBE as:

(High : E,Low : N,Left : D,Right : U, µL = 0, µR = 1).

This PBE is trivially a sequential equilibrium since every information set is reached

with positive probability in this equilibrium.

• Pooling PBE. Both High and Low type Agent 1 choose E. If such a PBE exists,

then left information set of Agent 2 is not reached in equilibrium and right information

set is reached with probability 1. By Bayesian rationality, Agent 2’s belief in right

information set must be: µR = p = 0.8. Then, sequential rationality of Agent 2 in

the right information set implies he must choose U: choosing U gives a payoff equal to

0.8(4) compared to a payoff of 1 by choosing D. For Agent 1 to choose N when he is of

Low type, Agent 2 must choose D - this is because if Agent 2 chooses U, then Agent

1 is better off choosing N when he is of Low type. So, sequential rationality of Low

type Agent 1 forces Agent 2 to choose D in his left information set. But such a choice

is possible with sequential rationality if 1− µL ≥ µL or µL ≤ 0.5.
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Hence, there is a class of pooling PBE:

(High : E,Low : E,Left : D,Right : U, µL ≤ 0.5, µR = p = 0.8).

Any such PBE is also a sequential equilibrium. Fix a particular PBE with a particular

value of µL ∈ (0, 1). For this, we think of a perturbation of Agent 1’s actions to reach

the left information set of Agent 2. But this perturbation must generate beliefs µL in

the limit. A possible way to generate this belief is to choose perturbations as follows:

High : ǫ′N + (1− ǫ′)E;Low : ǫN + (1− ǫ)E,

where ǫ′ = ǫ µL

4(1−µL)
. Notice that this choice of ǫ and ǫ′ exactly generates µL belief

by Bayesian rationality. Hence, as ǫ → 0 (and, hence, ǫ′ → 0), we get the beliefs

approaching µL. For µL = 0, we can choose ǫ = (ǫ′)2 and this gives µL = pǫ

pǫ+(1−p)ǫ′
=

1
1+ 1

4ǫ′
. This converges to zero as ǫ′ → 0.

• Mixing at Low type. High type Agent 1 chooses E but Low type agent mixes N

and E. If such a PBE exists, then let Low type Agent 1 mixes as σEE + (1 − σE)N ,

where σE ∈ (0, 1). As a result, all information sets of Agent 2 is reached in equilibrium.

Bayesian rationality implies that

µL = 0, µR =
0.8

0.8 + 0.2σE
.

Then, sequential rationality of Agent 2 requires that he must choose D in the left

information set. Sequential rationality of Agent 1 at Low type requires that he must

be indifferent between N and E (because he mixes). This is only possible if Agent 2

chooses U at his right information set. But then, 4µR ≥ 1 or 3.2 ≥ 0.8 + 0.2σE or

σE ≤ 1.2, which is always true. Hence, independent of the mixing probability of Agent

1 of Low type, Agent 2 prefers U at his right information set. So, for any σE ∈ (0, 1),

we have the following PBE:

(High : E,Low : σEE + (1− σE)N,Left : D,Right : U, µL = 0, µR =
0.8

0.8 + 0.2σE
).

Since every information set is reached with positive probability in such PBE, they are

also sequential equilibria.
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Nature

Seller in period 1

Buyer in period 1

Seller in period 2

Buyer in period 2

v drawn U ∼ [0; 1]

Price p1 posted

B

W

B B B

W W W

Price p2 posted

B B B B

W W W W

(p1; v − p1)

(δp2; δ(v − p2))

(0; 0) (0; 0) (0; 0) (0; 0)

Figure 28: Sale across two periods

22.4 Example: Two period sale

This example illustrates perfect Bayesian equilibrium in a game with infinite set of actions.

A seller has an object to sell. She has zero value for the object, which is common knowledge.

There is a single buyer, whose for the object is uniformly distributed in [0, 1] - this is common

knowledge. However, the value for the buyer is known privately to the buyer.

There are two periods. In the first period, the seller posts a price p1 and the buyer chooses

one of the actions: buy (B) or wait (W). If the buyer chooses B, then the game ends with

the seller getting a payoff of p1 and the buyer of type v getting a payoff of v − p1. If the

buyer chooses W , then the game proceeds to period 2, where the seller posts a price p2. The

buyer can again choose one of the two actions: buy (B) or wait (W). The game now ends.

If the buyer chooses W, then both the players get a payoff of zero. But if the buyer chooses

B, then the seller gets a payoff δp2, whereas the buyer of type v gets a payoff of δ(v − p2),

where δ ∈ (0, 1) is a common discount factor. The game is shown in Figure 28.

What is a strategy for a player in this game?

Seller. The seller has exactly two information sets, one corresponding to each period. At
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each information set, he posts a price. So, his strategy in period 1 is p1 ∈ R+ and in period

2 it is p2 ∈ R+ having posted a price p1 (note, in period 2, the seller has infinite number of

information sets - one corresponding to each choice of p1).

Buyer. The buyer has two sets of decision vertices: corresponding to period 1 and period

2. In period 1, his decision vertex depends on (a) his own type and (b) the price the seller

posts. So, a period 1 decision vertex can be described by (v, p1) and for every (v, p1), the

buyer either chooses B or W. In period 2, the decision vertex is characterized by (v, p1, p2),

and then the buyer either chooses B or W.

We now solve for a perfect Bayesian equilibrium of this game in steps.

Bayesian rationality of seller in period 1. This just requires that his beliefs must

be same as nature probabilities: probability that seller is at a decision vertex corresponding

to a buyer of type less than or equal to x (note: continuous distribution of types) is x (due

to uniform distribution).

Sequential rationality of buyer in period 2. Sequential rationality in period 2 for

buyer implies that a buyer of type v must buy if v > p2 and wait if v < p2.

Sequential rationality of buyer in period 1. Consider a buyer in period 1 who has

value v and sees price p1. Given strategy of the seller, Bayesian rational belief of seller, and

his own sequentially rational action in period 2, if he finds sequentially rational to buy, then

every type v′ > v must also find it sequentially rational to buy at price p1. To see this, fix the

strategy of the seller as p1 and p2 given p1. The payoff of a buyer of type p1 by buying today

is v− p1 and waiting for next period is max(δ(v− p2), 0). If v− p1 > max(δ(v− p2), 0), then

for all v′ > v, we also have v′−p1 > max(δ(v′−p2), 0). Similarly, if v−p1 < max(δ(v−p2), 0),
then for all v′ < v, we also have v′ − p1 < max(δ(v′ − p2), 0). This suggests a cutoff-action

to be optimal in period 1 for the buyer. For every price p1, there is a cutoff value v(p1) such

that all buyer types above it buy and all buyer types below it wait.

Bayesian rationality of seller in period 2. Given the strategy of the buyer, the

seller in period 2 knows that only a buyer with value v < v(p1) will be active in period 2.

Hence, the conditional probability of being at decision vertex where value of buyer is less

than or equal to x (we compute cdf because there are infinite number of decision vertices in
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this information set) is given by (using conditional uniform distribution):

x

v(p1)
.

Further, such a buyer chooses buy in period 2 if v > p2. Hence, expected payoff of seller

by setting a price p2 in period 2 given a price p1 in period 1 is given by

p2
v(p1)− p2
v(p1)

.

Sequential rationality of seller in period 2. Sequential rationality of seller in

period 2 who has already posted a price p1 is to maximize her expected payoff given his

Bayesian rational beliefs. This leads to maximizing

p2
v(p1)− p2
v(p1)

,

over all p2 ∈ R+. The maximum of this expression happens at

p2 =
1

2
v(p1).

Sequential rationality of buyer in period 1 (again). Having computed p2 as a

function of v(p1), we can now be more precise about buyer’s action in period 1. We know

that the cutoff type will be indifferent between buy and wait in period 1. Hence,

v(p1)− p1 = δ(v(p1)− p2) = δ
(

v(p1)−
1

2
v(p1)

)

=
δ

2
v(p1).

This gives us

v(p1) =
1

1− δ
2

p1.

Sequential rationality of seller in period 1. Finally, sequential rationality of the

seller must require that the seller must maximize her expected payoff (given the strategy of

buyer and his beliefs in period 2) in period 1. His expected payoff by posting a price p1 is

(denoting 1− 1
2
δ = K below):

(1− v(p1))p1 + v(p1)
[

δp2
(v(p1)− p2)

v(p1)

]

= (1− v(p1))p1 + δ
1

2
v(p1)

1

2
v(p1)

= (1− 1

K
p1)p1 +

δ

4

1

K2
(p1)

2.

Taking the first order condition with respect to p1 and setting it equal to zero, we get

1− 2

K
p1 +

δ

4K2
2p1 = 0.
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This gives us

p1 =
2K2

4K − δ
=

1

2

(1− δ
2
)2

(1− 3δ
4
)
.

This also gives us the complete specification of the equilibrium:

p1 =
1

2

(1− δ
2
)2

(1− 3δ
4
)
; v(p1) =

1

2

(1− δ
2
)

(1− 3δ
4
)
; p2 =

1

4

(1− δ
2
)

(1− 3δ
4
)
;

supplemented by beliefs for seller 1: in period 1 information set, her belief is the same as

Nature’s probability; in period 2 information set, her belief of being at a vertex corresponding

to buyer type less than or equal to x and price p1 is 0 if x > v(p1) and
v(p1)−x

v(p1)
if x < v(p1).

For a class of δ ∈ (0, 1), v(p1) > 0 if p1 > 0. So, if p1 > 0, then every buyer with value

less than v(p1) will reach the the second period information set. If p1 = 0, then v(p1) = 0,

then the only buyer who reaches the second period information set are zero value buyer.

But if we consider a perturbation of this strategy, where buyer with value value v buys with

probability 1−ǫ andwaits with probability ǫ if v ≥ v(p) andwaits with probability 1−ǫ and
buys with probability ǫ otherwise, then we reach all information sets with positive measure

probability. In particular, even at p1 = 0, we may have some buyers with probability greater

than zero with positive probability. The limit of the beliefs induced by these strategies can

be shown to be the beliefs induced by cutoff strategies. This in turn will show sequential

equilibrium.
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