
Theory of Mechanism Design - Assignment 2

1. We consider the house allocation model with existing tenants. Consider the following

form of manipulation by a coalition of agents in the TTC mechanism. A coalition of

agents S exchange their houses before the start of the mechanism (i.e., they end up

with an endowment which is different from their actual endowment). Now, the TTC

mechanism is executed. Do you think each agent in S will now get a house which is

either the same house he gets if he had not done the manipulation or a house which is

higher ranked than the house he gets if he does not do manipulation?

Solution: Such a manipulation is possible. We give an example with four agents with

four houses. Let N = {1, 2, 3, 4} and the set of houses be {a1, a2, a3, a4}. The initial

endowments of houses are given by a∗: a∗(i) = ai for all i ∈ N . The preferences

of agents are shown in Table 1 - some of the preferences of agents are not shown

completely, implying that it can be anything in the parts not shown.

≻1 ≻2 ≻3 ≻4

a2 a1 a4 a4

a3 a2

a3

Table 1: An example for housing model

If we run the TTC mechanism on this problem, the outcome will be a: a(1) = a2, a(2) =

a1, a(3) = a3, a(4) = a4.

Now, suppose agents 2 and 3 swap their endowments. So, the initial endowments of

agents look as a′: a′(1) = a1, a
′(2) = a3, a

′(3) = a2, a
′(4) = a4. If we run the TTC

mechanism on this problem, the outcome will be â: â(1) = a3, â(2) = a1, â(3) =

a2, â(4) = a4. Note that â(2) = a(2) and â(3) ≻3 a(3). Hence, agents 2 and 3

successfully manipulated their initial endowments.

2. Consider the house allocation model with three agents N = {1, 2, 3} and three objects

M = {a, b, c}. Let f be a social choice function defined as follows. At any preference

profile ≻≡ (≻1, . . . ,≻n), if ≻2 (1) = a, then agent 1 gets the best element in {b, c}

according to his preference ordering ≻1, agent 2 gets a, and agent 3 gets the remaining

object (i.e., a serial dictatorship with the highest priority to agent 2, followed by agent

1, and finally to agent 3). In all other cases, agent 1 gets the best object in M , agent 2

gets the best remaining object according to ≻2, and agent 3 gets the remaining object

(i.e., a serial dictatorship with the highest priority to agent 1, followed by agent 2, and
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finally to agent 3).

Is f strategy-proof? Is f non-bossy, i.e., can an agent change the outcome at a profile

without changing the object assigned to him?

Answer: f is strategy-proof. Agents 1 and 3 cannot change the priority. So, they

have no incentive to manipulate. Agent 2 can change the priority. But he will not

manipulate if he gets the top priority. When agent 2 gets the second priority, he can

change the priority by saying that his top is a, and in this case he gets a. But a is

not his top according to his true preference. So he gets an object which is at least

his second preferred object. But that he could have got even if he did not change the

priority. So, he does not gain by manipulation.

f is also non-bossy. Note that if the serial dictatorship with a given priority is non-

bossy. So, if an agent does not change his own allocation in f , it does not change the

priority in f . So, by the same reasoning, it is non-bossy - other agents will continue to

choose the best from same set of available objects to them.

3. Consider a two-sided matching model with men and women. Let ≻ be a profile of

preference orderings as shown in Table 2.

≻m1
≻m2

≻m3
≻w1

≻w2
≻w3

w1 w2 w2 m2 m1 m1

w3 w1 w1 m1 m2 m2

w2 w3 w3 m3 m3 m3

Table 2: Preference orderings of men and women

Suppose µ is the outcome of the women-proposing deferred acceptance algorithm for

the preference profile ≻. Let µ′ be the outcome of the fixed-priority TTC mechanism

where the priorities of men are fixed according to their preference orderings in ≻ in

Table 2, and then each woman points to the woman with her favorite man in every

stage of the TTC.

(a) Verify that µ 6= µ′.

(b) Verify that µ′ is not stable by identifying a blocking pair.

(c) Verify that µ′ women-dominates µ.

Answer. This can be verified in a straightforward manner.
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4. Prove that if m and w are matched to each other in the men-proposing and women-

proposing DAA, then they are matched to each other in every stable matching.

Answer. This follows from the fact that a man gets the best possible woman among

all stable matchings in the men-proposing DAA and gets the worst possible woman in

the women-proposing DAA. Suppose m is matched to w′ in some stable matching µ,

where w 6= w′. Then, by construction, w ≻m w′ and w′ ≻ w, a contradiction.

5. A stage in a men-proposing DAA involves proposals from rejected men in the previous

stage and tentative acceptances and rejections by women based on these proposals.

What is the maximum possible number of stages in a DAA with n men and n women.

Answer. Consider a stage t of men-proposing DAA. If man m is rejected for the

(n − 1)-th time, then his next proposal must be accepted. So, every man can be

rejected at most (n− 1) times. In every stage, at least one man is rejected. So, after

(n− 1)2 stages, at least (n− 1) men must be rejected (n− 1) times. Clearly, everyone

will be matched in the next stage. So, the maximum number of stages is (n− 1)2 + 1.

It is possible to construct preference profiles where this bound is achieved. For instance,

with n = 3, it is possible to construct profiles where it takes 5 stages.

6. Let µ and µ′ be two stable matchings. Define µ ∧m µ′ as follows: for every m ∈ M ,

(µ ∧m µ′)(m) := min
≻m

(µ(m), µ′(m)).

Either show that (µ ∧m µ′) = (µ ∨w µ′) or provide a counterexample.

Answer. We will show that µ∧m µ′ is a stable matching - in fact it is equal to µ∨w µ′.

We do that in two steps.

Step 1. First, we show that µ ∧m µ′ is a matching. Suppose not. Then, there is

some w,m,m′ such that min≻m
(µ(m), µ′(m)) = min≻

m
′
(µ(m′), µ′(m′)) = w. This

also implies that there exists some w′ ∈ W such that for every man m′′ ∈ M ,

min≻
m

′′
(µ(m′′), µ′(m′′)) 6= w′. In particular, let µ(m1) = w′ and µ′(m2) = w′. First,

note that m1 6= m2. This is because if m1 = m2, then min≻m1
(µ(m1), µ

′(m1)) =

w′, contradicting our assumption about w′. Next, max≻m1
(w = µ(m1), µ

′(m1)) =

max≻m2
(µ(m2), µ

′(m2) = w) = w. But, then the matching µ ∨m µ′ will assign w to

both m1 and m2, contradicting the fact that it is a matching.

Step 2. Now, we show that µ ∧m µ′ is a stable matching. For this we show that

µ ∧m µ′ = µ ∨w µ′. Pick m ∈ M and let w = min≻m
(µ(m), µ′(m)) = µ(m). We

show that max≻w
(µ−1(w), µ′−1(w)) = m, and this will establish the claim. Suppose
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µ′(m′) = w. Since min≻
m

′
(µ(m′), µ′(m′)) 6= w, we know that w ≻m′ µ(m′). Since µ is

stable, we get that m = µ−1(w) ≻w m′. Hence, max≻w
(µ−1(w), µ′−1(w)) = m.
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