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Econometrica, Vol. 59, No. 4 (July, 1991), 1175-1187 

IMPLEMENTATION OF REDUCED FORM AUCTIONS: 
A GEOMETRIC APPROACH 

BY KIM C. BORDER 

1. INTRODUCTION 

AN AUCTION IS A MECHANISM for allocating a single indivisible object to one of several 
competing bidders. The winner is the bidder who is awarded the object. The rules of the 
auction specify two functions. The first is the probability with which a bidder wins, as a 
function of everyone's bids. The second is the payment each bidder makes to the seller, 
as a function of all the bids and whether or not he wins. For instance, a first-price 
auction awards the object to the highest bidder with probability one (providing there are 
no tie bids), the winner pays his bid, and the losers pay nothing. 

The bidders in an auction differ significantly. These differences are captured by the 
bidder's type. A type may be the bidder's personal valuation of the object for sale, his 
degree of risk aversion, or perhaps his information about the object. (Maskin and Riley 
(1984) discuss a number of different economically meaningful examples of bidder types.) 
From the viewpoint of the seller and the other bidders, each bidder's type is a random 
variable. In this analysis we confine attention to auctions in which the types are 
independently and identically distributed according to a known probability distribution. 
The Revelation Principle asserts that every auction is strategically equivalent to an 
auction in which bidders bid by announcing their type and no bidder has any incentive to 
lie. Such an auction is called an incentive compatible direct auction. We will confine our 
attention to the probability functions for direct auctions, and let the incentive compatibil- 
ity conditions restrict the payment functions. 

Each bidder can compute the probability that he wins, conditional on his own type, by 
averaging over the types of the other bidders. The function relating a bidder's type to his 
probability of winning is the reduced form of the auction. The literature on "optimal" 
auctions usually addresses the problem of maximizing expected revenue for the seller. 
For this purpose, all the relevant information about the probability function of an 
auction is contained in its reduced form. It is the reduced form that determines each 
bidder's behavior and hence the seller's expected revenue. In a symmetric auction each 
bidder's reduced form is identical, so that expected revenue is a functional defined on 
reduced forms, which are functions of one variable, namely, types. This makes the 
seller's problem somewhat tractable. To design an auction, a seller must be able to 
recognize a reduced form and recover the underlying auction. 

Reduced forms satisfy an intuitive feasibility condition. Given a set of types, the 
reduced form tells the probability that a bidder from this set of types wins. This 
probability must be less than or equal to the probability that there exists a bidder from 
the set. Matthews (1984) conjectured that if a function satisfies this feasibility condition 
for all measurable sets, then it is a reduced form. Proposition 3.1 states that this is 
indeed the case. Proposition 3.2 refines Proposition 3.1 by requiring feasibility on a 
smaller family of sets. Maskin and Riley (1984, Theorem 7) gave a special case of 
Proposition 3.2. They showed that if the types are continuously distributed on the unit 
interval, then any increasing step function satisfying the feasibility condition on increas- 
ing intervals is a reduced form. Matthews generalized their results to all increasing 
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1176 KIM C. BORDER 

functions. As Moore (1984) points out, their results are inadequate for the general study 
of optimal auctions. Propositions 3.1 and 3.2 apply to general probability spaces and 
arbitrary measurable functions. 

These propositions are proved by giving a simple geometric description of the set of all 
(implementable) reduced forms. A drawback of this approach is that it is not construc- 
tive. That is, we know which functions are reduced forms, but not which auctions 
generate them. When the set of types is finite, however, this geometric description 
suggests a convenient computational technique (linear programming) for recovering the 
auction underlying a reduced form. This technique can be used to construct approximate 
implementations when the set of types is infinite. 

The next section presents the notation necessary to make the results precise. The 
following section states the propositions characterizing reduced forms. It is followed by 
an example to illustrate the results. The fifth section provides the proofs and the final 
section provides the linear program for approximating the underlying auction. 

2. NOTATION AND BASIC DEFINITIONS 

There is a measurable space (T, 97) of possible types of bidders, and the population 
of N bidders is independently and identically distributed according to the probability 
measure A on T. We will denote a generic element of T by t, and a generic element of 
TN by p (for profile). To avoid some uninteresting cases, we explicitly make the 
following assumption. 

AsSUMPTION: For each t E T, {t} E S7. 

An auction is a measurable function q: TN _* [0, 1]N satisfying for all profiles p E TN, 
N 

(2.1) E qi= (p) < 1. 

The ith component, qi(t1,.. ., tN), is the probability that bidder i wins when each bidder 
j is of the type tj. Inequality (2.1) simply says that the probability that someone wins is 
less than or equal to 1. It may well be strict, for instance if the seller sets a minimum bid. 

Maskin and Riley (1984) show that in the i.i.d. case, a seller need only consider a 
symmetric auction. That is, an auction q: TN -* [0, 1]N satisfying, for all i = 1,..., N, and 
all p E TN, 

(2.2) q'(p) = ql(o-'(p)) 
where o-i: TN -* TN interchanges the first and ith coordinates, i.e., 

CT (tll . . * I tN) = (ti, t2, * * * ti-11 tll ti+11 .. I tN)- 

Let 91 denote the set of all symmetric auctions. 
The class of hierarchical auctions is particularly useful. Let A1, A2,. .., AK be 

pairwise disjoint nonempty subsets of T, and define the hierarchical auction generated by 
A1,**, AK, denoted qA ...-A,, by 

qA #(f Xt) 
n: tn c=Aj) Al 

t 
tif t(eA andVn tn4A1 u ** UA 

0 otherwise. 
That is, there is a hierarchy of types with types in A1 at the top. If there is a bidder 
whose type lies in A1, all bidders with types in A1 tie, that is, they all have an equal 
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FIGURE 1.-The hierarchical auction qAjA2 when N = 2 and T = [0, 1]. 

chance of winning. If no bidder's type lies in A1, then bidders in A2 tie, etc. Clearly, 
hierarchical auctions are symmetric. 

Figure 1 illustrates the hierarchical auction qA,A2 for the case N = 2 and T = [0, 1]. 
Note that each q' vanishes outside of o-V((A1 UA2) x T), and that q1 + q2 is equal to 1 
on 

F= U o&((Al UA2) x T) = ((A1 UA2) x T) U (TX (A1 UA2)), 
i 

and q1 + q 2 vanishes outside F. 
Given an auction, q, each bidder i can compute the probability, Q'(t ), that he wins 

when his type is ti, by 

(2.3) Q'(t) = Nf q1(tl, **,tN) dAN(tl,... It1, ti1,*** tn)* 

Clearly Q': T -4 [0, 1]. Tonelli's theorem implies that it is measurable. 
When the auction q is symmetric, Q'(t) is independent of i for all t E T. In this case, 

dropping the superscript i from Q, we say that Q is the reduced form of q and that q 
implements Q. Thus, call Q implementable if there is some symmetric auction q which 
satisfies (2.3) for each ti E T. Call the reduced form of a hierarchical auction a 
hierarchical reduced form, and let QAI ..AK denote the reduced form of qA- Ak* Let t 
denote the set of all reduced forms of symmetric auctions. 
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1178 KIM C. BORDER 

3. STATEMENT OF RESULTS 

The following propositions characterizing 9 generalize the partial results of Maskin 
and Riley (1984, Theorem 7) and Matthews (1984). 

PROPOSITION 3.1: Let Q: T -4 [0, 1] be measurable. Then Q is implementable by a 
symmetric auction if and only if for each measurable set of types A E 7, the following 
inequality is satisfied: 

(3.1) f Q(t) dA(t) 1 NA(Ac) 

Furthermore, if T is a topological space and A is a regular Borel probability on T, then Y 
may be replaced by either the open subsets or the closed subsets of T. 

Proposition 3.2 follows from Proposition 3.1 roughly because if condition (3.1) is 
violated, it must be violated on a set where Q is large. 

PROPOSITION 3.2: Let Q: T -* [0, 1] and for each a E [0, 1], set 

Ea = {t: Q(t) >a}. 

Then Q is implementable if and only if for each a E [0, 1] 

1 -A(EC) N 

fEa N 

This proposition reduces the problem of deciding the implementability of a function to 
checking a one parameter family of inequalities. 

4. AN EXAMPLE 

To illustrate the propositions, consider the case of two bidders with two equally likely 
types, i.e., N = 2, T = {1, 2}, A({1}) = A({2}) = 1/2. 

In this case, a symmetric auction is defined by the four numbers q(1, 1), q(1, 2), q(2, 1), 
and q(2, 2), where q(i, j) is the probability that bidder 1 wins when his type is i and 
bidder 2's type is j. The symmetry conditions imply that q(1, 1) < 1, q(2,2) < 1, and 
q(1, 2) + q(2, 1) < 1. That is, the set :j of symmetric auctions can be viewed as the set 

[?J ] x [, ] XA cR4, 

with generic element q = (q(1, 1), q(2, 2), q(1, 2), q(2, 1)), where A = {(x1, x2): x1 + x2 < 
1, Xi > 0}. 

The set 9 of reduced forms is the image of -) under the linear mapping q Q 
defined by the implementability conditions 

Q(1) = 1q(1, 1) + 2q(1, 2) 

and 

Q(2) = 'q(2, 1) + 1q(2, 2). 

The set 9 is plotted in Figure 2. Observe that 9 is bounded by lines (hyperplanes, if 
you will) normal to (1, 0), (0, 1), and (1, 1). Further, if Q is nondecreasing, i.e., Q(2) > Q(1), 
then Q lies in the region of 9 bounded by lines normal to (0, 1) and (1, 1). The vectors 
(1, 0), (0, 1), and (1, 1) may be interpreted as the indicator functions of the subsets {1}, {2}, 
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1 Q(2) Increasing Q's 

Q{2} (44)=Q{2}{1} 

\, () = Q{(12} 

,. )(-,-)=~4 4Q(1}(2} 

Q(1) 

o Q{l} 1 

FIGURE 2.-i9 for the case of two equiprobable types. 

and {1,2} of T. The increasing sets are {2} and {1, 2}. The extreme points of Q are the 
hierarchical reduced forms corresponding to hierarchies of singletons. This last property 
is no accident-Lemma 6.1 asserts that this is always true for the finite type case. (Figure 
2 is a little misleading if the types are not equally likely. In that case, the axes must be 
scaled by the probability of each type in order for the slopes to be correct.) 

This example suggests that by embedding 9 in an appropriate vector space, for which 
indicator functions define linear functionals, then Propositions 3.1 and 3.2 become 
statements about the hyperplanes bounding 9. This is indeed the case when `9 is 
embedded in Loo(A). 

5. PROOFS 

We break the proof down into easily digestible lemmas. The first lemma states that the 
probability that a bidder from set A wins, NJAQdA, does not exceed the probability that 
there exists a bidder from A, 1 - A(AC)N. 

Let Kf, g) denote fIf(t)g(t) dA(t), XA denote the indicator function of A, and let 

B(A) = N -lA(Ac) for A E S. 

LEMMA 5.1: For all A E 7, all Q E 9, 

KXAIQ) < B(A). 

PROOF: Let q be a symmetric auction implementing Q. Calculate fAQ dA, by integrat- 
ing any of the qis over the cylinder o-'(A X TN- 1). (See Figure 1 for the case N = 2.) An 
upper bound is given by integrating q' over the cross shaped union of these N cylinders. 
This bound is tight if qi vanishes outside the cylinder o-i(A X TN-1). 
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1180 KIM C. BORDER 

Formally, 

KXA 0) fJAQ(t) dA(t) f 
N_Iql(p) dAN(p). 

By symmetry condition (2.2), 

J ql dkN = ql dkN 
AXTN-1 (A X TN- 1) 

< Jq'd kNI U f(A X TN-1) 

with equality if q' vanishes outside oi(A x TN-1). 
Summing over i yields 

N 

(5.1) N(XA Q)> E _(A XTN-1)q ( ) 

N 

(5.2) f (N-1)q(P) dAN(p) 
o1 U(A X TN 

(5.3) N-1) Eq(p) d AN(p) 
o,a'(A X TN 

(5.4) Nl)1dAN(p) 
JU (A x TN-i) 

(5.5) = 1-A(Ac 
)N 

Inequality (5.4) follows from (2.1) and holds with equality if Eq'= 1 on the "cross" 
Ufo'(A x TN-1). Equation (5.5) is an elementary probability calculation. Thus 
<XA, Q> < (1 - A(Ac)N)/N = B(A). Q.E.D. 

Each <XA, * > defines a function on 9, and according to Lemma 5.1, this function is 
bounded above by B(A). We now show that, in fact, this bound is achieved by a 
hierarchical reduced form. 

LEMMA 5.2: Let Q* be the reduced form of the hierarchical auction qA1 ... AK. For each 
j = 1,. .., K, set Fi =A1 U u U Aj; then for each j, 

<XFJ, Q*> = B(F;). 

Furthermore Q* is a simple function which is constant on each Ai and is zero on (FK)C. 

PROOF: The proof proceeds by straightforward calculation. Set 

N 

ri= U ff&(Fi x TN-1), 
i=1 

i.e., the set of profiles in TN in which at least one bidder has a type in A1 U ... UA. 
Simple calculations reveal that ENY1q!1 AK vanishes outside of TK and is identically 1 
on TK. This can be seen recursively: '1 is the set of profiles for which some bidder has a 
type in A1. If there is exactly one bidder, his q' = 1; if there are two, then they each have 
ql= 1/2, etc., so Eq' = 1 on 17. Now suppose no bidder has type in A1, but some bidder 
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REDUCED FORM AUCTIONS 1181 

has type in A2; then his q' = 1 if he is alone in A2, etc. Thus Eq' = 1 on T2\T1, etc. If 
no bidder's type lies in any Aj, then no one wins. Thus Eq' vanishes outside of TK. See 
Figure 1 for an example. It follows that (5.2) and (5.4) hold with equality for Fi (see the 
proof of Lemma 5.1) and so 

<XFJ, Q*) = B(FJ). 

Clearly Q* is constant on each Ai and vanishes outside their union. In particular, a 
hierarchical reduced form is a simple function. Q.E.D. 

Lemma 5.1 shows that each Q E 9 satisfies the inequalities (3.1). The next lemma 
shows that if a simple function separates Q from 9, then Q violates (3.1) on some set of 
types. 

LEMMA_5.3: Let Q: T -4 [0, 1] be measurable and suppose the simple function Ef_ jaiXA, 
separates Q from 9. That is, for all Q E 9, 

(5.6) K ajXA Q) > KEaJXA, Q) 

Then for some measurable A c T, <XA, > > B(A). 

PROOF: Without loss of generality, take the A1's to be pairwise disjoint and numbered 
so that a1 > a2> .> >aK> 0 > aK+ 1 > ... > aL- (Inequality (5.6) implies that at least 
one aj > 0, since Q > 0 and 0 E 9.) Let Q* be the reduced form of the hierarchical 
auction generated by A1,..., AK. If for any k=1,...,K-1 we have KXAlU... UAk 

Q - Q*) > 0, then we are done, since KXA U UAk Q*) = B(A1 U * UAk) by Lemma 
5.2. So suppose 

(5.7) KXAI U ... U Ak QQ) < O 

for all k = 1, . . ., K- 1. To ease notation, let QJ* = <XAJ, Q*) and Qj = <XAJ Q>. Then 
(5.6) implies 

L 

E aji(j - QJ*) > 0. 
j=1 

Taking the j = 1 term to the right and dividing by a1 > 0 yields 
L a 

(5.8) E (Q j ) > (Q* 1) > ?, 
12a, 

where the second inequality follows from (5.7) for k = 1. If K> 1, then a2> 0, So 

a1/a2> 1, and multiplying the left-hand side of (5.8) by a1/a2 strengthens the inequal- 
ity. Then, taking the j = 2 term to the right yields 

L a 

E-( (- QJ*) > (Q 1) + (Q2* - U2) > ?S 
J=3 a2 

where the second inequality follows from (5.7) for k = 2. Continue in this fashion until 
arriving at 

L aj 
] E =K Ql') > (Q1* c1) + +(QK* K) 
j =K+ IaOK 
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1182 KIM C. BORDER 

where the first inequality follows from aK> 0, aj < 0 for j > K, and QJ = 0 for j > K. 
Thus <XAI U UAK,'Q> > KXAI U .. uAK Q*) =B(A1 U ... UAK), completing the proof 
of the lemma. Q.E.D. 

To complete the proof of Proposition 3.1, we must show that if Q X ', then it is 
separated from - by a simple function. This will be accomplished using a separating 
hyperplane argument, after establishing some topological preliminaries. The set ` of 
implementable functions is clearly convex. We want to embed it as a compact set in an 
appropriate linear space whose dual contains the simple functions as a dense set. 
Matthews (1984) embeds ` in the space of measures on T, endowed with the topology 
of weak convergence of measures. This is the wrong space for the separating hyperplane 
argument. Instead, treat ` as a subset of LX(A), the set of A-essentially bounded 
measurable functions on T. Embed the set of symmetric auctions 9, in LOJ(AN)N. For 
brevity denote L (AN)N by LN and Lp(A) by Lp. 

Since Loo is the dual of L1 under the duality (f, g> = JTf(t)g(t) dA(t), topologize L4, 
with its weak*, or o-(Lx, L1), topology. Similarly give L N its o-(L N, LN) topology. 

Bear in mind that strictly speaking, an element of Lx, is not a measurable function, but 
an equivalence class of measurable functions, where two functions are equivalent if they 
differ only on a set of A-measure zero. This means that if we show that QEE 1CLc, we 
can only conclude that there is a reduced form agreeing with Q A-almost everywhere. To 
show that Q is actually implementable requires an additional argument. 

Equation (2.3) defines a function A: -? -- Q mapping each q to its reduced form. 
The next lemma describes the main topological results. 

LEMMA 5.4: 

(5.9) 91 is cr(LN, Lj ) compact. 

(5.10) A: _9 -0) is cr(LxN, LjN), cr(Lx,., L1) continuous. 

(5.11) 9 is o-(Lc,., L1) compact. 

PROOF: Since `1 is a subset of the unit ball of LN under the norm given by 
lIqll = max,=1 NlIq'l., by the Banach-Alaoglu theorem, for (5.9) we need only prove 
that 'i is o-(LX , L ) closed. Let q, be a net in `1 converging in the r(L o, LA ) 
topology to q. First we verify that q'(p) = q1(o'(p)). Observe that a-': TN TN is 
measurable, a' = (') 1, and ANo ji =AN. Since each qz, E P1, for any fE Li , we have 

fNf (p)qV(p) dA N(p) = f f(p)q1(o-'(p)) dAN(p) 

= fTNf(c '('7)'q(7) dA N(w). 

(The first equality follows from (2.2) and the second equality is just the transformation of 
variables Tr = C'(p).) Taking limits on each side yields 

N Tf(p) q'(p) dAN(p) = 
f 

f 
('(wrr))q1(wr) dAN(wr). 

Transforming variables on the right-hand side, we get 

N 

f (p)q'(p) dAN(p) = f f(p)q1(o (p)) dAN(p). 

Since f is arbitrary, conclude that q' = q a o C,'. Similar arguments show that 0 < Eq' < 1, 
and so q EE-1. This completes the proof of (5.9). 

This content downloaded from 202.54.102.201 on Mon, 7 Oct 2013 02:39:23 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


REDUCED FORM AUCrIONS 1183 

To check continuity of A, let qv -* q in the o-(L Nf, L1N) topology. Let f e L1(A) and 
define L1(AN) by f(t1, . . ., tN) =f(t1). Then 

(Aq,,f) = f Nf(p)q'(p) dAN(p). 

Since q, -* q, the right-hand side converges to ffq dAN = (Aq, f ). Since f is arbitrary, 
A qV - A q in the o- (Lo,, L 1) topology, proving (5. 10). 

This shows that 9 is compact, since continuous images of compact sets are compact. 
Q.E.D. 

PROOF OF PROPOSITION 3.1: Lemma 5.1 shows that the condition (3.1) is necessary for 
implementability. To see the converse, suppose Q 4 Q. Since 9 is o(L,,, L1) compact 
and convex, a separating hyperplane theorem implies that there exists a nonzero fe Ll 
satisfying <f, Q) > max{(f, Q): Q E Q}. Since simple functions are norm dense in L1, 
we may take f to be simple. By Lemma 5.3 then, <XA, Q> > B(A) for some A e Y7, 
violating the feasibility inequality (3.1). 

If A is regular, then the indicator function XA can be replaced by the indicator of 
either an open or closed set without disturbing the strictness of the inequality. 

So far, since L. identifies functions differing only on sets of measure zero, all we have 
proven is that if Q satisfies condition (3.1) for all A E 7, then there is a symmetric 
auction q* whose reduced form Q* agrees with Q A-almost everywhere. The following 
argument shows that we can modify q* on a set of AN_measure zero to implement Q 
itself. 

First note that each hierarchical auction q(t, is measurable, since singletons are 
measurable by assumption. Let A* = {t: Q*(t) Q(t)}, the negligible set of problem 
points. If t eA*, then A({t}) = 0, and 

(5.12) I- ({t)(t, t2, * ,tN) dA (t2, *,tN) =1 

since = 1, except when t occurs in {t2,..., tN}, which happens with probability 
1 - A({t}c)N- 1 = o 

Now define a new function ql: TN ) [0,1] by 

(5.13) q (tl,. * * tN) = ( (l)qti(tl* 
.. I tN) if (tl, . ,tN) E-A* X (T\A*) 

0 otherwise. 
This function ql is measurable, and it follows from (5.12) that for every t eA*, 

(5-.14) TN- Iq{t)(t, t2l * * *, tN) dA (t2, 
.. 
*I* tN) = Q(t). 

Next define ql: TN *[0,1] by 

(5.15) q1(t1,...tN)q= 
{1 

(t1l.. 
, 

tN) if {t1,.. ., tN} nA* = 0, 

q1 (tl, ..., tN) if {tl,. *,tN} nA* ? 0. 

Then, for all t E T, 

(5.16) JTNl(t t2 tN) d (t2, * * tN) = Q(t) 

To see this, first note that if t OA*, then ql(t, t2, .. ., tN) agrees with q*l(t, t2,..., tN) 
unless some t2,... , tN belongs to A*, a AN-1-measure zero event. Since q* implements 
Q* and Q* agrees with Q outside A*, (5.16) is satisfied for t 4A*. If t eA*, then 
equation (5.14) implies (5.16). 
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1184 KIM C. BORDER 

Finally, we show that setting q' = qlo o i yields a symmetric auction q: TN -* [0, 1]N 
implementing Q. Clearly, q is symmetric, and by (5.16) it implements Q. It remains to 
show that q satisfies the feasibility condition (2.1). 

If {tl, .. ., tN} nlA* = 0, then by (5.15) EN= lq(t1, ... , tN) = ENl q*i(tl ... , tN) < 1, 
since q* is a symmetric auction. If {tl,..., tN) nlA* ? 0, there are two cases. If more 
than one of tl, ..., tN belongs to A*, then by (5.13) and (5.15), q1(tl, ... , tN) = 0, and 
hence each q'(t1, .. ., tN) = 0. If exactly one of t19 ..., tN belongs to A*, say tk EA*, then 
again by (5.13) and (5.15), qk(tl, ... . tN) = Q(tk) 1 1 and for i # k, qi(t1, ..., tN) = O. 

This shows that the modified auction q is feasible, and the proof is finally complete. 
Q.E.D. 

We prove Proposition 3.2 for simple functions in the next lemma. Then a limiting 
argument proves the general case. 

LEMMA 5.5: Let Q: T - [0, 1] be a simple function, Q = EK lajXA , where the Ai's are 
numbered so that a1 > a2> * >atK >O0 and the A,'s partition T. Set Ek = U jk= A1 
k = 1, ... , K. 

If for each k = 1, ..., K, 

(5.17) f QdA <B(Ek); 
Ek 

then Q is implementable. 

PROOF: Proposition 3.1, shows we need only prove that for any measurable A C T, 
fAQdA < B(A). Define f: [0,1] -* [0,1] by f(x) = (1 - (1 - x)N)/N. Then f is a mono- 
tone and concave, and B(A) =f(A(A)). Define the continuous piecewise linear function 
g: [0, 1] -* [0,1] by the conditions g(O) = 0 and g has slope ak on (A(Ekl),9A(Ek)), 
where we set Eo = 0. Since a1 > a2 > ... > adK, g is concave. Note that 

k 

g(A(Ek))= E jA(Aj) QdA, 
j=l Ek 

so by the concavity of f and (5.17), g < f on [0, 1]. Let A c T be an arbitrary measurable 
set of types and define the continuous piecewise linear function h: [0, A(A)] -* [0, 1] by 
the conditions h(O) = 0 and h has slope ak on (A(Ek-l nA), A(Ek nA)). See Figure 3. 
Then h < g on [0, A(A)]. In particular, h(A(A)) 6 f(A(A)). But h(A(A)) is by construc- 
tion EKlakA(Ak nA), which is just JAQdA. 

Thus JAQ dA < f(A(A)) = B(A), proving the lemma. Q.E.D. 

PROOF OF PROPOSITION 3.2: Proposition 3.1 implies that the inequalities (3.1) are 
necessary, so it suffices to prove sufficiency. Let Q: T -* [0,1] satisfy JE QdA < B(Ea) for 
each a E [0,1]. Construct a sequence of simple functions Q, converging uniformly and 
monotonely to Q from below, by setting QJ(t) = k/2n on {t: (k/2n) < Q(t) < 

(k + 1)/2 }. Then fEkf2lQn dA s fEk/2f QdA < B(Ek /2n) where the first inequality fol- 

lows from Qn < Q and the second by hypothesis. By Lemma 5.5, Qn is implementable. 
The Lebesgue dominated convergence theorem implies that Qn converges in the 
o,(L., L1) topology to Q. By Lemma 5.4, Q is o,(L., L1)-closed, so Q is implementable. 

Q.E.D. 

6. CONSTRUCTING AN IMPLEMENTATION 

Propositions 3.1 and 3.2 tell us when a function Q is implementable. They do not 
however tell us which auction implements it. A "practical" approach is to start by 
approximating Q from below by a simple function, Q = ETL lajXAj (The proof of 
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FIGURE 3.-Proof of Lemma 5.5. 

Proposition 3.2 describes how to do this.) Since Q 6 Q, Proposition 3.1 guarantees that 
Q is implementable. 

Consider the finite type space T= {1, ..., m} with probability measure A defined by 

A({j}) = A(A1). Note that if T is already finite, this step is unnecessary. Let Q denote the 
reduced forms on T. Since Q = EmL ajXA is a reduced form, (a, ... ,am) e . If q 
implements (a1,... , am), then q = EqJXA. implements Q. We have thus reduced the 
problem of constructing an approximate implementation to the problem of constructing 
an implementation on a finite set of types. 

Note that if T has cardinality m, but A assigns probability zero to some types, then 
L(A) is not isomorphic to Rm, because in L. we identify functions differing only on sets 
of measure zero. However, L. is isomorphic to Rn c Rm, where n is the number of types 
with positive A-measure. 

We now prove a lemma about the structure of ? for finite sets of types. Recall that x 
is an extreme point of a convex set C if x is not a proper convex combination of two 
distinct points of C; that is, if there do not exist y, z E C with y ? z and 0 <a < 1 
satisfying x = ay + (1 - a)z. For finite T, ? is the convex hull of its extreme points. (In 
general, the Krein-Milman theorem and Lemma 5.4 tell us that ? is the a(L., L1)- 
closure of the convex hull of its extreme points.) 

Call a hierarchical auction qA ...AK singular if each Aj is a singleton. 

LEMMA 6.1: Suppose the set of types T is finite. Then Q is an extreme point of Qc L. if 
and only if Q is either the reduced form of a singular hierarchical auction or Q = 0. 

PROOF: Suppose first that Q is the reduced form of the singular hierarchical auction 

q{tl) ... {tK). Set Fi = .tl. ... , t1} for each j = 1, .. ., K. By Lemma 5.2, E'klQ(tk)A({tk}) = 

B(F') for i = 1, . . ., K, and Q(t) = 0 for t 4 FK. Suppose that Q = aQ1 + (1 - a)Q2 
where Q1, Q2 E Q, and 0 <a < 1. By Proposition 3.1, since Q1 and Q2 are reduced 
forms, Ek= lQi(tk)A(tk) < B(F') for i = 1, 2 and j = 1 ... ., K. This implies for j = 1, that 

Q1(t1)A({tj)) = Q2(tj)A({tj) = Q(t1)A({tj)) =B({tj). 

Also, considering j = 2, 

Q1(t1)A({tj)) + Ql(t2)A({t2)) = Q2(t1)A({tl)) + Q2(t2)A({t2)) 

= B(ft, t2)) 9 
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so it follows that 

Q1(t2)A({t2)) = Q2(t2)A({t2)) = Q(t2)A({t2)) =B({t1,t2))-B({tj). 

Continuing in this fashion yields 

Q1(t)A(t) = Q2(t)A(t) = Q(t)A(t) 

for all t E FK. But Qi > 0, so for t t F , 

Q1(t)A(t) = Q2(t)A(t) = Q(t) = 0. 

Thus Q1 = Q2 = Q A-almost everywhere, i.e., Q1 = Q2 = Q in L., so Q is an extreme 
point of ?. 

For the converse, let ? denote the convex hull of the set of singular hierarchical 
reduced forms and zero. Then 9 is compact and convex. Suppose Q > 0 and Q t S. 
Then Q can be strictly separated from ? by some vector f E Rm. That is, f * Q >f f Q' 
for all Q' in 9?. Note that f defines a simpleAfunction on T and that the same argument 
used to prove Lemma 5.3 shows that Q t S?. This completes the proof of the lemma. 

Q.E.D. 

If T has cardinality K, then there are M = EmK=1(mr singular hierarchies. 
Enumerate their reduced forms, Q1,...,Qm. By Lemma 6.1, since QE 9, it can be 
written as a convex combination of 0 and Q1, . . ., Q m. Given the representation Q = 
Y2f3Q', if q' is the hierarchical auction implementing Q', then q = Yflq' implements Q. 
The problem is reduced to writing Q as a convex combination of hierarchical auctions 
and 0, all viewed as points in RK. While I do not know a closed form solution to this 
problem,2 the following linear program is equivalent: 

K 

minimize L d j 
,d j=1 

2Chen (1986) offered a closed form construction to implement a simple reduced form. This 
construction is flawed, as the following example shows. Let T = [0, 1], A be Lebesgue measure (the 
uniform distribution), and N = 2. Let E1 = [0, 1/3] and E2 = (1/3, 1]. 

Define q to be the auction generated by the hierarchy E1E2. That is, 

(1 if t1 E El and t2 E E21 

ql(tl,t) O 1/2 if tl,t2 El or tl,t2eE2, 

t0 if t I eE2 and t2 eEl. 

Its reduced form Q is given by 

Q(\f /6 if t eEl, 
1/3 if t eE2. 

By construction, Q is implementable and so satisfies (3.1). Using Chen's notation, we set 

Ej* = El and G = E2. Then his construction yields 

(1/2 if t IE El and t2 E E2, 

l3/2 If tl, t2 E El, 
qlt 'O11/5 if tl It2 EEE2, 

3/5 if t IE E2 and t2 E El. 

This is clearly not feasible. The error in the proof occurs in Chen's equation (6) where the 
computation fA QdA = ai is made. The correct computation is fA QdA = a,A(A,). 
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subject to 
M 

E,13,Ql + d = Q, 
1=1 

M 

E331 < 1, 
1=1 

d>_O 
/>?0. 

A feasible initial point is /O = 0 E RM, d - Q E RK. Each optimum satisfies d = 0, and 
Q = E1 43,Q1. Furthermore, many algorithms, including the simplex algorithm, compute 
a basic solution, that is, a solution in which all but at most (K + 1) /,1's are zero.3 The 
practicality of this method is limited, as M grows very rapidly with K. 

Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, 
CA 91125, U.S.A. 

Manuscript received February, 1989; final revision received June, 1990. 
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