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 Econometrica, Vol. 56, No. 6 (November, 1988), 1247-1257

 FULL EXTRACTION OF THE SURPLUS IN BAYESIAN AND
 DOMINANT STRATEGY AUCTIONS

 BY JACQUES CRtMER AND RICHARD P. MCLEAN1

 We consider auctions for a single indivisible object, in the case where the bidders have
 information about each other which is not available to the seller. We show that the seller
 can use this information to his own benefit, and we completely characterize the environ-
 ments in which a well chosen auction gives him the same expected payoff as that obtainable
 were he able to sell the object with full information about each bidder's willingness to pay.
 We provide this characterization for auctions in which the bidders have dominant strate-
 gies, and for those where the relevant equilibrium concept is Bayesian Nash. In both
 set-ups, the existence of these auctions hinges on the possibility of constructing lotteries
 with the correct properties.

 KEywoRDs: Auctions, optimal auctions, information structures, dominant strategy
 equilibrium, Bayesian Nash equilibrium.

 1. INTRODUCTION

 WE CONSIDER the situation in which an agent, the seller, possesses one indivisible
 unit of a good to which he attaches no value. But the good has value to a number
 of potential buyers, and its transfer to one of them would increase social welfare.
 In particular, the transfer to the buyer with the highest valuation maximizes
 social welfare. In this paper, we completely characterize environments in which
 the seller can design an auction that will enable him to capture for himself the
 full increase in social welfare induced by the transfer of the good to the bidder
 with the highest willingness to pay.

 If the seller had full information about the reservation prices of potential
 buyers, his optimal selling strategy would be very simple. He would announce a
 price equal or very close to the highest reservation value. The optimal strategy for
 the bidder with the highest evaluation would be to accept the offer. (Note that we
 are treating a situation in which the seller can commit himself to a price.) As a
 result of the exchange, the utility of the seller increases by the full amount of the
 increase in social welfare, and he has been able to fully extract the surplus.

 In many circumstances, however, a seller has only imperfect knowledge of the
 buyers' willingnesses to pay. In this case, he must find some mechanism, or
 auction, which will enable him to maximize his benefit from the sale of the object.
 The auction literature starts with this observation and shows how the seller can,
 by an astute choice of auction, extract the largest possible fraction of the surplus.
 In general, the literature has shown that this proportion is strictly less than one.

 In some circumstances, the bidders will have information about each other
 which is not available to the seller. For instance, in auctions for petroleum
 drilling rights, bidders know the results of geological tests which they have

 IWe thank M. Whinston for several helpful discussions in the early stages of this research and
 David Kreps and two referees for their helpful comments. Cremer gratefully acknowledges the
 support from NSF Grant SES 8408942.
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 conducted. The results of the tests of the various bidders are correlated, and
 therefore they have a priori some information about each other's willingness to
 pay. In Cremer and McLean (1985), we pointed out that the auctioneer could use
 his knowledge of the fact that the bidders have information about each other to
 his own advantage. In particular, we produced sufficient conditions under which
 the auctioneer is able to extract the full surplus.

 In the present paper, we completely characterize the information structures
 which will guarantee that the seller can fully extract the surplus, i.e. that he can
 do as well as he could with full information. We do this under two alternative
 assumptions. First, we will study auctions which admit a dominant strategy for
 the bidders. Then we will turn our attention to auctions in which each bidder
 submits his bid in ignorance of the bids of others. In this case, the relevant
 equilibrium concept is Bayesian-Nash.

 Not surprisingly, the requirements for full extraction of the surplus are stricter
 in the case of dominant strategy auctions than in the case of Bayesian auctions.
 To the best of our knowledge, we provide the first examples of environments
 where Bayesian and dominant strategy auctions yield different payoffs when the
 bidders are risk neutral.

 In both set-ups, the possibility of extracting the full surplus hinges on the
 construction of lotteries with specific properties. These lotteries consist of pay-
 ments by a bidder to the seller, conditional on the announcements of other

 bidders. We will always consider auctions in which the buyers reveal their types
 to the seller. In equilibrium, these announcements will reveal the bidders' true
 characteristics so we can consider these lotteries to be conditional on the actual
 types of other bidders.

 A dominant strategy auction must be, more or less, a Vickrey auction to which
 is appended for each bidder a payment (possibly negative) which is a function
 only of the bids of others.2 In a Vickrey auction, a bidder never pays more for an
 object than it is worth to him. Hence, whatever his type, he derives a nonnegative
 gain in utility, measurable in monetary units, from participation in this Vickrey
 auction. Ex ante, his type is known to the bidder. He will participate in the
 auction if and only if the expected gain in utility from the Vickrey auction is
 greater than or equal to the expected cost to him of the lottery, where the
 expectation is computed according to the probability distribution of the val-
 uations of others, conditional on his own type. The auctioneer will extract the full
 surplus if these expected values are equal for all possible types of every bidder.
 Our first theorem characterizes those information structures for which such
 lotteries exist.

 Hence, to extract the surplus with a dominant strategy auction, the seller must
 construct one lottery per buyer whose outcomes are conditional on the an-

 2 This statement would be exactly true if the set of possible valuations of the object by the bidders
 were a continuum. Then the auction is a public good problem where the public decision space is the

 subset { p I E 17 Pi < 1} of RA , where pi is interpreted as the probability that agent i obtains the
 object. Then the characterization results of Green and Laffont (1977) and Holmstr6m (1979) carry
 over. The Vickrey auction corresponds to the pivotal mechanism.
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 nounced valuations of the others. We emphasize that the lottery for bidder i is
 independent of i's type. The problem to be solved is easier in the case of

 Bayesian-Nash auctions. There, the seller can construct one lottery for each type
 of each buyer. Each lottery has an expected value of zero if the bidder is of the
 type by which the lottery is indexed. Otherwise, this expected value is negative
 and can be made as negative as we wish. This assumes, of course, that the
 probability distribution of the types of other bidders varies enough when one's
 own type changes. Then, the auction proceeds as follows: each bidder announces
 his type and the winner is made to pay an amount equal to his announced
 valuation of the object. If we stopped here, the bidder would, in general, lie.
 However, we can add to this the lottery corresponding to his type. Then, the
 expected value of lying will become negative, and all the surplus can be extracted.
 Theorem 2 characterizes information structures for which this is possible.

 More precise interpretations are provided after the statement of each theorem
 in Section 2. An example is discussed in detail in Appendix A, and the reader
 may wish to examine it along with the discussion of Section 2. Our main results
 are presented in terms of discrete probability spaces. In Appendix B, we discuss
 the extension to the case of distributions with infinite support. Finally, Section 3
 contains some concluding remarks.

 The results answer a question originally posed by Myerson (1981). Partial
 answers have been provided by Makin and Riley (1980) and ourselves (1985).
 Conditions similar to those of our Theorem 2 have independently been used by
 Riordan and Sappington (1985). The work of d'Aspremont, Cremer, and
 Gerard-Varet (1987) suggests that these conditions might eventually play an
 important role in the theory of mechanism design.

 2. THE MODEL

 Throughout this paper, the bidders are indexed by the set N = {1, 2, .. ., n}.
 The "characteristic" of bidder i takes values in a set Mi = { 1,..., mi.}. We will
 call M the set Mlx xMn and M_i the set MlxM2x ..MI,xml+
 x ... Mn. To each characteristic si E Mi, there corresponds a willingness to pay
 wi(si) for agent i. The function wi: Ml-- R + will be called an individual
 valuation function for agent i. In the sequel, Mi will be fixed but w' will vary.
 Let w = (w',..., wn). The function w: M -, Rn will be called a valuation
 function. All bidders are assumed to be risk neutral. If agent i with characteristic
 Si makes an expected payment of xi when the probability that he obtains the
 object is pi, his expected payoff is piw'(si) - xi. As we have shown in Cremer
 and McLean (1985), the theory can be expanded to a more complex setting
 where, in particular, an agent's willingness to pay is a function not only of his
 own characteristic but also of the (for him, unobserved) characteristics of others.
 In this framework, Theorems 1 and 2 would still hold in a fundamentally
 unaltered form. Taking this into account would strengthen our statements of
 sufficiency (our conditions allow full extraction of the surplus in a wider class of
 auctions), but weaken our statements of necessity.
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 Before the auction begins, the seller has a probability distribution 'I over the

 elements of M, which are the states of nature for our problem. Agent i knows si,
 and we assume that his subjective probability distribution over Mi given si is
 consistent with iT, i.e. that it is iT(s i1si), the same distribution that the seller
 would have were he able to observe si. Without loss of generality, we can assume

 that the marginal probability 7T(si) = _i M_7(s_, Si) is positive. (There is
 some abuse of notation in using the same symbol iT for probability distributions
 over different spaces, but this will lead to no confusion.)

 We call a pair (M, qr) an information structure. A combination (M, 'I, w) of an

 information structure and a valuation function defines an auction problem. Our
 task is to find necessary and sufficient conditions on information structures

 (M, iT) to ensure that, for any associated problem (M, iT, w), the seller can find

 an auction that will extract the full surplus.

 We invoke the revelation principle and limit ourselves to auctions that induce

 the bidders to truthfully reveal their characteristics. Thus, an auction is con-
 ducted in the following way: the auctioneer asks each bidder i to submit an
 element si of M1. If s = ( ,S) E M is the vector of announced characteris-

 tics, each bidder pays an amount xi(s) to participate in a lottery in which he
 wins the object with probability pi(s). Formally we have the following definition:

 DEFINITION: An auction is a collection { Pi, xi }i E N where xi: M -1 R and
 pi: M - R such that pi(s) 2 0 for all i and s and EliG Npi(S) < 1 for all s.

 If (M, iT, w) is an auction problem and { pi, xi }i E N an auction, the utility of
 agent i when he announces ti e Mi and the other agents have announced
 s E M-i is pi(s1i, t1)w'(si) - xi(s-i, ti). The auction { Pi, x1 }= - N is individu-
 ally rational for the problem (M, T, w) if for each i E N:

 E v7(S_i1si)[pi(si, s)wI'(si) - xi(si, S)I >0 , Vsi GE Mi.
 s_iem-i

 The left-hand side of the inequality is the expected payoff to agent i from

 participating in the auction when he is of type si, given that all bidders truthfully
 reveal their characteristics. (Our results would hold, under the appropriate

 definitions, if the right-hand side were replaced by c'(si), i.e. if there were a cost
 to participating in the auction dependent perhaps on the type of the agent.)

 We will consider two types of auctions. An auction which satisfies the individ-

 ual rationality constraint is a Bayesian auction for the problem (M, qr, w) if it
 satisfies the Bayesian incentive compatibility constraints:

 E "(S-iisi)[ pi (S-i, Si) w(si)- xi (S-i, SA)
 s_iE=M-i

 > ( I (s-ilsi) [ pi (s-i, ti) w (si)- xis)i, t]
 ssiem-i

 for all i E N, and all si, ti E Mi.
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 FULL EXTRACTION OF THE SURPLUS 1251

 An auction which satisfies the individual rationality constraint is a dominant

 strategy auction for the problem (M, qr, w) if it satisfies the dominant strategy

 incentive compatibility constraints:

 pi(s-i, s)w'(S) - xi(s-i, si) ?pi(s i, ti)wI'(si) - xi(s1i, ti)

 for all ie N, all si, t1e Mi, and all s_ - M_i.

 For any auction {piXi}1 -N' the seller's payoff (i.e. expected revenue) is
 Fs MT(S)[Yi - NXi(S)]. An auction extracts the full surplus for the problem
 (M, iT, w), if the payoff to the seller is equal to ES E M{ 7T(s)[max N wl(s)]}. We
 will say that an information structure (M, 7T) guarantees full extraction of the

 surplus by a Bayesian (respectively dominant strategy) auction if, for any

 problem (M, r, w), there exists a Bayesian (respectively dominant strategy)

 auction that extracts the full surplus.

 The game associated with an optimal auction may have several equilibria, at

 least one of which corresponds to full extraction of the surplus. These equilibria

 are focal, because they ask bidders to reveal their true valuations. (For the finite

 type case, techniques similar to those of Maskin and Riley (1980) may allow the

 construction of auctions with only one equilibrium, the "good one." Whether this

 extends to the case of infinitely many types is an open question.)

 The following lemma (whose proof is straightforward) is essential for our

 analysis.

 LEMMA 1: If {p1,x1} E N is an auction which satisfies the individual rationality
 constraints for the problem (M, iT, w), it extracts the full surplus if and only if: (a)

 the individual rationality constraints hold as equalities for all i and si and (b)
 whenever iT(s) > ? li1NPi(s) is equal to 1 if max IN[wi(s)I> O and p1(s) is

 equal to O if wJ(s.) < maxi = N [WI(Si)].

 We can now turn to the first of our characterization theorems.

 THEOREM 1: An information structure (M, iT) guarantees full extraction of the
 surplus by a dominant strategy auction if and only if for all i E N, there do not exist

 { P1(si)s E Ml,' not all equal to zero, such that:

 , Pi1(si) (S-isii) = 0 for all s EM__
 si E Ml

 This is the condition which we introduced in Cremer and McLean (1985). It

 states that for any i, the matrix Fi whose rows are indexed by the elements of Mi,
 whose columns are indexed by the elements of M_i, and whose generic element
 is vI(s_ilsi), is of rank mi. The form of the condition used in Theorem 1 is
 intended to make comparison with Theorem 2 easier.
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 Interpretation of Theorem 1

 This condition on the information structure is a spanning condition. It enables

 the auctioneer to construct a lottery of the type discussed in the introduction: for

 any i, its expected value to bidder i, whatever his type si, is equal to (- 1) times
 the expected surplus, hi(si), from participation in a Vickrey auction arbitrarily
 chosen by the seller. A lottery for bidder i is a function Li from M_i into R,
 which assigns a payment by i to each (n - 1)-tuple of announcements by the

 other bidders. Hence, we need to build a lottery Li whose expected value for each
 type s of i, V(LilSi) = i), is equal to -hi(si). But if the
 condition of Theorem 1 does not hold, we have Eipi(si)Vi(Lilsi) = 0, and hence
 this lottery can be constructed only for Vickrey auctions such that Eipi(si)hi(si)
 is equal to zero, and therefore full extraction of the surplus is not guaranteed.

 PROOF OF THE IF PART OF THEOREM 1: Let { Pi, x }i E N be a Vickrey, or
 second price, auction (there could be several depending on the manner in which
 the object is allocated when several bidders have the same willingness to pay). Let

 hi(si) be equal to _s EM_ T(Silsi)[p7(s)w'(si) - x*(s)]. Thus, the nonnegative
 number hi(si) is the true expected benefit to agent i from participating in the
 auction when he is of type si.

 Because the matrix ri is of rank mi, there exists a family {gi(S-)}5_ cM
 such that Es, E M_,'(s-i1si)gi(s-i) = hi(si). Let x'(s) = x*(s) + gi(s-i). It is
 easy to check that { Pi*, x}i N is a dominant strategy auction and, by its
 definition, that E 7T(s1i1s5)[p*(s)w'(si)-x '(s)] = 0 for all i and all si. It
 follows from Lemma 1 that {pi*, x }i N extracts the full surplus.

 PROOF OF THE ONLY IF PART OF THEOREM 1: Assume that the information

 structure (M, 7T) guarantees full extraction of the surplus by a dominant strategy
 auction. Choose any i E N, and let wJ (s1) = 0 for all j * i and all s E M1 and

 w'(si) > 0 for all si e Mi. Let { Pi, x1I E N be a dominant strategy auction that
 extracts the full surplus. According to Lemma 1, it must satisfy:

 (1) pi(s) = 1 for all s C M such that so(s) > 0,

 (2) w'(si) = E g(si1si)xi(si, sJ) for all si E M.
 s-ieM_j

 By incentive compatibility, there must exist a family { hi (s -i) E M_, such that:

 (3) T(s-ilsi)xi(s-i, si) = 7(s-i1si)hi(s-i).

 Combining equations (2) and (3) we obtain: Es i e M i(S-si)hi(s-i) = W (Si).
 This must be true for all families of positive w'(s1). Hence R0 ++ is a subset of the

 image of ri. Because R i contains a basis for R'i, we conclude that ri must be
 of rank mi and the result is proved.

 THEOREM 2: An information structure (M, 7T) guarantees full extraction of the

 surplus by a Bayesian auction if and only if for all i e N, there does not exist
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 FULL EXTRACTION OF THE SURPLUS 1253

 s E Mi and a family { pi(ti)}E Mt\st such that 3

 (a) Pi (ti) 2 0 for all ti GM\Si\

 and

 (b) 7(s-ilsi) = E pi(ti),r(s1ilti), for alls_i E M_i.
 t *sj

 Interpretation of Theorem 2

 The condition of Theorem 2 states that the probability distributions on M_

 associated with each type in Mi are not too positively correlated. (This is strictly
 a property of conditional distributions: it does not imply that when the utility of
 one agent increases, the utility of others also increases.) Hence, there is enough
 leeway to build the lotteries, discussed in the introduction, whose expected values
 are zero conditional'on one's true type, and negative conditional on other types.

 Indeed, suppose that (a) and (b) in Theorem 2 do not hold. Then for some si, we

 have (s-ilsi) = Etl +sp(tj)T(s-i ti) with p(ti) > 0 for all ti E Mi\si. Then, for
 any lottery whose expected value is zero conditional on si, it cannot be true that
 for all ti * si the lottery has a negative expected value when conditioned on ti.

 PROOF OF THE IF PART OF THEOREM 2: Assume that for any i and for any

 si E Mi, there is no family { pi(ti)}t M/\s- which satisfies conditions (a) and (b) of
 the theorem. By Farkas' Lemma (see, for instance, Mangasarian (1969)), there

 exists, for each i, a family { g1(s)}js .M such that ES i7T(s_i1si)9i(s_i, si) is
 positive and E_i 7(s-iti)gj(s-i, si) is nonpositive for all ti 0 si. Let E be equal to
 Es- (s-iIsi)gi(s-, si) and let hi(s) be gi(s) - c. We obtain:

 ?7r(sIjsj)hi(s-j, si) = 0

 and

 7(s-ijti)hi(s-i, si) < 0 for all ti A si.

 Let { pi }i N satisfy the conditions of Lemma 1 and, for all i e N and for all
 s e M, let xi(s)= Y M2 -M_ I(t Isi)pi(t i,Si)w(s) - yi(s))hi(s) for some col-
 lection { yi(si)}5 EM- The auction { p , xi i - N satisfies the condition of Lemma
 1, and hence extracts the full surplus. Furthermore, it is easy to check that the

 definition of xi implies that E,_vr(s_ijsi)[pi(s-i, ti)w'(si) - xi(s-i, ti)] is equal
 to zero if ti is equal to si and otherwise can be made arbitrarily small by
 choosing yi(si) sufficiently large. The incentive compatibility constraint is then
 met and the result is proved.

 3 This is very close in spirit to condition B in d'Aspremont and Gerard-Varet (1982). See
 d'Aspremont et al. (1987) for more details.
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 PROOF OF THE ONLY IF PART OF THEOREM 2: We assume that for some i E N,

 there exist an Si E Mi and a family { pi(ti)}t E MA\s such that (a) pi(ti) > 0 for all
 ti E Mi\si and (b) T(s-is1) = Si t Spi(ti)'IT(S-i Iti)V - E M-.

 We now choose w with the following properties: wi(s1) < w(s1) < w(t1) for

 all j#i, all sj E Mj and all ti E M1\sj. We will assume that a Bayesian auction
 { pi, X i e N exists which fully extracts the surplus for the problem { M, ,, w}
 and show that this leads to a contradiction. We would have, by Lemma 1:

 (4) p(s) = 1 for all s E M such that v7(s) > 0,

 (5) ZT(S-iti)[wI'(ti) - Xi(S-i, ti)] = 0 for all ti E m.
 S-i

 By Bayesian incentive compatibility we also obtain:

 (6) IT(s It1)[wi(ti) - xi(s1, sj)] < 0 for all ti si
 s j

 Because w'(s1) is less than wi(t1) for all t., and ,T(s -Iti) is positive for at least
 one s_ e M_ we have:

 (7) 7T(S-iIti)[wI'(s) - Xi(S-, S.)] < 0 for all t1 + s

 Multiplying both sides of (7) by pi(ti) and summing over all ti in Mi\si we
 obtain:

 (8) T(S-ISA)[w '(Si) - Xi(S-I, SA)] < 0

 which contradicts Lemma 1, and the result is proved.

 3. CONCLUDING REMARKS

 The conditions of Theorems 1 and 2 will be met by "nearly all" information
 structures. In "nearly all" auctions, the seller should be able to extract the full
 surplus, which implies that asymmetry of information between buyers and sellers
 should be of no practical importance. Economic intuition and informal evidence
 (we know of no way to test such a proposition) suggest that this result is
 counterfactual, and several explanations can be suggested.

 First, the assumption that a common knowledge probability distribution 7
 exists is very strong. Though economic theorists have found this assumption
 convenient because it makes strategic problems with incomplete information
 analytically tractable, little discussion has been devoted to its ramifications for
 "real life" problems of mechanism design. Presumably, the seller in an auction
 would have to invest in costly research to determine iT prior to computing the
 optimal auction. This costly information gathering, not explicitly modeled in
 auction problems, may result in less profitable but vastly simpler auctions being
 used in practice. Furthermore the seller would have to be able to share the
 information that he has gathered with the buyers in a credible way, in order to
 ensure that iT is indeed common and this raises a host of difficult issues.
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 FULL EXTRACTION OF THE SURPLUS 1255

 A second difficulty is linked to the fact that the penalties associated with lying

 (the gi(s-i) in the proof of Theorem 1) may have to be quite large. Introducing
 risk aversion in our analysis would modify the results in directions that will be a

 topic for future work, but note that the buyers in many auctions are firms for
 which the assumption of risk neutrality is appropriate. The same issue would

 arise if we introduced limited liability.
 Finally, we should stress that in our opinion the independence assumption

 should be used only with great caution when deriving optimal auctions, at least in

 the case of finitely many types. It does enable the derivation of results that on the

 surface look more "realistic" (there is no full extraction of the surplus). However,

 the derivation of these results rely on a very "unrealistic" assumption. Further-

 more, the results of this paper show that a small deviation from this assumption

 can induce fundamentally different results.

 Department of Economics, Virginia Polytechnic Institute and State University,

 Blacksburg, VA 24060, U.S.A.

 and

 Department of Economics, Rutgers University, New Brunswick, NJ 08903, U.S.A.

 Manuscript received July, 1985; final revision received January, 1988.

 APPENDIX A

 In this appendix we briefly present an example to show how the theory developed in Section 2

 applies. When there are two bidders and ml and m2 are both equal to three, the conditions of
 Theorems 1 and 2 are equivalent. Hence, we consider an environment with two bidders such that

 ml = M2 = 4: the characteristics s1 and s2 can each take four possible values denoted respectively
 (al,a2, a3,0a4) and (PI, /2, /3, 34). The probabilities of the different states of the world can most
 easily be represented in matrix form:

 bidder 2

 bidder 1

 PI /2 /3 /4
 al .01 .04 .04 .02

 a2 .08 .01 .08 .04
 a3 .16 .02 .04 .16

 a4 .03 .12 .03 .12

 For instance, 7T(al, /3), the probability that v1 is equal to a, and v2 to /3, is equal to .04. It is easy to
 check that this information structure satisfies the conditions of Theorem 2, but not those of Theorem
 1 because 12 times the first row plus 3 times the third is equal to 6 times the second plus 4 times the
 fourth.

 A vector L = (yl, Y2, y3, y4) in R4 is interpreted as a lottery for, let us say, bidder 1 if we think of
 player 1 paying y, when bidder 2 announces /,. Consider the following four lotteries for player 1:
 L(al) = (-1000,100,100,100), L(a2) = (100, -2000,100,100), L(a3) = (100, -800, -400,100), and
 L(a4) = (-2000, 500, - 2000,500). If bidder 2 is truthful, then for i = 1. 4, the expected value of

 L(a,) to bidder 1, conditioned on the event that si = &,, is zero if a, is equal to &i and negative
 otherwise. Assume now that bidder 1 thinks that bidder 2 will tell the truth, and offer him the

 following choices. If he announces ai, he will get the object if wl(a,) is greater than w2(/3), where /3 is
 the bid of player 2. He will have to pay wl(a,) times the probability that w2(f/) is smaller than wl(a,)
 and be forced to participate in the lottery L(a,) multiplied by some constant. If the constant is large
 enough the expected surplus of the bidder will be zero if he announces the truth; and negative
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 1256 JACQUES CRtMER AND RICHARD P. McLEAN

 otherwise. The same construction can be made for bidder 2 with the following lotteries: L(,/I)=
 (-3000,500,500,-3000), L(/32) = (100,2000,200,100), L(/l3) = (-1000, 1000,-1000,0), L(/,4) =
 ( - 3000, - 2000, 500,500). Hence, there exists a recipe for building a Bayesian-Nash auction which
 extracts the full surplus.

 We now show that full extraction of the surplus by a dominant strategy auction cannot be
 guaranteed with this information structure. First, assume that the valuation functions satisfy the
 following condition:

 0 < wI(al) < wI(a2) < w2(3, ) < w'(a3) < 3w (a3) < wI(a4).

 Let { pi, xi } be a dominant strategy auction that extracts the full surplus. By Lemma 1, for all /,3,
 P1(Oa3, /,i) and P1(a4, /,i) are equal to 1, while p1(al, /,B) and P1(a2, /,B) are equal to 0. Substitution in
 the incentive compatibility constraints shows that the following equations must hold for all

 /3: XI(al, /3) = XI(a2, /3), XI(a3, /3) = XI(a4, /3), WI(a2) - X1(a3, A/) < -xI(a2, /3), and WI(a3) -
 X1 (a3, /3 ) ? - x1 (al, /i ). Using these equations, the values of pi derived above, and the fact that, by
 Lemma 1, the individual rationality constraints hold with equality we obtain: 20w'(a4) < 4wl(a3),
 which contradicts the hypothesis that 3wl(a3) is less than wI(a4).

 APPENDIX B

 In this appendix, we outline an approach to the full extraction problem when bidders' types can be
 drawn from sets that are not necessarily finite.

 To keep matters technically simple, we only deal with dominant strategy auctions. (See the remarks
 at the end.) The player set is again denoted N = {1. n }. For each i E N, the set of characteristics

 of bidder i is M, = [0,1]. The symbols M, M_ j, si E M., s_ i M_ i retain the interpretations given in
 the text. The probabilistic structure on M is specified by a distribution function F: M - R. Let F>,
 F_ i and F( I si ) denote, respectively, the marginal distribution of F on M,, the marginal distribution
 of F on M_ and the conditional distribution of F on M given s, E M. A property Q is said to

 hold F-a.e. if fc dF = 0 where C is the subset of M for which property Q does not hold. The term
 "Fi-ae" has an analogous definition. Let L1(F) denote the set { f: M -8 R IM If I dF < xc}. L1(F ) has
 an analogous definition. A valuation function w' for i is a nonnegative element of LI(Fi). An
 information structure (M, F) and an auction problem (M, F, w) are defined as in the text. An

 auction is a collection { pi, x }E E N where pi: M - R + and xi: M - R are elements of L1( F) and
 Y-, p (s) is smaller than or equal to 1 for all s E M. The auction { pi, xi } is individually rational for
 (M, F, w) if for each i E N the following inequality holds:

 J[ pij(s_;, sj)wi(Si) -Xij(S_j, Sj)] dFi (s-_ Isi) > O

 for F>-almost all si E Mi.
 An auction { pi, xi} extracts the full surplus for (M, F, w) if fM I ,ENXi(s)] dF=

 fMmaxi E N [w'(s,)] dF. The following analog of Lemma 1 holds:

 LEMMA IA: Let { pi, xi }i E N be an individually rational auction for (M, F, w). This auction extracts
 the full surplus if and only if (a) the individual rationality constraints hold with equality for all i and for

 F;-almost all si E Mi and (b) for F-almost all s, Yi E Npj(s) = 1 if maxj{w w(sj)] > 0 and pi(s) = 0 if
 w'(s,) < maxj [wJ(sj)].

 An individually rational auction is a dominant strategy auction if for all i E N and for F;-almost all
 S, E ,MI:

 pj (s_ i, si)wi(si) -xj (s_E, Si) 2 ps(s_ E, ti)wi(si) - Xi(s_ X, ti),

 for all s i E M_ i and for all t, E Mi.

 THEOREM IA: An information structure (M, F) guarantees full extraction of the surplus by a
 dominant strategy auction if and only if for each i E N and for every vi E LI(F;) that is F;-almost
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 everywhere nonnegative, there exists a fuwiction g: M _I - R such that

 v (sS) = gi(s_i) dFi(s-iIsi), for allsi ( M,.

 Several remarks are in order. First, the finite type case treated in the paper is a "special case" of
 Theorem IA. In particular, suppose F has finite support Mo and let M = { si E MI (s - j, s ) E Mo for
 some s_ i }. Each s E Mo is an atom of the probability measure induced on M by F, i.e., there is a
 probability measure 7o on MO that assigns positive probability to each s E Mo. This 7TO can be
 extended to a probability measure ST on M1 x x M, = M as follows: 5(s) = 7To(s) if s E Mo and
 (S)-= 0 if s E M\Mo. Note that 5T,(s,), the marginal density of ST on M, is greater than zero for all
 Si E MI. Finally, the integral of Theorem IA reduces to YE E_ g, (s i ) T(s IS- i I ). Thus, Theorem 1A
 holds if and only if Theorem 1 holds when the latter is applied to the finite auction problem (M, ).

 One is naturally led to investigate whether or not an infinite dimensional version of Theorem 2
 holds as well. The situation is not quite as straightforward as the dominant strategy case since Farkas
 Lemma in the infinite dimensional setting requires extra topological assumptions that are automati-
 cally satisfied in the finite dimensional framework (see, for example, Theorem III.4 in Hurwicz
 (1958)). This technical, though important, problem is a topic for further research.
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