THEORY OF MECHANISM DESIGN - MIDTERM EXAMINATION September, 2015; Duration: 3 hours; Total marks: 45.Explain your answers clearly, but avoid unnecessary elaboration. You can use all the results proved in class.

1. Let A be a finite set of alternatives. Suppose \succ is a strict linear order over A. Call a pair $a, b \in A$ consistent in a strict linear order P if aPb if and only if $a \succ b$, i.e., the ranking of a and b are the same in P and \succ . Else, we call $a, b \in A$ inconsistent in P.

Construct the following domain \mathcal{D} using \succ as follows. First, consider P^1 , which is the *inverse* of the strict linear order \succ (in other words, every pair of alternatives is inconsistent in P^1). We add P^1 to \mathcal{D} . Having added, (P^1, \ldots, P^{k-1}) , we choose P^k as follows. We look for $a, b \in A$ such that (i) a and b are inconsistent in P^{k-1} , (ii) aand b are consecutively ranked in P^{k-1} , and (iii) for any $\{x, y\} \neq \{a, b\}$ with x and yinconsistent and consecutively ranked in P^{k-1} , if $aP^{k-1}b$ and $xP^{k-1}y$, then $aP^{k-1}x$. In other words, a and b are the best ranked consecutively ranked and inconsistent pair of alternatives in P^{k-1} . If no such pair a, b exists, then our domain is $\mathcal{D} = \{P^1, \ldots, P^{k-1}\}$.

Else, we swap a and b in P^{k-1} to form P^k , i.e., the rank of a in P^k is the rank of b in P^{k-1} , the rank of b in P^k is the rank of a in P^{k-1} , and the rank of all other alternatives remain the same. We then add $P^k \in \mathcal{D}$ and repeat the procedure.

As an example, suppose $A = \{a, b, c, d\}$ and $a \succ b \succ c \succ d$. Then, we start from $dP^1cP^1bP^1a$. Now, the top inconsistent and consecutively ranked pair is d, c. So, P^2 is $cP^2dP^2bP^2a$. Then, the top inconsistent and consecutively ranked pair in P^2 is d, b. So, P^3 is $cP^3bP^3dP^3a$. Then, we will get P^4 as $bP^4cP^4dP^4a$, and so on.

- Find \mathcal{D} when $A = \{a, b, c, d, e\}$ and $a \succ b \succ c \succ d \succ e$. (2 marks)
- Is every P ∈ D single-peaked with respect to ≻ (with any set of alternatives)?
 Either prove this or provide a counter example. (6 marks)
- Suppose |N| = 2. Give an example of a social choice function that is strategyproof, unanimous, and anonymous in this domain. (2 marks)
- 2. Consider the two-sided matching problem with the same number of men and women.
 - Suppose man m is ranked first by all the women. Show that m is matched to the same woman in every stable matching. (3 marks)
 - Suppose man *m* is ranked last by all the women. Show that *m* is matched to the same woman in every stable matching. (3 marks)

• Let μ and μ' be two stable matchings. Define $\mu \wedge^m \mu'$ as follows: for every $m \in M$,

$$(\mu \wedge^m \mu')(m) := \min_{\succeq m} (\mu(m), \mu'(m)).$$

Show that $(\mu \wedge^m \mu')$ is a stable matching. (6 marks)

- 3. Consider the one-sided matching problem (house allocation problem). Assume that the number of agents equal number of houses.
 - The TTC mechanism and the serial dictatorship mechanism are both efficient and strategy-proof. Clearly define an appealing axiom that is satisfied by the TTC mechanism but violated by the serial dictatorship? (2 marks)
 - Suppose all the agents were assigned houses in the first stage of the TTC. What can you say about the preferences of the agents? (2 marks)
- 4. Let A be a finite set of alternatives and $\mathcal{L}(A)$ be the set of all probability distributions over A. Consider a random social choice function $f : \mathcal{P}^n \to \mathcal{L}(A)$, where \mathcal{P} is the set of all linear orders over A. Fix an agent *i* and the preference profile of other agents at P_{-i} . Consider two preference orderings of agent *i*: P_i and P'_i . Suppose $x, y \in A$ are such that x and y are consecutively ranked in both P_i and P'_i with xP_iy and yP_ix . Suppose for any $a \notin \{x, y\}$, the rank of a in P_i and P'_i is the same. Hence, P'_i is obtained from P_i by swapping only x and y.

If f is strategy-proof, then show the following:

- (a) $f_x(P_i, P_{-i}) + f_y(P_i, P_{-i}) = f_x(P'_i, P_{-i}) + f_y(P'_i, P_{-i})$. (4 marks)
- (b) for any $a \notin \{x, y\}$, $f_a(P_i, P_{-i}) = f_a(P'_i, P_{-i})$. (4 marks)
- (c) $f_x(P_i, P_{-i}) \ge f_x(P'_i, P_{-i})$. (4 marks)
- 5. Consider the private good allocation of one unit of a divisible commodity to n agents, with each agent having single peaked preference over their consumption space [0, 1].
 - Consider a preference profile where peak of agent *i* is larger than the peak of agent *j*. Does the uniform rule allocate agent *i* at least as much as it allocates to agent *j* in this profile? Argue your answer. (4 marks)
 - Consider a preference profile where all the agents have the same peak except agent *i*, who has higher peak than all the other agents. Under what conditions (on the peaks) does agent *i* get his peak amount in the uniform rule? (**3 marks**)