
Internet Advertising and the Generalized Second-Price Auction:
Selling Billions of Dollars Worth of Keywords

By BENJAMIN EDELMAN, MICHAEL OSTROVSKY, AND MICHAEL SCHWARZ*

We investigate the “generalized second-price” (GSP) auction, a new mechanism
used by search engines to sell online advertising. Although GSP looks similar to the
Vickrey-Clarke-Groves (VCG) mechanism, its properties are very different.
Unlike the VCG mechanism, GSP generally does not have an equilibrium in
dominant strategies, and truth-telling is not an equilibrium of GSP. To analyze
the properties of GSP, we describe the generalized English auction that corre-
sponds to GSP and show that it has a unique equilibrium. This is an ex post
equilibrium, with the same payoffs to all players as the dominant strategy
equilibrium of VCG. (JEL D44, L81, M37)

This paper investigates a new auction mech-
anism, which we call the “generalized second-
price” auction, or GSP. GSP is tailored to the
unique environment of the market for online
ads, and neither the environment nor the mech-
anism has previously been studied in the mech-
anism design literature. While studying the
properties of a novel mechanism is often fasci-
nating in itself, our interest is also motivated by
the spectacular commercial success of GSP. It is
the dominant transaction mechanism in a large
and rapidly growing industry. For example,
Google’s total revenue in 2005 was $6.14 bil-
lion. Over 98 percent of its revenue came from
GSP auctions. Yahoo!’s total revenue in 2005
was $5.26 billion. A large share of Yahoo!’s
revenue is derived from sales via GSP auctions.
It is believed that over half of Yahoo!’s revenue
is derived from sales via GSP auctions. As of
May 2006, the combined market capitalization
of these companies exceeded $150 billion.

Let us briefly describe how these auctions
work. When an Internet user enters a search

term (“query”) into a search engine, he gets
back a page with results, containing both the
links most relevant to the query and the spon-
sored links, i.e., paid advertisements. The ads
are clearly distinguishable from the actual
search results, and different searches yield dif-
ferent sponsored links: advertisers target their
ads based on search keywords. For instance, if a
travel agent buys the word “Hawaii,” then each
time a user performs a search on this word, a
link to the travel agent will appear on the search
results page. When a user clicks on the spon-
sored link, he is sent to the advertiser’s Web
page. The advertiser then pays the search engine
for sending the user to its Web page, hence the
name—“pay-per-click” pricing.

The number of ads that the search engine can
show to a user is limited, and different positions
on the search results page have different desir-
abilities for advertisers: an ad shown at the top
of a page is more likely to be clicked than an ad
shown at the bottom. Hence, search engines
need a system for allocating the positions to
advertisers, and auctions are a natural choice.
Currently, the mechanisms most widely used by
search engines are based on GSP.

In the simplest GSP auction, for a specific
keyword, advertisers submit bids stating their
maximum willingness to pay for a click. When
a user enters a keyword, he receives search
results along with sponsored links, the latter
shown in decreasing order of bids. In particular,
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the ad with the highest bid is displayed at the
top, the ad with the next highest bid is displayed
in the second position, and so on. If a user
subsequently clicks on an ad in position i, that
advertiser is charged by the search engine an
amount equal to the next highest bid, i.e., the
bid of an advertiser in position (i � 1). If a
search engine offered only one advertisement
per result page, this mechanism would be
equivalent to the standard second-price auc-
tion, coinciding with the Vickrey-Clarke-
Groves (VCG) mechanism (William Vickrey
1961; Edward H. Clarke 1971; Theodore Groves
1973), auction. With multiple positions available,
GSP generalizes the second-price auction (hence
the name). Here, each advertiser pays the next
highest advertiser’s bid. But as we will demon-
strate, the multi-unit GSP auction is no longer
equivalent to the VCG auction and lacks some of
VCG’s desirable properties. In particular, un-
like the VCG mechanism, GSP generally does
not have an equilibrium in dominant strategies,
and truth-telling is not an equilibrium of GSP.

In Section I, we describe the evolution of the
market for Internet advertisements and the
unique features of the environment in this mar-
ket. In Section II, we introduce a model of
sponsored search auctions, and we begin our
analysis of the model in Section III. Since ad-
vertisers can change their bids frequently, spon-
sored search auctions can be modeled as a
continuous or an infinitely repeated game. By
the folk theorem, however, such a game will
have an extremely large set of equilibria, and so
we focus instead on the one-shot, simultaneous-
move, complete information stage game, intro-
ducing restrictions on advertisers’ behavior
suggested by the market’s dynamic structure.
We call the equilibria satisfying these restric-
tions “locally envy-free.”

We then proceed to show that the set of
locally envy-free equilibria contains an equi-
librium in which the payoffs of the players are
the same as in the dominant-strategy equilib-
rium of the VCG auction, even though both
the bids of the players and the payment rules
in the mechanisms are very different. More-
over, this equilibrium is the worst locally
envy-free equilibrium for the search engine
and the best locally envy-free equilibrium for
the advertisers. Consequently, in any locally
envy-free equilibrium of GSP, the total ex-

pected revenue to the seller is at least as high
as in the dominant-strategy equilibrium of the
VCG auction.

In Section IV, we present our main result. We
introduce the generalized English auction with
independent private values, which corresponds
to the generalized second-price auction and is
meant to capture the convergence of bidding
behavior to the static equilibrium, in the same
spirit as tâtonnement processes in the theory
of general equilibrium and the deferred-
acceptance salary adjustment process in the theory
of matching in labor markets. The generalized
English auction has several notable features.
Although it is not dominant-strategy solvable, it
has a unique, perfect Bayesian equilibrium in
continuous strategies. In this equilibrium, all
players receive VCG payoffs. Moreover, this
equilibrium is ex post, i.e., even if a particular
player learned the values of other players before
the game, he would not want to change his
strategy. This, in turn, implies that the equilib-
rium is robust, i.e., it does not depend on the
underlying distribution of values: the profile of
strategies that we identify is an ex post Bayesian
Nash equilibrium for any set of distributions of
advertisers’ private values.

There are several recent theoretical and em-
pirical papers related to sponsored search auc-
tions. Gagan Aggarwal and Jason D. Hartline
(2005), Aranyak Mehta et al. (2005), and Mo-
hammad Mahdian, Hamid Nazerzadeh, and
Amin Saberi (2006) propose computationally
fast, near-optimal mechanisms for pricing and
allocating slots to advertisers in the presence of
budget constraints and random shocks. Christo-
pher Meek, David M. Chickering, and David B.
Wilson (2005) describe incentive-compatible
auctions with stochastic allocation rules, gener-
alizing Vickrey auctions, and argue that such
auctions can be useful for selling Internet ad-
vertising despite being inefficient. Note that, in
contrast to these papers, we study the mecha-
nisms actually used by the search engines.

Xiaoquan Zhang (2005), Kursad Asdemir
(2006), and Edelman and Ostrovsky (forthcom-
ing) present empirical evidence of bid and rank-
ing fluctuations in both generalized first-price
and generalized second-price auctions. They ar-
gue that history-dependent strategies can give
rise to such fluctuations. However, Hal R. Var-
ian (forthcoming) empirically analyzes GSP
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auction data from Google and reports that lo-
cally envy-free Nash equilibria “describe the
basic properties of the prices observed in
Google’s ad auction reasonably accurately.”1

I. The Structure and Evolution of Sponsored
Search Auctions

A. Notable Features of the Market for
Internet Advertising

A combination of features makes the market for
Internet advertising unique. First, bids can be
changed at any time. An advertiser’s bid for a
particular keyword will apply every time that key-
word is entered by a search engine user, until the
advertiser changes or withdraws the bid. For ex-
ample, the advertiser with the second highest bid
on a given keyword at some instant will be shown
as the second sponsored link to a user searching
for that keyword at that instant. The order of the
ads may be different next time a user searches for
that keyword, because the bids could have
changed in the meantime.2

Second, search engines effectively sell flows
of perishable advertising services rather than
storable objects: if there are no ads for a partic-
ular search term during some period of time, the
“capacity” is wasted.

Finally, unlike other centralized markets,
where it is usually clear how to measure what is
being sold, there is no “unit” of Internet adver-
tisement that is natural from the points of view
of all involved parties. From the advertiser’s
perspective, the relevant unit is the cost of at-
tracting a customer who makes a purchase. This
corresponds most directly to a pricing model in
which an advertiser pays only when a customer
actually completes a transaction. From the
search engine’s perspective, the relevant unit is
what it collects in revenues every time a user
performs a search for a particular keyword. This

corresponds to a pricing model in which an
advertiser is charged every time its link is
shown to a potential customer. “Pay-per-click”
is a middle ground between the two models: the
advertiser pays every time a user clicks on the
link. All three payment models are widely used
on the Internet.3 The specific sector of Internet
advertising that we study, sponsored search auc-
tions, has converged to pay-per-click pricing.

Since GSP evolved in the market for online
advertising, its rules reflect the environment’s
unique characteristics. GSP insists that for each
keyword, advertisers submit a single bid—even
though several different items are for sale (dif-
ferent advertising positions). GSP’s unusual
one-bid requirement makes sense in this setting:
the value of being in each position is propor-
tional to the number of clicks associated with
that position; the benefit of placing an ad in a
higher position is that the ad is clicked more,
but the users who click on ads in different
positions are assumed to have the same values
to advertisers (e.g., the same purchase probabil-
ities). Consequently, even though the GSP en-
vironment is multi-object, buyer valuations can
be adequately represented by one-dimensional
types. For some advertisers, one bid per key-
word may not be sufficiently expressive to fully
convey preferences. For example, a single bid
ignores the possibility that users who click on
position 5 are somehow different from those
who click on position 2; it does not allow for the
possibility that advertisers care about the allo-
cation of other positions, and so on. Nonethe-
less, these limitations are apparently not large
enough to justify added complexity in the bid-
ding language. Nico Brooks (2004) finds only
moderate differences in purchase probabilities
when ads are shown in different positions. Fol-
lowing search engines’ approaches and Brooks’
empirical findings, we likewise assume the
value of a click is the same in all positions.

1 Varian discovered envy-free Nash equilibria indepen-
dently and called them “Symmetric Nash Equilibria” in his
paper.

2 For manual bidding through online advertiser centers,
both Google and Yahoo! allow advertisers to make unlim-
ited changes. In contrast, the search engines impose restric-
tions on the behavior of software bidding agents: e.g.,
Yahoo! limits the number of times an advertiser can change
his bid in a given period of time.

3 A prominent example of “pay-per-transaction,” and
even “pay-per-dollar of revenue” (“revenue sharing”), is
Amazon.com’s Associates Program, www.amazon.com/gp/
browse.html?&node�3435371 (accessed June 10, 2006).
Under this program, a Web site that sends customers to
Amazon.com receives a percentage of customers’ pur-
chases. “Pay-per-impression” advertising, in the form of
banner ads, remains popular on major Internet portals, such
as yahoo.com, msn.com, and aol.com.
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One important possibility that we abstract
away from is that advertisers differ along di-
mensions other than per-click value, i.e., have
different probabilities of being clicked when
placed in the same position. (These probabilities
are known in the industry as “click-through
rates,” or CTRs.) Different search engines treat
this possibility differently. Yahoo! ignores the
differences, ranks the advertisers purely in de-
creasing order of bids, and charges the next-
highest advertiser’s bid.4 Google multiplies
each advertiser’s bid by its “quality score,”
which is based on CTR and other factors, to
compute its “rank number,” ranks the ads by
rank numbers, and then charges each adver-
tiser the smallest amount sufficient to exceed
the rank number of the next advertiser.5 In our
analysis, we assume that all advertisers are
identical along dimensions other than per-
click value, which eliminates this difference
between the mechanisms used at Google and
Yahoo!. As we discuss at the end of Section
III, the analysis would remain largely the
same if there were advertiser-specific differ-
ences in CTRs and “quality scores,” although
the equilibria under Google and Yahoo!
mechanisms would not be identical.6,7

B. Evolution of Market Institutions

The history of sponsored search auctions is of
interest as a case study of whether, how, and
how quickly markets come to address their
structural shortcomings. Many important mech-
anisms have recently been designed essentially
from scratch, entirely replacing completely dif-
ferent historical allocation mechanisms: radio
spectrum auctions (Paul Milgrom 2000; Ken
Binmore and Paul Klemperer 2002), electricity
auctions (Robert Wilson 2002), and others. In
contrast, reminiscent of the gradual evolution of
medical residency match rules (Alvin E. Roth
1984), sponsored search ad auctions have
evolved in steps over time. In both medical
residency and search advertising, flawed mech-
anisms were gradually replaced by increasingly
superior designs. Notably, the Internet advertis-
ing market evolved much faster than the medi-
cal matching market. This may be due to the
competitive pressures on mechanism designers
present in the former but not in the latter, much
lower costs of entry and experimentation, ad-
vances in the understanding of market mecha-
nisms, and improved technology.

We proceed with a brief chronological review
of the development of sponsored search
mechanisms.

Early Internet Advertising.—Beginning in
1994, Internet advertisements were largely sold
on a per-impression basis. Advertisers paid flat
fees to show their ads a fixed number of times
(typically, 1,000 showings or “impressions”).
Contracts were negotiated on a case-by-case
basis, minimum contracts for advertising pur-
chases were large (typically, a few thousand
dollars per month), and entry was slow.8

Generalized First-Price Auctions.—In 1997,
Overture (then GoTo; now part of Yahoo!) in-
troduced a completely new model of selling

4 See help.yahoo.com/help/us/performance/customer/
dtc/bidding/, link to “How do I figure out my cost?” and
searchmarketing.yahoo.com/srch/index.php, link to “How
Sponsored Search Works” (accessed June 10, 2006).

5 See www.google.com/adwords/learningcenter/#section1,
links to “Ad Ranking” and “Cost Control” (accessed June
10, 2006). Initially, Google’s pricing mechanism was more
transparent: quality score was equal to the estimated click-
through rate.

6 The analysis would have to change considerably if
there were specific advertiser-position effects. The magni-
tude of these advertiser-position effects is ultimately an
empirical question, and we do not have the kind of data that
would allow us to answer it; however, judging from the fact
that the two major search engines effectively ignore it in
their mechanisms (Yahoo! ignores CTRs altogether; Google
computes an advertiser’s estimated CTR conditional on the
advertiser attaining the first position), we believe it to be
small.

7 Another important difference between the search en-
gines’ implementations of GSP is the amount of information
available to the advertisers. On Yahoo!, advertisers can
directly observe the bids of their competitors (uv.bidtool.
overture.com/d/search/tools/bidtool). On Google, they can-
not. For any keyword and any bid amount, however, they
can get an estimated average position and average cost-
per-click they can expect (adwords.google.com/select/
KeywordToolExternal, “Cost and ad position estimates”).

From this information, they can back out estimates of their
competitors’ rank numbers. Moreover, advertisers can ex-
periment with changing their bids, which can also give them
independent and relatively accurate estimates. Web sites
accessed on June 10, 2006.

8 See www.worldata.com/wdnet8/articles/the_history_
of_Internet_Advertising.htm and www.zakon.org/robert/in-
ternet/timeline (both accessed June 10, 2006).
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Internet advertising. In the original Overture
auction design, each advertiser submitted a bid
reporting the advertiser’s willingness to pay on
a per-click basis, for a particular keyword. The
advertisers could now target their ads: instead of
paying for a banner ad that would be shown to
everyone visiting a Web site, advertisers could
specify which keywords were relevant to their
products and how much each of those keywords
(or, more precisely, a user clicking on their ad
after looking for that keyword) was worth to
them. Also, advertising was no longer sold per
1,000 impressions; rather, it was sold one click
at a time. Every time a consumer clicked on a
sponsored link, an advertiser’s account was au-
tomatically billed the amount of the advertiser’s
most recent bid. The links to advertisers were
arranged in descending order of bids, making
highest bids the most prominent. The ease of use,
the very low entry costs, and the transparency of
the mechanism quickly led to the success of Over-
ture’s paid search platform as the advertising pro-
vider for major search engines, including Yahoo!
and MSN. However, the underlying auction
mechanism itself was far from perfect. In partic-
ular, Overture and advertisers quickly learned that
the mechanism was unstable due to the fact that
bids could be changed very frequently.

Example. Suppose there are two slots on a page
and three advertisers. An ad in the first slot
receives 200 clicks per hour, while the second
slot gets 100. Advertisers 1, 2, and 3 have
values per click of $10, $4, and $2, respectively.
Suppose advertiser 2 bids $2.01, to guarantee
that he gets a slot. Then advertiser 1 will not
want to bid more than $2.02—he does not need
to pay more than that to get the top spot. But
then advertiser 2 will want to revise his bid to
$2.03 to get the top spot, advertiser 1 will in
turn raise his bid to $2.04, and so on. Clearly,
there is no pure strategy equilibrium in the
one-shot version of the game, and so if adver-
tisers best respond to each other, they will want
to revise their bids as often as possible.

Hence, advertisers will make socially ineffi-
cient investments into bidding robots, which can
also be detrimental for the revenues of search
engines. David McAdams and Schwarz (forth-
coming) argue that in various settings, the costs
that buyers incur while trying to “game” an auc-
tion mechanism are fully passed through to the

seller. Moreover, if the “speed” of the robots var-
ies across advertisers, revenues can be very low
even if advertisers’ values are high. For instance,
in the example above, suppose advertiser 1 has a
robot that can adjust the bid very quickly, while
advertisers 2 and 3 are humans and can change
their bids at most once a day. In this case, as long
as advertiser 3 does not bid more than his value,
the revenues of a search engine are at most $2.02
per click. Indeed, suppose advertiser 3 bids $2.00.
If advertiser 2 bids $2.01, he will be in the second
position paying $2.01. If he bids any amount
greater than that but lower than his value, he will
remain in the second position and will pay more
per click, because the robot of advertiser 1 will
quickly outbid him. The revenue would not
change even if the values of advertisers 1 and 2
were much higher.

Generalized Second-Price Auctions.—Under
the generalized first-price auction, the advertiser
who could react to competitors’ moves fastest
had a substantial advantage. The mechanism
therefore encouraged inefficient investments in
gaming the system, causing volatile prices and
allocative inefficiencies. Google addressed these
problems when it introduced its own pay-per-click
system, AdWords Select, in February 2002.
Google also recognized that an advertiser in
position i will never want to pay more than one
bid increment above the bid of the advertiser in
position (i � 1), and adopted this principle in its
newly designed generalized second-price auc-
tion mechanism. In the simplest GSP auction,
an advertiser in position i pays a price per click
equal to the bid of an advertiser in position (i �
1) plus a minimum increment (typically $0.01).
This second-price structure makes the market
more user friendly and less susceptible to
gaming.

Recognizing these advantages, Yahoo!/Over-
ture also switched to GSP. Let us describe the
version of GSP that it implemented.9 Every

9 We focus on Overture’s implementation, because
Google’s system is somewhat more complex. Google ad-
justs effective bids based on ads’ click-through rates and
other factors, such as “relevance.” But under the assumption
that all ads have the same relevance and click-through rates
conditional on position, Google’s and Yahoo!’s versions of
GSP are identical. As we show in Section III, it is straight-
forward to generalize our analysis to Google’s mechanism.
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advertiser submits a bid. Advertisers are ar-
ranged on the page in descending order of their
bids. The advertiser in the first position pays a
price per click that equals the bid of the second
advertiser plus an increment; the second adver-
tiser pays the bid of the third advertiser plus an
increment; and so forth.

Example (continued). Let us now consider the
payments in the environment of the previous
example under the GSP mechanism. If all ad-
vertisers bid truthfully, then bids are $10, $4,
and $2. Payments in GSP will be $4 and $2.10

Truth-telling is indeed an equilibrium in this
example, because no advertiser can benefit by
changing his bid. Note that total payments of
advertisers 1 and 2 are $800 and $200,
respectively.

Generalized Second-Price and VCG Auc-
tions.—GSP looks similar to the VCG mecha-
nism, because both mechanisms set each
agent’s payments based only on the allocation
and bids of other players, not based on that
agent’s own bid. In fact, Google’s advertising
materials explicitly refer to Vickrey and state
that Google’s “unique auction model uses Nobel
Prize–winning economic theory to eliminate
... that feeling that you’ve paid too much.”11

But GSP is not VCG.12 In particular, unlike the
VCG auction, GSP does not have an equilib-
rium in dominant strategies, and truth-telling is
generally not an equilibrium strategy in GSP
(see the example in Remark 3 in Section II).
With only one slot, VCG and GSP would be
identical. With several slots, the mechanisms
are different. GSP charges the advertiser in po-
sition i the bid of the advertiser in position i �
1. In contrast, VCG charges the advertiser in
position i the externality that he imposes on
others by taking one of the slots away from
them: the total payment of the advertiser in

position i is equal to the difference between the
aggregate value of clicks that all other advertis-
ers would have received if i were not present in
the market and the aggregate value of clicks that
all other advertisers receive when i is present.
Note that an advertiser in position j � i is not
affected by i, and so the externality i imposes on
her is zero, while an advertiser in position j � i
would have received position ( j � 1) in the
absence of i, and so the externality i imposes on
her is equal to her value per click multiplied by
the difference in the number of clicks in posi-
tions j and ( j � 1).

Example (continued). Let us compute VCG
payments for the example considered above.
The second advertiser’s payment is $200, as
before. However, the payment of the first ad-
vertiser is now $600: $200 for the externality
that he imposes on advertiser 3 (by forcing him
out of position 2) and $400 for the externality
that he imposes on advertiser 2 (by moving him
from position 1 to position 2 and thus causing
him to lose (200 � 100) � 100 clicks per hour).
Note that in this example, revenues under VCG
are lower than under GSP. As we will show
later (Remark 1 in Section II), if advertisers
were to bid their true values under both mech-
anisms, revenues would always be higher under
GSP.

C. Assessing the Market’s Development

The chronology above suggests three major
stages in the development of the sponsored
search advertising market. First, ads were sold
manually, slowly, in large batches, and on a
cost-per-impression basis. Second, Overture
implemented keyword-targeted per-click sales
and began to streamline advertisement sales
with some self-serve bidding interfaces, but
with a highly unstable first-price mechanism.
Next, Google implemented the GSP auction,
which was subsequently adopted by Overture
(Yahoo!).

Interestingly, Google and Yahoo! still use
GSP, rather than VCG, which would reduce
incentives for strategizing and make life easier
for advertisers. We see several possible reasons
for this. First, VCG is hard to explain to typical
advertising buyers. Second, switching to VCG
may entail substantial transition costs: VCG

10 For convenience, we neglect the $0.01 minimum in-
crements.

11 See https://www.google.com/adsense/afs.pdf (accessed
June 10, 2006).

12 Roth and Axel Ockenfels (2002) describe another
example in which the architects of an auction may have
tried to implement a mechanism strategically equivalent to
the Vickrey auction, but did not get an important part of the
mechanism right.

247VOL. 97 NO. 1 EDELMAN ET AL.: INTERNET ADVERTISING AND THE GSP AUCTION



revenues are lower than GSP revenues for the
same bids, and advertisers might be slow to stop
shading their bids. Third, the revenue conse-
quences of switching to VCG are uncertain:
even the strategic equivalence of second-price
and English auctions under private values fails
to hold in experiments (John Kagel, Ronald M.
Harstad, and Dan Levin 1987). And, of course,
simply implementing and testing a new system
may be costly—imposing switching costs on
advertisers as well as on search engines.

II. The Rules of GSP

Let us now formally describe the rules of a
sponsored search auction. For a given keyword,
there are N objects (positions on the screen,
where ads related to that keyword can be dis-
played) and K bidders (advertisers).13 The (ex-
pected) number of clicks per period received by
the advertiser whose ad was placed in position i
is �i. The value per click to advertiser k is sk.
Advertisers are risk-neutral, and advertiser k’s
payoff from being in position i is equal to �isk
minus his payments to the search engine. Note
that these assumptions imply that the number of
times a particular position is clicked does not
depend on the ads in this and other positions,
and also that an advertiser’s value per click does
not depend on the position in which its ad is
displayed. Without loss of generality, positions
are labeled in descending order: for any i and j
such that i � j, we have �i � �j.

We model the GSP auction as follows. Sup-
pose at some time t a search engine user enters
a given keyword, and, for each k, advertiser k’s
last bid submitted for this keyword prior to t
was bk; if advertiser k did not submit a bid, we
set bk � 0. Let b( j) and g( j) denote the bid and
identity of the j-th highest advertiser, respec-
tively. If several advertisers submit the same
bid, they are ordered randomly.14 The mecha-
nism then allocates the top position to the ad-
vertiser with the highest bid, g(1), the second

position to g(2), and so on, down to position
min{N, K}. Note that each advertiser gets at
most one object. If a user clicks on an advertis-
er’s link, the advertiser’s payment per click is
equal to the next advertiser’s bid. So advertiser
g(i)’s total payment p(i) is equal to �ib

(i�1) for
i � {1, ... , min{N, K}}, and his payoff is equal
to �i(sg(i) � b(i�1)). If there are at least as many
positions as advertisers (N � K), then the last
advertiser’s payment p(K) is equal to zero.15

It is also useful to describe explicitly the rules
that the VCG mechanism would impose in this
setting. The rules for allocating positions are the
same as under GSP: position i is assigned to
advertiser g(i) with the i-th highest bid b(i). The
payments, however, are different. Each adver-
tiser’s payment is equal to the negative exter-
nality that he imposes on others, assuming that
bids are equal to values. Thus, the payment of
the last advertiser who gets allocated a spot is
the same as under GSP: zero if N � K;
�Nb(N�1) otherwise. For all other i � min{N,
K}, payment pV induced by VCG will be dif-
ferent from payment p induced by GSP.
Namely, pV,(i) � (�i � �i�1)b(i�1) � pV,(i�1).

In the following two sections, we will con-
sider two alternative ways of completing the
model: as a simultaneous-move game of complete
information, resembling a sealed-bid second-price
auction, and as an extensive-form game of incom-
plete information, resembling an ascending En-
glish auction. Before moving on to these models,
let us make a few observations about GSP and
VCG.

REMARK 1: If all advertisers were to bid the
same amounts under the two mechanisms, then
each advertiser’s payment would be at least as
large under GSP as under VCG.

This is easy to show by induction on adver-
tisers’ payments, starting with the last advertiser
who gets assigned a position. For i � min{K,
N}, p(i) � pV,(i) � �ib

(i�1). For any i � min{K,

13 In actual sponsored search auctions at Google and
Yahoo!, advertisers can also choose to place “broad match”
bids that match searches that include a keyword along with
additional search terms.

14 The actual practice at Overture is to show equal bids
according to the order in which the advertisers placed their
bids.

15 Although we set the reserve price to zero, search
engines charge the last advertiser a positive reserve price.
We also assume that a bid can be any nonnegative real
number, while in practice bids can be specified only in $.01
increments. Finally, we assume that advertiser g(i) is
charged the amount b(i�1) per click, while search engines
typically charge one cent more, (b(i�1) � $.01).
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N}, pV,(i) � pV,(i�1) � (�i � �i�1)b(i�1) �
�ib

(i�1) � �i�1b(i�2) � p(i) � p(i�1).

REMARK 2: Truth-telling is a dominant strat-
egy under VCG.

This is a well-known property of the VCG
mechanism.

REMARK 3: Truth-telling is not a dominant
strategy under GSP.

For instance, consider a slight modification of
the example from Section I. There are still three
advertisers, with values per click of $10, $4, and
$2, and two positions. However, the click-through
rates of these positions are now almost the same:
the first position receives 200 clicks per hour, and
the second one gets 199. If all players bid truth-
fully, then advertiser 1’s payoff is equal to ($10 �
$4) � 200 � $1,200. If, instead, he shades his bid
and bids only $3 per click, he will get the second
position, and his payoff will be equal to ($10 �
$2) � 199 � $1,592 � $1,200.

III. GSP and Locally Envy-Free Equilibria

Advertisers bidding on Yahoo! and Google can
change their bids very frequently. We therefore
think of these sponsored search auctions as con-
tinuous time or infinitely repeated games in which
advertisers originally have private information
about their types, gradually learn the values of
others, and can adjust their bids repeatedly. In
principle, the sets of equilibria in such repeated
games can be very large, with players potentially
punishing each other for deviations. The strategies
required to support such equilibria are usually
quite complex, however, requiring precise knowl-
edge of the environment and careful implementa-
tion. In theory, advertisers could implement such
strategies via automated robots, but in practice
they may not be able to: bidding software must
first be authorized by the search engines,16 and
search engines are unlikely to permit strategies
that would allow advertisers to collude and sub-
stantially reduce revenues.

We therefore focus on simple strategies and
study the rest points of the bidding process: if the
vector of bids stabilizes, at what bids can it stabi-
lize? We impose several assumptions and restric-
tions. First, we assume that all values are common
knowledge: over time, advertisers are likely to
learn all relevant information about each other’s
values. Second, since bids can be changed at any
time, stable bids must be best responses to each
other—otherwise, an advertiser whose bid is not a
best response would have an incentive to change
it. Thus, we assume that the bids form an equilib-
rium in the simultaneous-move, one-shot game of
complete information. Third, what are the simple
strategies that an advertiser can use to increase his
payoff, beyond simple best responses to the other
players’ bids?

One clear strategy is to try to force out the
player who occupies the position immediately
above. Suppose advertiser k bids bk and is as-
signed to position i, and advertiser k� bids bk� � bk
and is assigned to position (i � 1). Note that if k
raises his bid slightly, his own payoff does not
change, but the payoff of the player above him
decreases. Of course, player k� can retaliate, and
the most she can do is to slightly underbid adver-
tiser k, effectively swapping places with him. If
advertiser k is better off after such retaliation, he
will indeed want to force player k� out, and the
vector of bids will change. Thus, if the vector
converges to a rest point, an advertiser in position
i should not want to “exchange” positions with the
advertiser in position (i � 1). We call such vectors
of bids “locally envy-free.”17

DEFINITION 1: An equilibrium of the
simultaneous-move game induced by GSP is
locally envy-free if a player cannot improve

16 See, e.g., help.yahoo.com/help/us/performance/
customer/dtc/bidding, questions 7 and 8 (accessed June
10, 2006).

17 An alternative interpretation of this restriction is as fol-
lows. With only one slot, GSP coincides with the standard
second-price auction, and the restriction of local envy-freeness
simply says that the losing advertiser bids at least his own
value, ruling out various implausible equilibria. Likewise, with
multiple slots, the local envy-freeness restriction is equivalent
to saying that the bid of the advertiser who gets position i and
thus “loses” position (i � 1) is such that his “marginal bid”
(i.e., the difference between the highest amount that he could
have paid if he had “won” position (i � 1) and the amount he
actually pays for position i) is at least as high as the marginal
value for the extra clicks he would have received in position
(i � 1). To see this, simply rearrange equation (1) to get
p(i�1) � p(i) � sg(i)(�i�1 � �i).
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his payoff by exchanging bids with the player
ranked one position above him. More for-
mally, in a locally envy-free equilibrium, for any
i � min{N � 1, K},

(1) �i sg�i� � p�i� � �i � 1 sg�i� � p�i � 1�.

Of course, it is possible that bids change over
time, depending on the players’ strategies and
information structure. However, if the behavior
ever converges to a vector of bids, that vector
should correspond to a locally envy-free equi-
librium of the simultaneous-move game 	 in-
duced by GSP. Consequently, we view a locally
envy-free equilibrium 	 as a prediction regard-
ing a rest point at which the vector of bids
stabilizes. In this section, we study the set of
locally envy-free equilibria.

We first show that the set of locally envy-free
equilibria maps naturally to a set of stable as-
signments in a corresponding two-sided match-
ing market. The idea that auctions and two-
sided matching models are closely related is not
new: it goes back to Vincent P. Crawford and
Elsie M. Knoer (1981), Alexander S. Kelso and
Crawford (1982), Herman B. Leonard (1983),
and Gabrielle Demange, David Gale, and
Marilda Sotomayor (1986), and has been stud-
ied in detail in a recent paper by John W.
Hatfield and Milgrom (2005). Note, however,
that in our case the nonstandard auction is very
different from those in the papers noted above.

Our environment maps naturally into the
most basic assignment model, studied first by
Lloyd S. Shapley and Martin Shubik (1972).
Consider each position as an agent who is look-
ing for a match with an advertiser. The value of
a position-advertiser pair (i, k) is equal to �isk.
We call this assignment game A. The advertiser
makes its payment pik for the position, and the
advertiser is left with �isk � pik. The following
pair of lemmas shows that there is a natural
mapping from the set of locally envy-free equi-
libria of GSP to the set of stable assignments.
All proofs are in the Appendix.

LEMMA 1: The outcome of any locally envy-
free equilibrium of auction 	 is a stable
assignment.

LEMMA 2: If the number of advertisers is
greater than the number of available positions,

then any stable assignment is an outcome of a
locally envy-free equilibrium of auction 	.

We will now construct a particular locally
envy-free equilibrium of game 	. This equilib-
rium has two important properties. First, in this
equilibrium, advertisers’ payments coincide
with their payments in the dominant-strategy
equilibrium of VCG. Second, this equilibrium is
the worst locally envy-free equilibrium for the
search engine and the best locally envy-free
equilibrium for the advertisers. Consequently,
the revenues of a search engine are (weakly)
higher in any locally envy-free equilibrium of
GSP than in the dominant-strategy equilibrium
of VCG.

Consider the following strategy profile B*.
Without loss of generality, assume that adver-
tisers are labeled in decreasing order of their
values, i.e., if j � k, then sj � sk. For each
advertiser j � {2, ... , min{N � 1, K}}, bid b*j is
equal to pV,( j�1)/�j�1, where pV,( j�1) is the
payment of advertiser j � 1 in the dominant-
strategy equilibrium of VCG where all adver-
tisers bid truthfully. Bid b*1 is equal to s1.18

THEOREM 1: Strategy profile B* is a locally
envy-free equilibrium of game 	. In this equi-
librium, each advertiser’s position and payment
are equal to those in the dominant-strategy
equilibrium of the game induced by VCG. In
any other locally envy-free equilibrium of game
	, the total revenue of the seller is at least as
high as in B*.

To prove Theorem 1, we first note that pay-
ments under strategy profile B* coincide with
VCG payments and check that B* is indeed a
locally envy-free equilibrium. This follows
from the fact that, by construction, each adver-
tiser is indifferent between remaining in his
positions and swapping with the advertiser one
position above him. Next, from Lemma 1 we
know that every locally envy-free equilibrium
corresponds to a stable assignment. The “core
elongation” property of the set of stable assign-
ments (Shapley and Shubik 1972; Crawford
and Knoer 1981) implies that there exists an

18 This bid does not affect any advertiser’s payment and
can be set equal to any value greater than b*2.
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“advertiser-optimal” assignment A in that set,
such that in any other stable assignment, each
advertiser pays at least as much to the search
engine as he does in A. Moreover, Leonard
(1983) and Demange, Gale, and Sotomayor
(1986) show that in general assignment games,
payoffs of “buyers” in the buyer-optimal stable
assignment coincide with their VCG payoffs,
which is sufficient to complete the proof. This is
particularly easy to show in the specific envi-
ronment that we consider, and so for complete-
ness we include a short independent proof.

In the model, we assume that all advertisers
are identical along dimensions other than per-
click value, and in particular have identical
click-through rates. The analysis remains
largely the same if, instead, we assume that the
CTRs of different advertisers are multiples of
one another, i.e., if any advertiser k assigned to
any position i receives �i�k clicks, where �i is a
position-specific factor and �k is an advertiser-
specific factor. In this case, the versions of GSP
implemented by Yahoo! and Google differ.

Under Yahoo!’s system, advertisers are still
ranked by bids, and each of them is charged the
next-highest advertiser’s bid. Then, bids form a
locally envy-free equilibrium if and only if, for
any i and j, �i�g(i)(sg(i) � b(i�1)) � �j�g(i)(sg(i) �
b(j�1)). Dividing both sides by the positive num-
ber �g(i), we get �i(sg(i) � b(i�1)) � �j(sg(i) �
b(j�1)), i.e., the necessary and sufficient condition
for a locally envy-free equilibrium in the case
where all �k are equal to one. Hence, under Ya-
hoo!’s version of GSP, equilibria are not affected
by changes in �s.

Under Google’s system, advertisers are ar-
ranged by “rank numbers.” Advertiser k’s rank
number is the product of his bid and “quality
score” �k.

19 Thus, under Google’s system, g(1)
is the advertiser with the highest rank number,
g(2) is the advertiser with the second highest
rank number, and so on. Per-click payment of
advertiser g(i) is equal to the smallest amount
x(i), such that �g(i�1)x

(i) is greater than or equal
to the next highest advertiser’s rank number,
i.e., x(i) � �g(i�1)bg(i�1)/�g(i). Then, bids form a

locally envy-free equilibrium if and only if, for
any i and j, �i�g(i)(sg(i) � �g(i�1)bg(i�1)/�g(i)) �
�j�g(i)(sg(i) � �g(j�1)bg(j�1)/�g(i)). Dividing both
sides by �g(i) and multiplying by �g(i), we get
�i(�g(i)sg(i) � �g(i�1)bg(i�1)) � �j(�g(i)sg(i) �
�g(j�1)bg(j�1)). Hence, the set of bids {bk} is a
locally envy-free equilibrium under Google’s ver-
sion of GSP with position-specific factors {�i}, ad-
vertiser-specific quality scores {�k}, and per-click
values {sk}, if and only if the set of bids {�kbk} is an
equilibrium of our basic model with position-specific
CTRs {�i}, per-click values {�ksk}, and no quality
scores or advertiser-specific factors in CTRs.

IV. Main Result: GSP and Generalized English
Auction

In the model analyzed in the previous section,
we assume that advertisers have converged to a
long-run steady state, have learned each other’s
values, and no longer have incentives to change
their bids. But how do they converge to such a
situation? In this section, we introduce the gen-
eralized English auction, an analogue of the
standard English auction corresponding to GSP,
to help us answer this question.

In the generalized English auction, there is a
clock showing the current price, which contin-
uously increases over time. Initially, the price
on the clock is zero, and all advertisers are in
the auction. An advertiser can drop out at any
time, and his bid is the price on the clock at the
time when he drops out. The auction is over
when the next-to-last advertiser drops out. The
ad of the last remaining advertiser is placed in
the best position on the screen, and this adver-
tiser’s payment per click is equal to the price at
which the next-to-last advertiser dropped out.
The ad of the next-to-last advertiser is placed
second, and his payment per click is equal to the
third-highest advertiser’s bid, and so on.20 In
other words, the vector of bids obtained in the
generalized English auction is used to allocate

19 Initially, Google simply used click-through rates to
determine quality scores, setting �k � �k. Later, however, it
switched to a less transparent system for determining qual-
ity scores, incorporating such factors as the relevance of an
ad’s text and the quality of an advertiser’s Web page.

20 If several advertisers drop out simultaneously, one of
them is chosen randomly. Whenever an advertiser drops
out, the clock is stopped, and other advertisers are also
allowed to drop out; again, if several advertisers want to
drop out, one of them is chosen randomly. If several adver-
tisers end up dropping out at the same price, the first one to
drop out is placed in the lowest position of the still available
ones, the next one to the position right above that, and so on.
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the objects and compute the prices according to
the rules of GSP. With one object, the general-
ized English auction becomes a simple English
auction.21

We view the generalized English auction in
the same light as the tâtonnement processes in
the theory of general equilibrium (see, e.g., An-
dreu Mas-Colell, Michael D. Whinston, and
Jerry R. Green 1995, sect. 17.H) and the salary
adjustment process in the theory of matching in
labor markets with heterogeneous firms and
workers (Crawford and Knoer 1981).22 While
all these processes, taken literally, happen in
“imaginary time,” they are meant to resemble
the underlying dynamics of the actual markets,
to help us distinguish more plausible equilibria
from less plausible ones, characterize their sta-
bility and other properties, and examine the
significance of the underlying assumptions. As
in the case of the tâtonnement and salary ad-
justment processes, there are many features of
real markets not captured by the generalized
English auction, but we believe that it provides
a natural and useful approximation.

To define the game formally, assume that
there are N � 2 slots and K � N � 1 advertis-
ers. (Cases with K 
 N � 1 require only minor
modifications in the proof.) Click-through rates
�i are commonly known, with �N�1 � 0. Ad-
vertisers’ per-click valuations sk are drawn from
a continuous distribution F� on [0; ��) with a
continuous density function f� that is positive
everywhere on (0, ��). Each advertiser knows
his valuation and the distribution of other ad-
vertisers’ valuations.

The strategy of an advertiser assigns the
choice of dropping out or not for any history of
the game, given that the advertiser has not pre-
viously dropped out. In other words, the strat-
egy can be represented as a function pk(i, h, sk),
where sk is the value per click of advertiser k, pk

is the price at which he drops out, i is the
number of advertisers remaining (including ad-
vertiser k), and h � (bi�1, ... , bN�1) is the
history of prices at which previous advertisers
have dropped out. (As a result, the price that
advertiser k would have to pay per click if he
dropped out next is equal to bi�1, unless the
history is empty, in which case we say that
bi�1 � 0.) The following theorem shows that
this game has a unique perfect Bayesian equi-
librium with strategies continuous in advertis-
ers’ valuations.23 The payoffs of all advertisers
in this equilibrium are equal to VCG payoffs.

THEOREM 2: In the unique perfect Bayesian
equilibrium of the generalized English auction
with strategies continuous in sk, an advertiser
with value sk drops out at price

(2) pk �i, h, sk � � sk �
�i

�i � 1
�sk � bi � 1 �.

In this equilibrium, each advertiser’s result-
ing position and payoff are the same as in the
dominant-strategy equilibrium of the game
induced by VCG. This equilibrium is ex post:
the strategy of each advertiser is a best re-
sponse to other advertisers’ strategies re-
gardless of their realized values.

The intuition of the proof is as follows. First,
with i players remaining and the next highest
bid equal to bi�1, it is a dominated strategy for
a player with value s to drop out before price p
reaches the level at which he is indifferent be-
tween getting position i and paying bi�1 per
click and getting position i � 1 and paying p per
click. Next, if for some set of types it is not
optimal to drop out at this “borderline” price
level, we can consider the lowest such type, and

21 This version of the English auction is also known as
the “Japanese” or “button” auction.

22 Of course, the generalized English auction is very
different from the salary adjustment process of Crawford
and Knoer (1981) and its application to multi-unit auctions
(Demange et al. 1986). In Demange et al. (1986), bidding
proceeds simultaneously for all items and the auctioneer
keeps track of a vector of item-specific prices, while in the
generalized English auction bidding proceeds, in essence,
sequentially, and the auctioneer keeps track of only one
price.

23 Without this restriction, multiple equilibria exist, even
in the simplest English auction with two bidders and one
object. For example, suppose there is one object for sale and
two bidders with independent private values for this object
distributed exponentially on [0, �). Consider the following
pair of strategies. If a bidder’s value is in the interval [0, 1]
or in the interval [2, �), he drops out when the clock reaches
his value. If bidder 1’s value is in the interval (1, 2), he
drops out at 1, and if bidder 2’s value is in the interval (1,
2), he drops out at 2. This pair of strategies, together with
appropriate beliefs, forms a perfect Bayesian equilibrium.
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then once the clock reaches this price level, a
player of this type will know that he has the
lowest per-click value of the remaining players.
But then he will also know that the other re-
maining players will drop out only at price
levels at which he will find it unprofitable to
compete with them for the higher positions.

The result of Theorem 2 resembles the classic
result on the equivalence of the English auction
and the second-price sealed-bid auction under
private values (Vickrey 1961). Note, however,
that the intuition is very different: Vickrey’s
result follows simply from the existence of
equilibria in dominant strategies, whereas in our
case such strategies do not exist, and bids do
depend on other player’s bids. Also, our result is
very different from the revenue equivalence the-
orem: payoffs in the generalized English auc-
tion coincide with VCG payments for all
realizations of values, not only in expectation,
and the result does not hinge on the assumptions
of symmetric bidders or common priors.

The equilibrium described in Theorem 2 is an
ex post equilibrium. As long as all advertisers
other than advertiser k follow the equilibrium
strategy described in Theorem 2, it is a best
response for advertiser k to follow his equilibrium
strategy, for any realization of other advertisers’
values. Thus, the outcome implemented by this
mechanism depends only on the realization of
advertisers’ values and does not depend on adver-
tisers’ beliefs about each other’s types.

Clearly, any dominant strategy solvable game
has an ex post equilibrium. However, the gen-
eralized English auction is not dominant strat-
egy solvable. This combination of properties is
quite striking: the equilibrium is unique and
efficient, and the strategy of each advertiser
does not depend on the distribution of other
advertisers’ values, yet advertisers do not have
dominant strategies.24 The generalized English

auction is a particularly interesting example,
because it can be viewed as a model of a mech-
anism that has “emerged in the wild.”

V. Conclusion

We investigate a new mechanism that we call
the generalized second-price auction. GSP is
tailored to the unique features of the market for
Internet advertisements. As far as we know, this
mechanism was first used in 2002. As of May
2006, the annual revenues from GSP auctions
were on the order of $10 billion.

GSP looks similar to the VCG mechanism,
because just like in the standard second-price
auction, the payment of a bidder does not di-
rectly depend on his bid. Although GSP looks
similar to VCG, its properties are very different,
and equilibrium behavior is far from straight-
forward. In particular, unlike the VCG mecha-
nism, GSP generally does not have an
equilibrium in dominant strategies, and truth-
telling is not an equilibrium of GSP. We show
that the generalized English auction that corre-
sponds to the generalized second-price auction
has a unique equilibrium.

This equilibrium has some notable properties.
The bid functions have explicit analytic formu-
las, which, combined with equilibrium unique-
ness, make our results a useful starting point for
empirical analysis. Moreover, these functions
do not depend on bidders’ beliefs about each
other’s types: the outcome of the auction de-
pends only on the realizations of bidders’ val-
ues. This is one of the very few mechanisms
encountered in practice that are not dominant
strategy solvable and nevertheless have this
property. It is particularly interesting that a
mechanism with such notable features in theory
and such enormous popularity in practice devel-
oped as a result of evolution of inefficient mar-
ket institutions, which were gradually replaced
by increasingly superior designs.24 Dirk Bergemann and Stephen Morris (2005) show that

an outcome implementable by robust mechanisms must be
implementable in dominant strategies. Indeed, the outcome
implemented by the generalized English auction can be
implemented in dominant strategies by the VCG mecha-
nism; however, VCG is not the mechanism that is used in
practice. Philippe Jehiel and Benny Moldovanu (2001) and
Jehiel et al. (2006) show that, generically, any efficient
choice function is not Bayes-Nash implementable and any
nontrivial choice function is not ex post implementable, if
values are interdependent and signals are multidimensional.

Of course, in our model, values are private, and, crucially,
signals are single-dimensional, even though multiple differ-
ent objects are for sale. This makes efficient ex post imple-
mentation feasible. For other examples of mechanisms that
allocate multiple different objects to bidders with single-
dimensional types, see Moldovanu and Aner Sela (2001)
and Thomas Kittsteiner and Moldovanu (2005).
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APPENDIX: PROOFS

PROOF OF LEMMA 1:
By definition, in any locally envy-free

equilibrium outcome, no advertiser can prof-
itably rematch with the position assigned to
the advertiser right above him. Also, no adver-
tiser (a) can profitably rematch with a position
assigned to an advertiser below him (b)—if
such a profitable rematching existed, advertiser
a would find it profitable to slightly undercut
advertiser b in game 	 and get b’s position and
payment. But this would contradict the assump-
tion that we are in equilibrium.25

Hence, we need only show that no advertiser
can profitably rematch with the position as-
signed to an advertiser more than one spot
above him. First, note that in any locally envy-
free equilibrium, the resulting matching must be
assortative, i.e., for any i, the advertiser as-
signed to position i has a higher per-click val-
uation than the advertiser assigned to position
i � 1 and, therefore, the advertiser with the
highest per-click value must be assigned to the
top position, the advertiser with the second-
highest per-click value to the second-highest
position, and so on.

Indeed, suppose sg(i) and sg(i � 1) are the
values of advertisers assigned to positions i
and i � 1. Equilibrium restrictions imply that
�i sg(i) � p(i) � �i � 1sg(i) � p(i � 1) (nobody
wants to move one position down), and local
envy-freeness implies that �i � 1sg(i � 1) �
p(i � 1) � �i sg(i � 1) � p(i) (nobody wants to
move one position up). Manipulating the in-
equalities above yields �isg(i) � �isg(i�1) �
�i�1sg(i�1) � �i�1sg(i), thus (�i � �i�1)sg(i) �
(�i � �i�1)sg(i�1). Since �i � �i�1, we have
sg(i) � sg(i�1), and hence the locally envy-free
equilibrium outcome must be an assortative
match.

Now, let us show that no advertiser can
profitably rematch with the position assigned
to an advertiser more than one spot above

him. Suppose the advertiser assigned to posi-
tion i is considering rematching with position
m � i � 1. Since the equilibrium is locally
envy-free, we have

�i sg�i� � p�i� � �i � 1 sg�i� � p�i � 1�,

�i � 1 sg�i � 1� � p�i � 1� � �i � 2 sg�i � 1� � p�i � 2�,

�

�m�1sg�m�1� � p�m�1� � �msg�m�1� � p�m�.

Since �j � �j�1 for any j, and sg(i) � sg( j) for
any i � j, the inequalities above remain valid
after replacing sg(i) with sg( j). Doing that, then
adding all inequalities up, and canceling out the
redundant elements, we get �isg(i) � p(i) �
�msg(i) � p(m). But that implies that the adver-
tiser assigned to position i cannot rematch prof-
itably with position m, and we are done.

PROOF OF LEMMA 2:
Take a stable assignment. By a result of

Shapley and Shubik (1972), this assignment
must be efficient, and hence assortative, and so
without loss of generality we can assume that
advertisers are labeled in decreasing order of
their bids (i.e., sj � sk whenever j � k) and that
advertiser i is matched with position i, with
associated payment pi.

Let us construct a locally envy-free equilib-
rium with the corresponding outcome. Let b1 �
s1 and bi � pi�1/�i�1 for i � 1. Let us show
that this set of strategies is a locally envy-free
equilibrium. First, note that for any i, bi � bi�1
(because otherwise we would have, for some i,
pi�1/�i�1 � pi/�i f si � pi�1/�i�1 � si �
pi/�i f �i�1si � pi�1 � �isi � pi, which
would imply that player i could rematch profit-
ably). Therefore, position allocations and pay-
ments resulting from this strategy profile will
coincide with those in the original stable assign-
ment. To see that this strategy profile is an
equilibrium, note that deviating and moving to a
different position in this strategy profile is at
most as profitable for any player as rematching
with the corresponding position in the assign-
ment game. To see that this equilibrium is lo-
cally envy-free, note that the payoff from
swapping with the bidder above is exactly equal

25 This argument relies on the fact that in equilibrium,
no two (or more) advertisers bid the same amount, which
is straightforward to prove: since all advertisers’ per-
click values are different, and all ties are broken ran-
domly with equal probabilities, at least one such
advertisers would find it profitable to bid slightly higher
or slightly lower.
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to the payoff from rematching with that player’s
position in the assignment game.

PROOF OF THEOREM 1:
First, we need to check that the order of the

bids is preserved, i.e., b*j � b*j�1 for any j �
min{N, K}. For j � 2, this is equivalent to

(3)
pV,� j � 1�

�j � 1
�

pV,� j�

�j

�

��j � 1 � �j �sj 	 pV,� j�

�j � 1
�

pV,� j�

�j

�

�j ��j � 1 � �j �sj � ��j � 1 � �j � pV,� j�

�

�j sj � pV,� j�.

For j � 1, b*j � b*j � 1 is equivalent to

(4) s1 �
pV,�1�

�1

�

�1 s1 � pV,�1�.

To see that for any j, �j sj � pV,( j), note first
that in the game induced by VCG, each player
can guarantee himself the payoff of at least
zero (by bidding zero), and hence in any
equilibrium his payoff from clicks is at least
as high as his payment. To prove that the
inequality is strict, note that if player j’s value
per click were slightly lower, e.g., sj � 

instead of sj , 
 � sj � sj � 1, then his pay-
ment in the truth-telling equilibrium would
still be the same (because it does not depend
on his own bid, given the allocation of posi-
tions), and so pV,( j) � �j(sj � 
) � �j sj.
Thus, for any j, b*j � b*j � 1, and therefore
each bidder’s position is the same as in the

truthful equilibrium of VCG. Therefore, by
construction, payments are also the same.

Next, to see that no bidder j can benefit by
bidding less than b*j, suppose that he bids an
amount b� � b*j that puts him in position j� � j.
Then, by construction, his payment will be
equal to the amount that he would need to pay
to be in position j� under VCG, provided that
other players bid truthfully. But truthful bidding
is an equilibrium under VCG, and so such de-
viation cannot be profitable there—hence, it
cannot be profitable in strategy profile B* of
game 	 either.

To see that no bidder j can benefit by bidding
more than b*j , suppose that he bids an amount
b� � b*j that puts him in position j� � j. Then
the net payoff from this deviation is equal to
(�j� � �j)sj � (�j�b*j� � �jbj � 1) � (�j� �
�j)sj � (�j�b*j�� 1 � �jbj � 1) � ¥i�j�

j�1 (�i �
�i � 1)sj � ¥i�j�

j�1 ( pV,(i) � p V,(i � 1)) � ¥i�j�
j�1

(�i � �i � 1)sj � ¥i�j�
j�1 (�i � �i � 1)si � 1. But

since sj � si � 1 for any i � j, the last expres-
sion is less than or equal to zero, and hence
the deviation is not profitable.

To check that this equilibrium is locally
envy-free, note that if bidder j swapped his bids
with bidder j � 1, his payoff would change by
(�j�1 � �j)sj � (�j�1b*j � �jbj�1) � (�j�1 �
�j)sj � (pV,( j�1) � pV,( j)) � (�j�1 � �j)sj �
(pV,( j�1) � pV,( j)) � (�j�1 � �j)sj � (�j�1 �
�j)sj � 0. In other words, each bidder is indif-
ferent between his actual payoff and his payoff
after swapping bids with the bidder above, and
hence the equilibrium is locally envy-free.

Let us now show that B* is the best locally
envy-free equilibrium for the bidders and the
worst locally envy-free equilibrium for the
search engine. The core-elongation property of
the assignment game (Shapley and Shubik
1972; Crawford and Knoer 1981) implies that
there exists an assignment that is the best stable
assignment for all advertisers and the worst
stable assignment for all positions. Suppose this
assignment is characterized by a vector of
payments p � (p1, ... , pK). Let pV � (p1

V, ... ,
pK

V ) be the set of dominant-strategy VCG pay-
ments, i.e., the set of payments in equilibrium
B* of game 	.

In any stable assignment, pK must be at least
as high as �KsK�1, since otherwise advertiser
K � 1 would find it profitable to match with
position K. On the other hand, pK

V � �KsK�1,
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and hence in the advertiser-optimal stable as-
signment, pK � pK

V.
Next, in any stable assignment, it must be the

case that pK�1 � pK � (�K�1 � �K)sK—
otherwise, advertiser K would find it profitable
to rematch with position K � 1. Hence, pK�1 �
(�K�1 � �K)sK � pK � (�K�1 � �K)sK � pK

V �
pK�1

V , and so in the advertiser-optimal stable as-
signment, pK�1 � pK�1

V .
Proceeding by induction, we get pj � pj

V for
any j � K in the advertiser-optimal stable as-
signment, and so in any locally envy-free equi-
librium of game 	, the total revenue of the seller
is at least as high as ¥j�1

K pj
V.

PROOF OF THEOREM 2:
First, note that in equilibrium, for any player

k, any history h, and any number of remaining
players i, the drop-out price pk(i, h, sk) tends to
infinity as sk tends to infinity. (Otherwise, there
would exist a player for whom it was optimal to
deviate from his strategy and stay longer, for a
sufficiently high value s.) Next, take any equi-
librium of the generalized English auction. Note
that if in this equilibrium pk(i, h, sk) � pk(i, h,
s�k) for some k, h, i, and types sk � s�k, then it has
to be the case that both types sk and s�k are
indifferent between dropping out at pk(i, h, sk)
and pk(i, h, s�k). (Otherwise, one of them would
be able to increase his payoff by mimicking the
other.) Consequently, we can “swap” such play-
ers’ strategies, and therefore there exists an “ob-
servationally equivalent” equilibrium in which
strategies are nondecreasing in types; also, they
are still continuous in own values. Consider this
equilibrium profile of strategies pk(i, h, sk).

Let q(i, bi�1, s) be such a price that a player
with value s is indifferent between getting po-
sition i at price bi�1 and position i � 1 at price
q(i, bi�1, s). That is,

(5) �i � 1 �s � q�i, bi � 1 , s�� � �i �s � bi � 1 �

�

q�i, bi � 1 , s� � s �
�i

�i � 1
�s � bi � 1 �.

Slightly abusing notation, let q(i, h, s) � q(i,
bi � 1, s), where bi � 1 is the last bid at which
a player dropped out in history h. (This player

received position i � 1. If history h is empty,
we set bi � 1 � 0.) We will now show that for
any i, k, h, and sk, pk(i, h, sk) � q(i, h, sk).

Suppose that is not the case, and take the
largest i for which there exist such history h
(with the last player dropping out at bi�1),
player k, and type sk (surviving with positive
probability on the equilibrium path) that pk(i, h,
sk) 
 q(i, h, sk). Since by assumption, all strat-
egies up to this stage were pk( � , � , � ) � q( � ,
� , � ), we know that there exists a value smin �
bi�1, such that all players with values less than
smin have dropped out, and all players with
values greater than smin are still in the auction.

Step 1: Suppose for some type s � smin ,
pmax(i, h, s) � maxk pk(i, h, s) � q(i, h, s). Let
s0 be the smallest type, and let k be the corre-
sponding player, such that pk(i, h, s0) � pmax(i,
h, s); clearly, s0 � s. Without loss of generality,
we can assume that there is a positive mass of
types of other players dropping out at or before
pk(i, h, s0).26

Step 1(a). Suppose first that there is a positive
mass of types of other players dropping out at
pk(i, h, s0) � pmax(i, h, s). That implies that with
positive probability, player k of type s0 will
remain in the subgame following the drop-out
of some other player at pk(i, h, s0) (since ties are
broken randomly). Let us show that in this
subgame, player k of type s0 will be the first
player to drop out with probability 1. Suppose
that is not the case, and let l � i � 1 be the
smallest number such that he gets position l
with positive probability.

Consider any continuation of history h, hl�2,
such that the last player to drop out in that
history gets position l � 2 and drops out at price
bl�2, player k of type s0 is one of the remaining
l � 1 players, there is a positive probability that
player k gets position l in the continuation sub-
game following history hl�2, and there is zero

26 Otherwise, we have @j 
 k, pj(i, h, s0) � pj(i, h, s) �
pmax(i, h, s) � pk(i, h, s0)f @j 
 k, pj(i, h, s0) � pk(i, h, s0)
and @s� � s0, pj(i, h, s�) � pk(i, h, s0). But we also have pk(i,
h, s0) � pmax(i, h, s) � q(i, h, s) � q(i, h, s0), and so for
some s� � s0 we have pmax(i, h, s�) � q(i, h, s�) and pmax(i,
h, s�) � pmax(i, h, s). We can then consider s�0 in place of s0,
where s�0 is the smallest type, and k� is the corresponding
player, such that pk�(i, h, s�0) � pmax(i, h, s�). There is a
positive mass of types of other players dropping out before
pk�(i, h, s�0).
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probability that player k gets position m for any
m � l. Note that s0 � bl�2—otherwise, it
would have been optimal for player k to drop
out earlier. Consider pk(l � 1, hl�2, s0). Since
player k of type s0 gets position l with positive
probability in this subgame, there must be a
positive mass of types of other players who drop
out no later than pk(l � 1, hl�2, s0). Take the
highest such type, s�, and the corresponding
player j. It has to be the case that s� � s0 �
bl�2. It also has to be the case that q(l � 1,
hl�2, s�) is less than or equal to pk(l � 1, hl�2,
s0). (Otherwise, player j with value s� would be
playing a strategy weakly dominated by drop-
ping out at q(l � 1, hl�2, s�), with a positive
probability of earning strictly less than he would
have earned if he waited until that price level.)
Therefore, pk(l � 1, hl�2, s0) � q(l � 1, hl�2,
s�) � q(l � 1, hl�2, s0) � bl�2. Let us show that
it would be strictly better for player k with type
s0 to drop out at q(l � 1, hl�2, s0) instead of
waiting until pk(l � 1, hl�2, s0). Indeed, if
nobody else drops out in between, or someone
drops out before q(l � 1, hl�2, s0), these strat-
egies would result in identical payoffs. Other-
wise, payoffs are different, and this happens
with positive probability. Under the former
strategy, player k earns

(6) �l � 1 �s0 � bl � 2 �.

Under the latter strategy, he earns

(7) �l �s0 � bl � 1 �,

where bl � 1 is the price at which somebody
else dropped out. (The probability of getting a
spot m � l is zero by construction.) With
probability 1, bl � 1 � q(l � 1, hl � 2, s0), and
with positive probability, bl � 1 � q(l � 1,
hl � 2, s0), so the expected payoff from wait-
ing until pk(l � 1, hl � 2, s0) is strictly less
than the expected payoff from dropping out at
q(l � 1, hl � 2, s0): E[�l(s0 � bl � 1)] �
�l(s0 � q(l � 1, hl � 2, s0)) � �l(s0 � (s0 �
(�l � 1/�l)(s0 � bl � 2))) � �l � 1(s0 � bl � 2).

Therefore, in the subgame following the
drop-out of some other player at pk(i, h, s0),
player k of type s0 gets position i � 1 with
probability 1, and therefore his payoff is

�i�1(s0 � pk(i, h, s0)). Now suppose player k
dropped out at a price pk(i, h, s0) � 
 instead of
waiting until pk(i, h, s0). If somebody else drops
out before pk(i, h, s0) � 
 or after pk(i, h, s0), or
drops out at pk(i, h, s0) but player k is chosen to
drop out first, then these two strategies result in
identical payoffs. The probability that some-
body drops out in the interval (pk(i, h, s0) � 
,
pk(i, h, s0)) goes to zero as 
 goes to zero, and
the possible difference in the payoffs is finite, so
the difference in payoffs due to this contingency
goes to zero as 
 goes to zero. Finally, there is
a positive probability that somebody else drops
out at pk(i, h, s0) and is chosen to drop out first.
If player k drops out before that, at pk(i, h, s0) �

, his payoff is �i(s0 � bi�1). If he waits until
pk(i, h, s0), we know that in the subsequent
subgame his payoff is �i�1(s0 � pk(i, h, s0)) �
�i�1(s0 � q(i, h, s0)) � �i(s0 � bi�1). There-
fore, for a sufficiently small 
, it is strictly better
for player k with value s0 to drop out at pk(i, h,
s0) � 
 instead of waiting until pk(i, h, s0),
which contradicts the assumption that {pj( � , � ,
� )} is an equilibrium.

Step 1(b). Now, suppose there is mass zero of
types of other players dropping out at pk(i, h,
s0) � pmax(i, h, s), but there is a positive mass
dropping out before pk(i, h, s0). Consider a
sequence of small positive numbers (
n) con-
verging to 0 as n 3 � and sequences (�n

1),
(�n

2), ... , (�n
i�1), where �n

l is the probability
that player k with value s0 will end up in posi-
tion l if another player drops out at price (pk(i,
h, s0) � 
n). Let B � �1s0, i.e., the maximum
payoff that a player with value s0 can possibly
get in the auction. Now, if (�n

i�1) converges to
1 and (�n

l ) converges to zero for all l � i � 1,
then, by an argument similar to the one at the
end of Step 1(a), it is better for player k of type
s0 to drop out at some time pk(i, h, s0) � 
.27 If
(�n

i�1) does not converge to 1, take the smallest
(i.e., best) l for which (�n

l ) does not converge to
zero, and take a subsequence of 
n along which
(�n

l ) converges to some positive number �. Let
s1 be the value such that for a random draw of
types of remaining players other than k, condi-

27 If some other player drops out between pk(i, h, s0) �

 and pk(i, h, s0), the benefit of staying longer tends to zero
(it is at most B(1 � � i�1)), while the cost converges to a
positive number (the difference between getting position i at
price bi�1 and position i � 1 at price pk(i, h, s0)).
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tional on each draw being greater than s0, the
probability that at least one type is less than s1
is equal to �/2 (i.e., �j
k [(1 � Fj(s1))/(1 �
Fj(s0))] � 1 � �/2). Clearly, s1 � s0. Take a
small 
n, and consider a subgame following
some continuation of history h, hl�2, where the
(l � 2)nd player drops out at bl�2, l � 1 players,
including player k, remain, and player k gets
position l with probability close to � (and any
position better than l with probability close to
zero). Consider pk(l � 1, hl�2, s0). There must
exist a player, j, such that pj(l � 1, hl�2, s1) �
pk(l � 1, hl�2, s0). (Otherwise, the probability
of player k surviving until position l is less than
or close to �/2, and thus cannot be close to �.)
But then, by an argument similar to the one in
Step 1(a), in this subgame it is strictly better for
player k to drop out slightly earlier than pk(l �
1, hl�2, s0): conditional on somebody else drop-
ping out in between, the benefit is close to zero
(the probability of getting a position better than
l times the highest possible benefit B), while the
cost is close to a positive number (the payoff from
being in position l � 1 at price bl�2 versus the
payoff from being in position l at price at least
[s1 � (�l�1/�l)(s1 � bl�2)])—contradiction.

Step 2: In Step 1, we showed that pmax(i, h,
s) � maxk pk(i, h, s) cannot be greater than q(i,
h, s), and therefore for any player k and type s �
smin , pk(i, h, s) � q(i, h, s). Take some value s �
smin and player k. Suppose pk(i, h, s) � q(i, h, s).
Take some other player j. From Step 1, we have
pj(i, h, smin) � q(i, h, smin) � q(i, h, s), and
therefore if player k waited until q(i, h, s) in-
stead of dropping out at pk(i, h, s), the proba-
bility that someone dropped out in between
would be positive, and hence the payoff would
be strictly greater (by the definition of function
q�, player k with value s strictly prefers being
in position i � 1 or higher at any price less than
q(i, h, s) to being in position i at price bi�1),
which is impossible in equilibrium. Hence, pk(i,
h, s) � q(i, h, s) for all s � smin. By continuity,
we also have pk(i, h, smin) � q(i, h, smin).
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