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Abstract

In some mechanism design settings, it is plausible that agents cannot consider

every possible misreport of their type. One can reasonably ask whether guard-

ing only against some subset of likely misreports allows for more mechanisms than

guarding against all possible misreports; if so, such a framework could provide

a way to overturn existing negative results. Accordingly, we formulate a plau-

sible notion of local incentive-compatibility in both continuous and discrete type

spaces, in which agents only consider misreports that are close to their true type.

We show that on many preference domains — including any convex domain of

cardinal preferences, any domain of ordinal preference types with convex closure,

single-peaked ordinal preferences, and successive single-crossing ordinal preferences

— local incentive-compatibility actually implies full incentive-compatibility, for all

probabilistic mechanisms. On domains of cardinal preferences that satisfy a strong

nonconvexity condition, including the domain of single-peaked cardinal preferences,

it does not. Our results provide a strengthening of many existing impossibility and

characterization theorems.
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1 Introduction

Perhaps the most pervasive and fundamental concept in mechanism design is incentive-

compatibility: no type of any agent should have an incentive to pretend to be any other

type. This concept plays a crucial role in the characterization and impossibility results

that comprise much of the axiomatic mechanism design literature. A typical such re-

sult shows that in some setting, the requirement of incentive-compatibility, combined

with some other normative requirements, can be satisfied only by some specific class of

mechanisms, or cannot be satisfied at all. This literature begins with the seminal Gibbard-

Satterthwaite theorem [22, 43], showing that the only voting mechanisms with unrestricted

ordinal preferences that are (dominant-strategy) incentive-compatible and can choose at

least three different outcomes are dictatorships. Subsequent results include character-

izations for voting with single-peaked preferences [34], single-crossing preferences [41],

and multidimensional separable preferences [7]; impossibility results for two-sided stable

matching [38, 2] and for efficient one-sided matching (assignment) [12, 46]; and many

more.

However, in some settings, it is reasonable to think that an agent might not be able to

consider all possible misreports of his preferences. For example, some mechanisms require

stating a preference ordering over alternatives. In the Cambridge, Massachusetts, city

council elections in 2009, there were 20 candidates (not counting write-ins), and a ballot

consisted of a ranking of any subset of these candidates. In the recently redesigned New

York City high school matching mechanism, each student may rank up to 12 preferred

high school programs, out of over 500 available, and many students do list 12 programs

[1]. In these cases, it is unlikely that an agent could contemplate all possible reorderings

in order to check for advantageous misreports.

This raises the question of whether there are mechanisms in these settings that are

not fully incentive-compatible, but do provide incentives against a few potentially salient

misreports. If so, a mechanism designer might be willing to settle for this weaker form of

incentive-compatibility, and existing characterization or impossibility results could con-

ceivably be overturned.

In this paper, we give a general formulation of this kind of weakened incentive-

compatibility, which we call local incentive-compatibility, the notion being that it guards

against “small” misreports of preferences. After formulating our notion of mechanisms

over completely general type spaces, we specialize separately to define local incentive-

compatibility for mechanisms using cardinal preferences and for those using ordinal pref-
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erences (actually we consider polyhedral type spaces, for which ordinal preferences are a

special case). For cardinal preferences, we will say that a mechanism is locally incentive-

compatible if no agent type can neither benefit from misreporting as some nearby type

nor serve as a profitable misreport for some nearby type. For ordinal preferences, we will

say that a mechanism is locally incentive-compatible if no agent type wants to misreport

by switching some two consecutive outcomes in his preference ranking. Throughout most

of the paper, we consider probabilistic mechanisms, which specify a distribution over out-

comes as a function of the agent’s type. Randomness may be inherent in the mechanism,

or it may arise subjectively for each agent via his uncertainty over other agents’ types.

Of course, our results that hold for all probabilistic mechanisms also hold a fortiori for all

deterministic mechanisms.

We show that for the type spaces encountered in many mechanism design problems

— including any convex domain of cardinal preferences, domains of ordinal preferences

with convex closure, single-peaked ordinal preferences, successive single-crossing ordinal

preferences, and convex domains of preferences in settings with monetary transfers — local

incentive-compatibility in our sense actually implies full incentive-compatibility, either for

single-agent mechanisms or multi-agent mechanisms with independent types.

These results are in fact relevant for three reasons. The first is that they directly ad-

dress the question already raised, which can be viewed as mechanism design in a boundedly

rational framework: if a mechanism designer is concerned only about some prespecified set

of likely misreports, rather than all conceivable misreports, does this enlarge the space of

possible mechanisms? If the designer accepts our subset of misreports as being likely, then

the answer is no. (Of course, if there are other misreports that are also considered likely,

then the answer is still no; these results are robust to the possibility that our definition of

local misreports is too stringent.) In particular, on these type spaces, requiring only local

rather than full incentive-compatibility does not help in overcoming impossibility results.

The second reason is that there is a tradition in social choice theory of looking for the

weakest assumptions necessary to obtain a characterization result. Our results immedi-

ately imply a weakening of the assumptions behind many results on incentive-compatible

mechanisms, such as most of those mentioned in the first paragraph. Rather than assum-

ing, say, dominant-strategy incentive-compatibility (together with some other normative

criteria) to obtain a characterization result in some setting, we need only assume local

incentive-compatibility, and the same conclusion ensues.

In particular, for ordinal type spaces, our results imply “computational” versions

of many existing impossibility or characterization results. For example, the Gibbard-
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Satterthwaite theorem says that any (deterministic) voting rule can be strategically ma-

nipulated at some preference profile, unless it is dictatorial or has at most two possible

outcomes. The computational analogue states that any voting rule whose outcome is easy

to compute can be easily manipulated at some preference profile, unless it is dictatorial

or has at most two outcomes. Here by “easy” we mean computable in polynomial time

as a function of the numbers of voters and outcomes, as in [8, 9]. The computational ver-

sion of Gibbard-Satterthwaite follows from the original version and our result that local

incentive-compatibility implies full incentive-compatibility: Any rule that is manipulable

has some local manipulation, consisting of switching two candidates who are consecutive

in the ranking, at some profile. So the manipulator can simply consider each such ma-

nipulation, starting from his true preferences, and compute the outcome of the voting

rule; this computation can be done in polynomial time and will uncover an advantageous

manipulation at least some of the time. Actually, stronger results extending this idea

are already known (e.g. [29]; see also [17] for a similar result), but our results lead more

generally to computational versions of many other existing characterization results by the

same argument.

The third reason our results are relevant is that they can potentially provide a shortcut

to proving incentive-compatibility for newly designed mechanisms in the future: on the

appropriate type spaces, one only has to show that a mechanism is locally incentive-

compatible rather than checking all possible misreports.

The aforementioned results show that, for many important type spaces, local incentive-

compatibility implies full incentive-compatibility. On the other hand, there are type

spaces where the implication does not hold. In particular, we show this for domains

of cardinal preferences that satisfy a strong nonconvexity condition (essentially, that the

intersection of the domain with some open half-space be disconnected), and we also give a

separate proof and a more detailed investigation for dichotomous preferences [15]. These

results would not be compelling if they heavily depended on the way we chose to define

local misreports. However, our negative results in these domains are relatively strong,

showing that mechanisms can be immune to a large fraction of misreports without being

fully incentive-compatible. In particular, for the domain of dichotomous preferences, we

show that almost all of the incentive-compatibility constraints are logically independent:

for almost any incentive constraint, some mechanism violates it but satisfies all other

constraints.

Our work connects with several existing papers on mechanism design under a subset of

incentive constraints. Green and Laffont [25] consider a general setup in which the space
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of messages that agents can send equals the space of types, with exogenous restrictions on

which messages each type is capable of sending, and study when the revelation principle

applies. Celik [16] and Sher and Vohra [44] consider specific mechanism design problems

under subsets of incentive constraints; they work in settings with monetary transfers

and focus on finding the revenue-maximizing mechanism. There does not appear to be

prior literature asking the general question of when local and full incentive-compatibility

coincide; although in independent work, Sato [42] has simultaneously discovered some of

our results for deterministic mechanisms.

Our work also bears some formal connection to a spate of recent work in settings with

monetary transfers and quasilinear utility. In such a setting, a rule mapping types to out-

comes is implementable if there exists an accompanying payment function (mapping types

to transfers) that makes truthful revelation incentive-compatible. There has recently been

much interest in simple conditions ensuring that a rule is implementable, e.g. [40, 10, 4].

In particular, our work is similar in spirit to a paper by Archer and Kleinberg [3]. They

show that local implementability (suitably defined) implies implementability, on any con-

vex space of cardinal types. However, we focus mainly on mechanisms without monetary

transfers. In Subsection 3.5, we do consider monetary transfers, but we show that local

incentive-compatibility implies full incentive-compatibility for a given mechanism (consist-

ing of an outcome rule and a payment function together), whereas Archer and Kleinberg

consider whether a given outcome rule is implementable by some payment function. Thus,

our result does not follow from the result of Archer and Kleinberg, nor vice versa.

Although our positive results make use of one particular definition of local incentive-

compatibility, this paper does not advocate this definition as necessarily being most be-

haviorally relevant. Rather, the point is to explore one new avenue for thinking about

the practically important question of whether there are interesting mechanisms that are

difficult, but not impossible, to manipulate.

2 Framework

We begin by presenting our general framework and discussing interpretation and modeling

issues. The concrete results will then occupy the following two sections.

5



2.1 Definitions

We will focus on incentives in a mechanism for an individual agent. Subsequently, we

will show how the ideas extend straightforwardly to multi-agent mechanisms, as long as

preferences are private (i.e. do not depend on other agents’ types) and independently

distributed across agents.

From the agent’s point of view, a mechanism takes the agent’s preferences as input

and determines an outcome, or a probability distribution over outcomes. In a voting

context, the outcomes might, say, be candidates; in a matching context, they might be

jobs, schools, or roommates.

Different strands of the mechanism design literature have made different assumptions

about the form of preferences the agent can announce. In contexts where monetary

transfers are available, such as auctions or public projects, it is standard to assume agents

announce their cardinal valuation for each of the possible outcomes. Cardinal preferences

are also assumed in some of the voting and matching literature [5, 28, 46], but usually,

these literatures assume that agents can only report an ordinal ranking of outcomes. In

some contexts, agents are further restricted to rank a limited number of outcomes (such

as the New York City school choice mechanism mentioned above). We will first give a

unified conceptual treatment that covers all of these situations, then specialize to define

local incentive-compatibility in specific settings.

The formal definitions are as follows. Let X, the outcome space, be any finite set; m

will denote its cardinality. Let ∆(X) denote the space of lotteries over X. The agent is

assumed to have expected utility preferences over lotteries. It will be convenient to think

of both lotteries over X and utility functions as elements of the vector space Rm; we will

sometimes perform vector operations on them, such as addition or scalar multiplication.

If the agent’s utility function is u, his payoff from a lottery L is given by the inner product

u · L.

A type is a nonempty subset of Rm. A type space is a set of pairwise disjoint types.

We henceforth use the term type space in preference to domain: the latter term suggests

only an exogenous restriction on the set of utility functions the agent may have, whereas

our notion of a type space conveys both which utility functions are possible and which

ones are mutually indistinguishable from a mechanism’s point of view.

Given a type space T , a (probabilistic) mechanism is a function f : T → ∆(X). Thus,

the mechanism chooses a distribution over outcomes, based on the agent’s (reported) type.

The mechanism is deterministic if f(t) is a degenerate lottery for each t ∈ T .
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Given the outcome space and type space, an incentive constraint is an ordered pair

of types. The interpretation of the constraint (t, t′) is that a type t cannot benefit from

misreporting as type t′. Accordingly, we say that a mechanism f satisfies an incentive

constraint (t, t′) if, for all u ∈ t, u · f(t) ≥ u · f(t′); equivalently, u · (f(t)− f(t′)) ≥ 0. A

mechanism satisfies a set of incentive constraints if it satisfies every constraint in the set.

A mechanism that satisfies the full set of incentive constraints T ×T is fully incentive-

compatible. This is exactly the usual meaning of incentive-compatibility: no agent of any

type can benefit from any misreport of his type.

A set S of incentive constraints is sufficient if every mechanism that satisfies the

constraints S is fully incentive-compatible.

We highlight several important kinds of type spaces, and relevant sets of incentive

constraints that plausibly capture the idea of small misreports.

• A type space T is cardinal if every type is a singleton. In this case, abusing notation,

we will think of types as vectors and T as a subset of Rm; thus, for example, we

write f(u) rather than f({u}).
For a cardinal T , a set S of incentive constraints will be called local incentive con-

straints if, for every u ∈ T , there exists an open neighborhood Nu around u in T

(with the relative topology) such that (u, u′) ∈ S and (u′, u) ∈ S for every u′ ∈ Nu.

A mechanism that satisfies some set of local incentive constraints will be called

locally incentive-compatible. This definition is again intuitive: a mechanism is lo-

cally incentive-compatible if the agent never wants to misreport by a small amount.

For example, if d is the Euclidean distance function on Rm (or any other distance

function that generates the same topology) and ε is a small positive number, then

{(u, u′) | d(u, u′) < ε} is a set of local incentive constraints.

An alternative, perhaps more conventional, definition of local incentive constraints

would simply be that for each u ∈ T , there should exist an open neighborhood Nu

such that (u, u′) ∈ S for all u′ ∈ Nu. That is, each type u has no incentive to

make nearby misreports, but no relationship is assumed between the meanings of

“nearby” for different types. In Subsection 3.1, we will indicate how this definition

would give different results.

• A type space is ordinal if every type is of the form t = {u | u(x1) > u(x2) > · · · >
u(xm)} for some strict ordering x1 Â · · · Â xm of the elements of X. We say that

t represents this ordering. When types are ordinal, f satisfies a constraint (t, t′) if
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and only if the lottery f(t) first-order stochastically dominates f(t′) with respect to

the ordering on X represented by t. (This is easy to show.)

Call two ordinal types t, t′ adjacent if the orderings they represent differ only by a

switch of two outcomes that are consecutive in the orderings represented by t and t′.

For example, suppose the outcome set is {x, y, z}, and we write, say, txyz to denote

the type representing the ordering x Â y Â z. Then txzy is adjacent to tzxy and

txyz but not to tyzx. On an ordinal type space T , the local incentive constraints will

refer to the set of all constraints (t, t′) such that t and t′ are adjacent. We will again

say that a mechanism is locally incentive-compatible if it satisfies the local incentive

constraints.

• More generally, we can consider polyhedral type spaces. In the space of utility

functions, Rm, an open half-space is a set of the form {u | u · λ > c} for some

nonzero λ ∈ Rm and some constant c. If H is such an open half-space, its closure

cl(H) = {u | u · λ ≥ c} is a closed half-space, and its boundary ∂H = {u | u · λ = c}
is a hyperplane. Define an (open) polyhedron to be a nonempty set that is the

intersection of finitely many open half-spaces. A polyhedral type space is a type

space consisting of finitely many types that are all polyhedra.

Define two disjoint polyhedra t, t′ to be adjacent if cl(l)∩cl(t′) contains a nonempty,

relatively open subset of a hyperplane. (A set is relatively open in a hyperplane if it

is open in the relative topology of the hyperplane.) Intuitively, t and t′ are polyhedra

that border along a face.

When the type space T is polyhedral, the local incentive constraints are the con-

straints (t, t′) such that t and t′ are adjacent. Again, a mechanism is locally incentive-

compatible if it satisfies the local incentive constraints.

Any ordinal type space is polyhedral (the type {u | u(x1) > · · · > u(xm)} is the

intersection of the open half-spaces {u | u(xi)− u(xi+1) > 0} for i = 1, . . . ,m− 1).

In this case, one can check that the definitions of adjacency and local incentive

constraints for ordinal types agree with those for polyhedral types. For another

example, we have the types given by truncated rankings, i.e. {u | u(x1) > · · · >

u(xk) and u(xk) > u(y) for all y 6= x1, . . . , xk}, for any distinct outcomes x1, . . . , xk

(where k < m is fixed). These are again polyhedral types; the type corresponding

to a sequence x1, . . . , xk is adjacent to all types that can be obtained by either

switching xi and xi+1 for some i, or replacing xk with some y 6= x1, . . . , xk.
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General polyhedral type spaces come up in the work of Gibbard [24], who consid-

ers probabilistic voting schemes with finite strategy sets, such that every voter is

guaranteed to have a dominant strategy no matter what his cardinal utility function

is. For each strategy, the set of utility functions for which it is dominant forms a

polyhedron (ignoring boundary issues).

We are interested in identifying sufficient sets of incentive constraints, and in particular

in determining whether or not local incentive contraints are sufficient, on various type

spaces.

As mentioned earlier, while all of our analysis is from the point of view of a single agent,

our results apply to multi-agent mechanisms. That is, if a set of incentive constraints is

sufficient for one-agent mechanisms, it is also sufficient for multi-agent mechanisms, as

can be seen by holding fixed the types of all agents except the one who is considering a

misreport.

To make this more precise, define a mechanism with n agents, type space T , and

outcome space X to be a map f : T n → (∆(X))n, specifying a (probabilistic) outcome for

each agent as a function of all the agents’ types. (In specific settings the space of outcome

n-tuples might be more restricted: for example, in a voting mechanism, all agents must

get the same outcome.) Let fi : T n → ∆(X) denote the ith component of f . Suppose

that a set S of incentive constraints is sufficient for T . Now suppose f satisfies S for

each agent i and each profile t−i of types of the other agents: if (ti, t
′
i) ∈ S, then for each

ui ∈ ti, ui · (fi(ti, t−i)−fi(t
′
i, t−i)) ≥ 0. Holding fixed the profile t−i of other agents’ types,

then, the mechanism t 7→ fi(t, t−i) satisfies the constraints S; by sufficiency it is fully

incentive-compatible. So ui · (fi(ti, t−i)− fi(t
′
i, t−i)) ≥ 0 for all ti, t

′
i ∈ T and ui ∈ ti: the

mechanism is fully incentive-compatible (in dominant strategies).

It is in this sense that S is sufficient to ensure full incentive-compatibility in multi-agent

mechanisms. And the same argument applies for other notions of incentive-compatibility,

such as Bayes-Nash, rather than dominant-strategy incentive-compatibility, as long as the

agents’ types are independently distributed. (Without independence, the argument fails,

since we cannot vary ti freely while holding fixed the distribution of t−i.)

2.2 Indirect mechanisms

The framework given above focuses on direct mechanisms; in particular, incentive con-

straints state directly which types are to be prevented from imitating which other types.

One could instead consider indirect mechanisms, in which each type of agent announces
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a message that is then mapped to a distribution over outcomes. This approach could

potentially give a mechanism designer much more freedom. As a bounded-rationality

assumption, one might imagine that agents consider only misreports that are local in the

message space; thus, incentive constraints consist of pairs of messages, and the definition

of locality in a given message space is independent of the mechanism chosen. In this

subsection we outline how a modeling framework along these lines might look and why it

does not seem to be a promising avenue of study.

Given an outcome space X and type space T , an indirect mechanism consists of a

message space M ; a strategy σ : T → M ; and an outcome function g : M → ∆(X). An

incentive constraint is now an ordered pair of elements of M , and a mechanism (M, σ, g)

satisfies the incentive constraint (m, m′) if, for all t ∈ T such that σ(t) = m and all u ∈ t,

we have u · (g(m)− g(m′)) ≥ 0. (If there are no t such that σ(t) = m, then the constraint

is vacuously satisfied.)

The definition of local incentive constraints would depend on the structure of the space

M . One natural approach, mirroring our earlier definition for cardinal type spaces, would

be to require that M be a subset of some Euclidean space; then a set S of incentive

constraints consists of local incentive constraints if every m ∈ M has a neighborhood Nm

such that (m,m′) ∈ S and (m′,m) ∈ S for all m′ ∈ Nm.

We would then say that a function f : T → ∆(X) is locally incentive-compatibly

implementable if there exists some mechanism (M, σ, g) satisfying a set of local incentive

constraints, such that g◦σ = f . The function is fully incentive-compatibly implementable if

some such mechanism satisfies the full set of incentive constraints M×M ; by the revelation

principle, this is equivalent to full incentive-compatibility of the direct mechanism f .

The question would then be: when are there functions f that are locally, but not fully,

incentive-compatibly implementable?

Unfortunately, this approach gives trivial results. For example, if the image of f is

finite (as when T is a polyhedral type space, or whenever f is a deterministic mechanism),

then f is necessarily locally incentive-compatibly implementable. Indeed, let M be a

discrete subset of Euclidean space, with enough elements so that there exist σ : T → M

and g : M → ∆(X) with g ◦ σ = f . Then the set {(m,m) | m ∈ M} is a set of local

incentive constraints, which is always satisfied. Even if, say, we require M to be convex

and open, any f is locally incentive-compatibly implementable: choose σ with finite image

and g : Im(σ) → ∆(X) so that g ◦σ = f , then extend g to M so as to be locally constant

near each point of the image of σ. This mechanism satisfies any local incentive constraints

as long as the neighborhood Nm of any m ∈ Im(σ) is small enough that g is constant
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there. The prediction that so many functions are implementable indicates that this model

is unreasonable.

We could try to tweak the framework to avoid such excessive implementability results.

For example, if T is a cardinal type space, we could restrict attention to mechanisms for

which the strategy σ is continuous. But in this case, whenever an indirect mechanism

(M,σ, g) satisfies the local incentive constraints S, the corresponding direct mechanism

g◦σ satisfies the local incentive constraints {(t, t′) | (σ(t), σ(t′)) ∈ S}. So allowing indirect

mechanisms would not buy us any new local incentive-compatibility that we could not

already get with direct mechanisms.

The other problem with formulating local incentive constraints on the message space,

rather than directly on the type space, lies with the implicit behavioral assumption that

agents’ choice of which misreports to consider does not depend on the choice of σ. It is not

clear why such an assumption would be valid. For example, consider some direct mecha-

nism f on the full ordinal type space T . Suppose that f was not fully incentive-compatible,

but a designer tried to prevent computationally limited agents from manipulating it by

using an indirect mechanism (M,σ, g), with g ◦ σ = f . An agent could then look for

manipulations as follows: if the agent’s true type is t, then for each of the m− 1 types t′

adjacent to t in T , calculate g(σ(t′)) and compare it to g(σ(t)). This calculation would

succeed in finding manipulations in at least some instances — even if the designer had

taken pains to make the mechanism satisfy a large set of incentive constraints in M .

For these reasons, we continue to restrict attention to direct mechanisms, with local

incentive constraints formulated on the type space T .

3 Sufficiency results

In this section we shall show that local incentive constraints are sufficient — any locally

incentive-compatible mechanism is fully incentive-compatible — on a variety of common

type spaces.

3.1 Cardinal type spaces

As already mentioned, in a cardinal type space, we can identify each type with the single

utility function it contains, and thus identify the whole type space with a subset of Rm,

the Euclidean space of possible utility functions. This allows us to formulate our first

sufficiency result:
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Proposition 1 On a convex cardinal type space T , any set of local incentive constraints

is sufficient.

The proof of this proposition is a model for the proofs of most of our other sufficiency

results. To prove that an agent of type u never wants to misreport as type v, we restrict

attention to types along the line segment [u, v] connecting u and v, effectively collapsing

the type space to one dimension; we then apply the kind of supermodularity or “revealed-

preference” argument that is familiar elsewhere in the mechanism design literature (see

e.g. [35, Lemma 2], [32, pp. 177-178], [37, Theorem 1]). Suppose uα and uβ are two types

along this line segment, with uα closer to u than uβ, such that neither has an incentive

to imitate the other under mechanism f . Since uα has a stronger relative preference

than uβ does for outcomes preferred by u, it must be that f(uα) is preferred by u over

f(uβ). Breaking up [u, v] into such shorter segments [uα, uβ] and combining the resulting

inequalities, we conclude that u prefers f(u) over f(v).

Proof: Let S be a set of local incentive constraints and f a mechanism satisfying S.

For types u, v, write u↔v if (u, v) and (v, u) are both in S. By definition, for every u ∈ T ,

there is some neighborhood Nu of u in T such that u↔v for all v ∈ Nu.

Fix arbitrary u, v ∈ T . We want to show that u · (f(u)− f(v)) ≥ 0.

For any α ∈ [0, 1], define uα = (1 − α)u + αv. Convexity implies uα ∈ T for each α.

Let

A = {α | there exist 0 = α0 < α1 < · · · < αk ≤ 1 with uα0↔uα1↔· · ·↔uαk
and αk = α}.

Clearly, if α ∈ A,α < α′ ≤ 1, and uα↔uα′ , then α′ ∈ A. Now let α = sup A (we know

A is nonempty since 0 ∈ A). If α > 0, then for α sufficiently close to α we have uα↔uα;

since we can choose α ∈ A arbitrarily close and less than α, we get α ∈ A. Moreover, if

α < 1, then uα↔uα for α just slightly larger than α; this implies α ∈ A, which contradicts

α = sup A. Therefore, we get α = 1 and 1 ∈ A.

So we have 0 = α0 < α1 < · · · < αk = 1 with uαi
↔uαi+1

for each i. Now write out the

local incentive constraints:

uαi
· (f(uαi

)− f(uαi+1
)) ≥ 0,

uαi+1
· (f(uαi+1

)− f(uαi
)) ≥ 0.
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Multiplying by αi+1 and αi, respectively, and adding gives

[αi+1uαi
− αiuαi+1

] · (f(uαi
)− f(uαi+1

)) ≥ 0.

But simple calculation shows that

αi+1uαi
− αiuαi+1

= (αi+1 − αi)u,

hence

[(αi+1 − αi)u] · (f(uαi
)− f(uαi+1

)) ≥ 0.

Since αi+1 − αi > 0, we can divide through and actually get

u · (f(uαi
)− f(uαi+1

)) ≥ 0.

Now we can sum over i = 0, 1, . . . , k − 1, and telescoping gives

u · (f(u)− f(v)) = u · (f(uα0)− f(uαk
)) ≥ 0.

¤
Proposition 1 applies to any convex cardinal type space. This includes, for example,

the full space of utility functions (on any finite X); or the space of utility functions that

are increasing with respect to some partial order on X; or the space of supermodular

utility functions, given a lattice structure on X; or the space of utility functions satisfying

some concavity conditions.

The proof of Proposition 1 clearly uses both parts of the definition of local incentive

constraints — that for all u, there should exist a neighborhood Nu with both (u, u′) ∈ S

and (u′, u) ∈ S for u′ ∈ Nu. A weaker requirement, that only (u, u′) need be in S, would

be more intuitive, but this requirement is not enough. For example, suppose X = {x, y}
and T is the full space of all cardinal types. Consider the mechanism f given by f(u) = x

if u(x) < u(y) and f(u) = y otherwise. This f meets the weaker definition of local

incentive-compatibility, but is not fully incentive-compatible.

An alternative way of expressing our definition of local incentive constraints is as

follows: f is locally incentive-compatible if every u ∈ T is a local maximum of both the

functions v 7→ u ·f(v) and v 7→ v · (f(u)−f(v)). With this interpretation, local incentive-

compatibility can potentially checked by first- and second-order conditions when f is

differentiable.
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We can strengthen Proposition 1 slightly to allow the type space to exclude utility

functions that are indifferent among all outcomes. Formally, say that a type u is indifferent

if u(x) = u(y) for all x, y ∈ X. Also, say that two types u, u′ are equivalent if u =

αu′ + v for some scalar α > 0 and some indifferent v (this is our usual notion of cardinal

equivalence).

Corollary 2 Suppose that T is a cardinal type space such that T ∪T ′ is convex, for some

set T ′ consisting of indifferent types. Suppose that T contains at least three mutually

non-equivalent types. Then any set of local incentive constraints is sufficient.

Proof: Let S be a set of local incentive constraints and f a mechanism satisfying

them. Fix u, v ∈ T . We want to show that u · (f(u)− f(v)) ≥ 0.

If the line segment from u to v does not contain any indifferent types in its interior,

then it must lie entirely in T , and the argument from the proof of Proposition 1 carries

over unchanged. So suppose the segment does pass through some indifferent type w; then

we have v = (1 + α)w−αu for some α > 0. In particular, v is equivalent to −u (and u is

equivalent to −v).

By assumption, there exists some type u′ ∈ T that is not equivalent to u or v. Hence,

the segment from u to u′ does not contain any indifferent types in its interior, and so lies

entirely in T . Likewise, so does the segment from v to u′. Thus, by the argument for

Proposition 1, we have

u · (f(u)− f(u′)) ≥ 0; v · (f(v)− f(u′)) ≥ 0.

However, v is equivalent to −u, so the latter of these readily implies −u·(f(v)−f(u′)) ≥ 0.

Hence,

u · (f(u)− f(v)) = [u · (f(u)− f(u′))] + [−u · (f(v)− f(u′))] ≥ 0.

¤
The requirement of at least three mutually non-equivalent types cannot be removed.

For example, suppose again that X = {x, y}, and consider the cardinal type space T =

{u | u(x) 6= u(y)}, which has only two non-equivalent types. The mechanism f that

always chooses the less-preferred outcome is locally, but not fully, incentive-compatible.

3.2 Polyhedral type spaces

Next we consider polyhedral type spaces, which includes ordinal type spaces as a special

case. Our main result here is:

14



Proposition 3 Let T be a polyhedral type space such that ∪t∈T cl(t) is convex. Then the

set of local incentive constraints is sufficient.

The argument is essentially the same as for Proposition 1: for utility functions u and

v, we consider the line segment connecting u and v; this segment passes through various

types in succession. By jiggling v a bit if necessary, we can ensure that any two successive

types along this line segment are adjacent polyhedra, and then we can just add up the

corresponding local incentive constraints as before.

This is illustrated in Figure 1 for the case where T is the full ordinal type space on

three outcomes. In this case, the types consist of six triangular-prism-shaped sectors of

R3; by projecting orthogonally onto the plane u(x1) + u(x2) + u(x3) we get six sectors

of the plane, as illustrated. Each type consists of the interior of one sector. The figure

illustrates the proof that u · (f(t) − f(t′)) ≥ 0, for a particular choice of t, t′ and u ∈ t.

We just choose v ∈ t′ and apply the argument from Proposition 1. If v happens to be

inauspiciously chosen, such as the v′ shown, the argument fails because the segment from

u to v passes through two nonadjacent types in succession; but in this case we can just

perturb v to get rid of the problem.

x  > x  > x 1 32

x  > x  > x 3 21

2 13x  > x  > x 

x  > x  > x 2 31

x  > x  > x 3 12

x  > x  > x 1 23

u

v

t

t’

v’

Figure 1: Argument for Proposition 3

Expressing this argument precisely requires a little technical work. For the remainder

of this subsection, we fix the polyhedral type space T , and let S be the corresponding set

of local incentive constraints.

Lemma 4 Let the polyhedron t be written as an intersection of open half-spaces: t =

15



∩r
i=1Hi. Then cl(t) = ∩r

i=1 cl(Hi).

Proof: Clearly t ⊆ Hi implies cl(t) ⊆ cl(Hi) for each i. Conversely, let u ∈ t = ∩iHi

(since t is nonempty), and take any v ∈ ∩i cl(Hi). Then we see that (1− α)u + αv ∈ Hi

for each i and all α ∈ [0, 1). That is, (1− α)u + αv ∈ t for all α ∈ [0, 1). Taking α → 1,

we see that v is a limit point of t. Thus, ∩icl(Hi) ⊆ cl(t). ¤

Corollary 5 If t = ∩r
i=1Hi, then the boundary of t is

∂t = cl(t) \ t =
⋃

∅6=I⊆{1,...,r}

[(⋂
i∈I

∂Hi

)
∩

(⋂

i/∈I

Hi

)]
.

Proof: Write cl(t) = ∩i cl(Hi) = ∩i(∂Hi ∪Hi) and distribute on the right side, then

remove t = ∩iHi from both sides. ¤
In particular, ∂t ⊆ ∪i∂Hi.

Lemma 6 Let u be a fixed utility function, and let t, t′ ∈ T be distinct, nonadjacent

types. Then there exist finitely many hyperplanes, each one passing through u, whose

union contains cl(t) ∩ cl(t′).

Proof: Since t, t′ are open and disjoint, neither one can intersect the closure of the

other, so cl(t) ∩ cl(t′) ⊆ ∂t ∩ ∂t′. Now suppose t = ∩r
i=1Hi and t′ = ∩r′

i′=1H
′
i′ . Applying

Corollary 5 to both t and t′, and then distributing the intersection operator, we get

∂t ∩ ∂t′ =
⋃

∅6=I⊆{1,...,r}
∅6=I′⊆{1,...,r′}

B(I, I ′),

where

B(I, I ′) =

(⋂
i∈I

∂Hi

)
∩

(⋂

i/∈I

Hi

)
∩

( ⋂

i′∈I′
∂H ′

i′

)
∩

( ⋂

i′ /∈I′
H ′

i′

)
.

It therefore suffices to show that each set B(I, I ′) is contained in a hyperplane that passes

through u. We may assume B(I, I ′) is nonempty, since otherwise we are done.

Now, B(I, I ′) is a relatively open subset of P (I, I ′) = (∩i∈I∂Hi) ∩ (∩i′∈I′∂H ′
i′). The

set P (I, I ′) is an affine set, that is, an intersection of hyperplanes. If P (I, I ′) is itself a

hyperplane, then since B(I, I ′) ⊆ cl(t) ∩ cl(t′), it follows that t and t′ are adjacent. This

contradicts the hypothesis. Therefore P (I, I ′) is an affine set of dimension at most m−2,
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and it is a standard fact that we can then find a hyperplane containing both P (I, I ′) and

u. ¤
Proof of Proposition 3: Let u ∈ Rm be any given utility function. We know from

Corollary 5 and Lemma 6 that there exists a finite collection K of hyperplanes such that

• for each t ∈ T , ∂t is contained in the union of the hyperplanes in K;

• if t, t′ are distinct, nonadjacent types, and w ∈ cl(t) ∩ cl(t′), then there exists a

hyperplane in K passing through u and w.

Now suppose u ∈ t, for some type t, and let t′ be any other type. Suppose the

mechanism f satisfies the local incentive constraints. We wish to show that u · (f(t) −
f(t′)) ≥ 0.

Let K be the collection of hyperplanes defined above. Because t′ is an open set, we

can choose v ∈ t′ not lying on any of the hyperplanes in K.

As in the proof of Proposition 1, define uα = (1−α)u+αv for α ∈ [0, 1], and let [u, v]

denote the line segment {uα | α ∈ [0, 1]}. Each hyperplane in K can contain at most

one point of [u, v]: if a hyperplane contained more than one point, it would contain the

entire segment and in particular would contain u1 = v, contradicting the choice of v. This

implies, in particular, that the union of the hyperplanes of K can contain only finitely

many points of [u, v].

Now, each type is an open, convex subset of Euclidean space; therefore, its intersection

with [u, v] must be an open, convex subset of [u, v]. The only such subsets are those of

the form uJ = {uα | α ∈ J}, where J is an open subinterval of [0, 1]; that is, J is of

the form (γ, δ), [0, δ), or (γ, 1]. So let t0, t1, . . . , tk be all the types that intersect [u, v],

and write ti ∩ [u, v] = uJi
, for i = 0, 1, . . . , k, where Ji is an open subinterval of [0, 1].

Because the types are disjoint, it follows that the Ji must be disjoint. Hence, there is an

unambiguous way of arranging them in increasing order; relabeling if necessary, we may

assume J0, J1 . . . , Jk are in order. Moreover, u ∈ t implies 0 ∈ J0 and t0 = t; v ∈ t′ implies

1 ∈ Jk and tk = t′.
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To summarize: the types that intersect the segment [u, v] are t0, t1, . . . , tk, where

t0 ∩ [u, v] = u[0,δ0),

t1 ∩ [u, v] = u(γ1,δ1),

...

tk−1 ∩ [u, v] = u(γk−1,δk−1),

tk ∩ [u, v] = u(γk,1];

moreover, δ0 ≤ γ1, δ1 ≤ γ2, . . . , δk−1 ≤ γk; and t0 = t, tk = t′.

Next we show that in fact δi = γi+1 for each i = 0, . . . , k − 1. Suppose instead that

δi < γi+1. Recall that, by assumption, the union of the closures of all types in T is convex.

Hence, it contains the entire segment [u, v]. So for any α with δi < α < γi+1, then, uα

must lie in the closure of some type t̂. But by definition of δi and γi+1, such a point uα

cannot belong to t̂ proper, so it belongs to ∂t̂. In particular, each such uα belongs to one

of the hyperplanes in K. But there are infinitely many such uα, and we already showed

that the union of the hyperplanes in K can contain only finitely many points of [u, v].

This is a contradiction.

We have now established that δi = γi+1 for each i = 0, . . . , k − 1. On the other hand,

uδi
∈ cl(ti), and uγi+1

∈ cl(ti+1). So, uδi
∈ cl(ti)∩cl(ti+1). If ti, ti+1 are not adjacent types,

then some hyperplane of K passes through uδi
and u. This again contradicts the fact that

each hyperplane of K can intersect [u, v] only once. So ti, ti+1 are adjacent; hence we have

(ti, ti+1) ∈ S, and likewise (ti+1, ti) ∈ S.

Now we finally can repeat the argument from Proposition 1. Pick arbitrary αi ∈ Ji

for each i = 0, . . . , k. Then, uαi
∈ ti. The local incentive constraints (ti, ti+1) and (ti+1, ti)

ensure that

uαi
· (f(ti)− f(ti+1)) ≥ 0,

uαi+1
· (f(ti+1)− f(ti)) ≥ 0.

Multiplying these two inequalities by αi+1 and αi, respectively, and adding gives

[αi+1uαi
− αiuαi+1

] · (f(ti)− f(ti+1)) ≥ 0.
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But αi+1uαi
− αiuαi+1

= (αi+1 − αi)u. Dividing by the positive number αi+1 − αi then

gives us

u · (f(ti)− f(ti+1)) ≥ 0.

Summing over i = 0, . . . , k − 1 and telescoping gives

u · (f(t)− f(t′)) = u · (f(t0)− f(tk)) ≥ 0,

which is what was to be proved. ¤
A particular case of Proposition 3 is, of course, the result that has already been men-

tioned a couple times, that on the full ordinal type space, the local incentive constraints

are sufficient. (In this case, the union of the closures of all types is simply all of Rm.)

Another situation where Proposition 3 applies is when T consists of all ordinal types that

respect a given partial ordering on X. For example, Bogomolnaia and Moulin [13] con-

sider an allocation problem with real objects and a null object; all types have the same

preference ordering on the real objects, but rank the null object differently relative to the

real objects.

We have pointed out that Proposition 3 leads to an immediate strengthening of

the Gibbard-Satterthwaite theorem by relaxing the requirement of (dominant-strategy)

incentive-compatibility to local incentive-compatibility. It is natural to ask if the result

can be made stronger still by using even fewer incentive constraints. In fact, there is no

sufficient set of incentive constraints respecting symmetry among the outcomes that is

smaller than the set of local incentive constraints.

To state this more clearly, suppose σ is a permutation of the set {1, 2, . . . , m}. For

any type t, define a type tσ as follows: if x1, . . . , xm is the ordering of outcomes such that

t = {u | u(x1) > · · · > u(xm)}, then tσ = {u | u(xσ(1)) > · · · > u(xσ(m))}. Let Σadj be the

set of adjacent transpositions — permutations of {1, 2, . . . , m} that consist of switching i

and i + 1, for some i. Then, the set Σadj has the property that {(t, tσ) | t ∈ T, σ ∈ Σadj}
is a sufficient set of incentive constraints (because these are precisely the local incentive

constraints we have been using). In fact, Σadj is a minimal set of permutations with

this sufficiency property. That is, on the full ordinal type space T , the set of incentive

constraints S ′ = {(t, tσ) | t ∈ T, σ ∈ Σ′}, where Σ′ is any proper subset of Σadj, is

not sufficient, not even for deterministic mechanisms. Indeed, suppose that, for some i,

the transposition that switches i and i + 1 is missing from Σ′. Then, the deterministic

mechanism that assigns to every ordinal type its (i + 1)st favorite outcome satisfies the

incentive constraints S ′, but this mechanism is not fully incentive-compatible.
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3.3 Single-peaked preferences

Our results so far have focused on essentially convex type spaces. One of the most

important type spaces, however, is not convex: that of single-peaked preferences.

Fix an ordering x1, . . . , xm of the outcomes in X. A strict preference ordering Â over

X is single-peaked if there exists some k such that, whenever i < j ≤ k or i > j ≥ k,

we have xj Â xi. For our purposes, an ordinal type is single-peaked if it represents a

single-peaked ordering.

Single-peaked preferences have been popular in social choice ever since Black’s [11]

observation that, in voting situations, the median of the voters’ favorite outcomes is a

Condorcet winner: it does not lose to any other outcome in a pairwise majority vote.

Moreover, the voting rule that chooses the median favorite outcome is dominant-strategy

incentive-compatible. Single-peaked preferences are also important in economic applica-

tions because single-peakedness is the same as quasiconcavity of the utility function (aside

from issues of indifference). Moulin [34] characterizes the deterministic voting systems

that are dominant-strategy incentive-compatible and tops-only, both with and without an

additional requirement of anonymity, under single-peaked preferences. (Moulin assumes

the outcome space is the whole real line, but his proofs carry through almost unchanged

for a finite outcome space.) Ehlers, Peters, and Storcken [21] extend this work to proba-

bilistic mechanisms. Sprumont [45] and Barberà, Jackson, and Neme [6] study efficient,

incentive-compatible rationing of a good to consumers with single-peaked preferences over

quantities.

The space of single-peaked ordinal types does not meet the convexity condition of

Proposition 3: if m = 3, then define two utility functions u, v by

u(x1) = 4, u(x2) = 1, u(x3) = 0,

v(x1) = 0, v(x2) = 1, v(x3) = 4.

Then u and v represent single-peaked orderings, but (u + v)/2 does not.

However, we still have the result:

Proposition 7 Let X be fixed, with an ordering x1, . . . , xm of its elements. On the space

of single-peaked ordinal types, the set of local incentive constraints is sufficient.

The argument is a slight extension of that used for Proposition 3. Given a single-

peaked utility function u and a type t′, we can find some v ∈ t′ such that the segment

connecting u and v lies within the single-peaked domain, even though this may not be

true for every v ∈ t′, or even almost every v. This is illustrated in Figure 2, which again
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considers the case of three outcomes; single-peaked types are shown in gray. In the figure,

to show that u · (f(t)− f(t′)) ≥ 0, we cannot use the segment from u to v since it passes

outside of the single-peaked domain, but the segment from u to v′ does work.

x  > x  > x 1 32

x  > x  > x 3 21

2 13x  > x  > x 

x  > x  > x 2 31

x  > x  > x 3 12

x  > x  > x 1 23

u

v’

t’

t

v

Figure 2: Argument for Proposition 7

Accordingly, suppose u is a given single-peaked utility function. Say that a utility

function v is good for u if, for every α ∈ [0, 1], (1 − α)u + αv lies in the closure of some

single-peaked ordinal type. Note that as long as u is strict (i.e. gives different values to

different outcomes), a sufficient condition for v to be good for u is that (1− α)u + αv be

single-peaked whenever it is strict: the set Ans = {α ∈ [0, 1] | (1−α)u + αv is not strict}
is finite, so the closure of [0, 1] \ Ans is all of [0, 1], and hence (1 − α)u + αv is in the

closure of some single-peaked ordinal type for each α.

Lemma 8 Fix the single-peaked utility function u. For any ordinal type t′, there exists a

nonempty open set contained in t′ such that every v in the open set is good for u.

Proof: We will first construct a v that is good for u. Let xk be the outcome ranked

highest by u, and let xl be the outcome ranked highest by t′. If l = k, then any v ∈ t′

is good for u: since u(xi) and v(xi) are both increasing in i for i ≤ k and decreasing for

i ≥ k, the same is true of any weighted average (1 − α)u + αv, so each such weighted

average is single-peaked (as long as it is strict).

Now suppose l > k (the case l < k is similar). So u(xi) is decreasing and v(xi) must

be increasing in i for k ≤ i ≤ l. Choose v(xl) and v(xl−1) arbitrarily, with v(xl−1) < v(xl).
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If k < l − 1 then successively choose v(xj) for j = l − 2, l − 3, . . . , k, such that

v(xj+2)− v(xj+1)

u(xj+1)− u(xj+2)
<

v(xj+1)− v(xj)

u(xj)− u(xj+1)
. (1)

This can be done by choosing v(xj) low enough at each step. Finally, we can choose v(xj)

for j > l or j < k so that v represents the ordering given by t′.

Now we will show that, for α ∈ [0, 1], (1 − α)u + αv is single-peaked whenever it is

strict. That is, we claim that (1 − α)u(xi) + αv(xi) is increasing in i for i up to some

peak p, and decreasing after that. Both u(xi) and v(xi) are increasing in i for i ≤ k, and

decreasing in i for i ≥ l, so it suffices to focus on the range k ≤ i ≤ l. We will show that

(1− α)u(xi) + αv(xi) cannot ever decrease and then increase within this range. That is,

we will show that there is no j ∈ {k, . . . , l − 2} such that

(1− α)u(xj) + αv(xj) > (1− α)u(xj+1) + αv(xj+1) (2)

and

(1− α)u(xj+1) + αv(xj+1) < (1− α)u(xj+2) + αv(xj+2) (3)

simultaneously hold; this will prove the claim.

Suppose (2) and (3) do both hold, for some j. (2) implies

1− α

α
>

v(xj+1)− v(xj)

u(xj)− u(xj+1)

while (3) implies
1− α

α
<

v(xj+2)− v(xj+1)

u(xj+1)− u(xj+2)
.

(Note we used the fact that u(xj) > u(xj+1) > u(xj+2) to make sure the signs don’t switch

when we divide. We know α > 0 since (3) is violated at α = 0.) Combining these two

inequalities gives a contradiction of (1), completing the proof of the claim.

At this point we have shown that any v ∈ t′ satisfying the inequalities (1) is good for

u. Since these inequalities carve out a nonempty open subset of t′, the lemma is proven.

¤
Proof of Proposition 7: Suppose that T is the space of single-peaked ordinal types

and S the set of local incentive constraints. Let u be any utility function. As in the proof

of Proposition 3, there exists a finite collection of hyperplanes K whose union contains the

boundary of every type in T , and such that if t, t′ are distinct types such that (t, t′) /∈ S,
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and w ∈ cl(t) ∩ cl(t′), then some hyperplane in K passes through u and w.

Now suppose u ∈ t for some t ∈ T , and let t′ ∈ T be any other type. We wish to show

that u · (f(t)− f(t′)) ≥ 0.

By Lemma 8, there is a nonempty open set of types that are good for u, contained

in t′. In particular, we can choose a v ∈ t′ that is good for u and does not lie on any

of the hyperplanes in K. The fact that v is good for u means exactly that the segment

[u, v] = {(1−α)u+αv | α ∈ [0, 1]} is contained in the union of the closures of types in T .

From here the rest of the proof is a repeat of the argument used to prove Proposition

3; we again see that u · (f(t)− f(t′)) ≥ 0. ¤
It should be clear that this same proof applies also to the space of single-troughed

ordinal types. (A preference ordering on X is single-troughed, or single-dipped, if it is the

reverse of a single-peaked ordering: for some k, i < j ≤ k or i > j ≥ k imply xi Â xj

[30].)

In addition, single-peaked preferences on a linear ordering of X can be generalized

to single-peaked preferences on a tree [19, 18]. Suppose we are given an (undirected)

tree whose vertices are the outcomes in X; then a strict preference ordering Â on X is

single-peaked if there exists some x such that, for all distinct y, z, if y lies on the path

from x to z in the tree, then y Â z. Classical single-peaked preferences are just the special

case where the tree is a path. It is straightforward to check that Lemma 8, and so also

Proposition 7, can be generalized to the space of single-peaked ordinal types on any given

tree. (One can also define single-troughed preferences on a tree in the obvious way, and

the results hold there as well.)

3.4 Single-crossing preferences

Besides single-peaked preferences, another economically important class of ordinal type

spaces is given by single-crossing preferences. These are defined as follows: Fix an ordering

x1, . . . , xm of the elements of X. A sequence Â1, . . . ,Âp of distinct strict preference

orderings is a single-crossing preference domain if the following holds: whenever i < j and

xj Âk xi for some k, we also have xj Âl xi for all l > k. Single-crossing ordinal preferences

arise in some economic models, such as the redistributive taxation models of Roberts [36]

and Meltzer and Richard [33] (see [41] for references to other applications). Just as with

single-peaked preferences, preferences coming from any single-crossing domain satisfy a

median voter property — the favorite outcome of the voter with the median preference is a

Condorcet winner, and the voting scheme that chooses this outcome is dominant-strategy
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incentive-compatible. More generally, Saporiti [41] characterizes the voting schemes that

are anonymous, unanimous, and dominant-strategy incentive-compatible on a maximal

single-crossing preference domain.

For any strict preference ordering Â on X, let V (Â) = {(i, j) | i < j, xj Â xi}. By

definition, a sequence of preference orderings Â1, . . . ,Âp is a single-crossing preference

domain if and only if V (Â1) ⊆ V (Â2) ⊆ · · · ⊆ V (Âp). In fact, these inclusions must all

be strict, since any ordering Â can be uniquely reconstructed from V (Â). Therefore we

have |V (Â1)| < · · · < |V (Âp)|. Call the domain a successive single-crossing preference

domain if |V (Âk+1)| = |V (Âk)|+ 1 for each k = 1, . . . , p− 1.

Notice that if we are given a single-crossing preference domain that is not successive, we

can add more preference orderings to make it successive. For suppose that |V (Âk+1)| −
|V (Âk)| > 1 for some k. There must be some two alternatives xi, xj that are ranked

consecutively by Âk, with xi Âk xj but xj Âk+1 xi. (Otherwise, Âk+1 would agree

with Âk for every pair of outcomes ranked consecutively by Âk, implying Âk+1 =Âk.)

Therefore i < j, (i, j) /∈ V (Âk) and (i, j) ∈ V (Âk+1). By switching the positions of

xi and xj in Âk, we get a new ordering Â′ with V (Â′) = V (Âk) ∪ {(i, j)}, and hence

V (Âk) ⊂ V (Â′) ⊂ V (Âk+1). This means that Â1, . . . ,Âk,Â′,Âk+1, . . . ,Âp is again a

single-crossing preference domain. Repeatedly filling in gaps in the sequence of values

|V (Âk)| in this way, we eventually obtain a successive single-crossing preference domain.

In particular, any maximal single-crossing preference domain (the domains studied in [41])

must be successive.

Call an ordinal type space T = {t1, . . . , tp} a successive single-crossing ordinal type

space if each tk is the ordinal type corresponding to Âk, for some successive single-crossing

preference domain Â1, . . . ,Âp. In this case, Âk and Âk+1 differ by a switch of two con-

secutive outcomes, for each k, while Âk and Âl do not for |k − l| > 1; hence the local

incentive constraints are precisely those of the form (tk, tk+1) or (tk+1, tk). We shall show

that on such a type space, the local incentive constraints are sufficient. This result may

be surprising, since these incentive constraints are especially parsimonious — each type

is explicitly prevented from imitating just two other types.

Proposition 9 On any successive single-crossing ordinal type space, the local incentive

constraints are sufficient.

The strategy of proof is a little different from that used for the previous propositions.

Instead of connecting any given utility function u to any other type t′ by a single line

segment and breaking it into short pieces, we find a sequence of parallel line segments,
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each connecting two consecutive types tk, tk+1, but such that each segment need not begin

where the previous one ended.

Proof: Suppose the mechanism f satisfies the local incentive constraints. Fix any

two types tl, tl′ , and let u ∈ tl. We wish to show that u · (f(tl)− f(tl′)) ≥ 0. We will show

this for l′ > l; the proof for l′ < l is similar.

In fact it suffices to show that

u · (f(tk)− f(tk+1)) ≥ 0 for k ≥ l, (4)

since then we can sum up (4) for k = l, l + 1, . . . , l′ − 1 to obtain u · (f(tl)− f(tl′)) ≥ 0.

So fix k ≥ l, and also define M = maxx u(x)−minx u(x). Write V (Âk+1) \ V (Âk) =

{(i, j)} by successiveness; then i < j, and Âk ranks xi just above xj. Because u ∈
tl with l ≤ k, single-crossing implies that u(xi) > u(xj) also. Let v be any utility

function representing Âk such that v(xi)− v(xj) < u(xi)− u(xj), and |v(x)− v(y)| > M

for all distinct outcomes x, y ∈ X other than xi and xj. Because Âk ranks xi and xj

consecutively, we can do this. Then, v − u is consistent with Âk+1. Check: we have

v(xi) − u(xi) < v(xj) − u(xj), so that v − u ranks xi below xj. And for any other pair

x, y, we have |v(x)− v(y)| > |u(x)− u(y)|, so [v(x)− u(x)]− [v(y)− u(y)] has the same

sign as v(x)−v(y). That is, v−u ranks all pairs of outcomes in the same order as v does,

except {xi, xj}. Since V (Âk+1) = V (Âk) ∪ {i, j}, this means that v − u represents Âk+1.

So, v ∈ tk and v − u ∈ tk+1. The local incentive constraints then give

v · (f(tk)− f(tk+1)) ≥ 0,

[v − u] · (f(tk+1)− f(tk)) ≥ 0.

Adding these two gives exactly (4), and this completes the proof. ¤
The hypothesis of successiveness in Proposition 9 cannot be dropped, even if the set of

local incentive constraints is modified in the natural way. That is, it is not the case that,

for any single-crossing ordinal type space {t1, . . . , tp} (corresponding to a single-crossing

preference domain Â1, . . . ,Âp), the set consisting of the incentive constraints (tk, tk+1)

and (tk+1, tk), for 1 ≤ k < p, is sufficient. For a counterexample, consider the following
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three orderings:

Â1: x1 Â1 x2 Â1 x3 Â1 x4;

Â2: x2 Â2 x1 Â2 x3 Â2 x4;

Â3: x4 Â3 x2 Â3 x1 Â3 x3,

and the corresponding ordinal types t1, t2, t3. Let f be the mechanism mapping the types

to lotteries over (x1, x2, x3, x4) as follows:

f(t1) = (1/4, 1/4, 1/2, 0); f(t2) = (0, 1/2, 1/2, 0); f(t3) = (1/2, 0, 0, 1/2).

Then f satisfies the incentive constraints (t1, t2), (t2, t1), (t2, t3), (t3, t2), but not (t1, t3), so

it is not fully incentive-compatible.

3.5 Mechanisms with monetary transfers

So far we have focused on mechanisms whose result is a lottery over a finite set of out-

comes. However, much of the field of mechanism design concerns settings where monetary

transfers are available: agents have quasilinear utility in outcomes and money, and a mech-

anism specifies both an outcome (or lottery over outcomes) and a monetary transfer. This

is the case, for example, in much of the literature on auctions and public projects, as well

as the screening literature in contract theory. This field is too large to survey here (see

[31, ch. 23] for a general introduction), but it seems worthwhile to mention how our ideas

apply in this context. In fact, the approach of Subsection 3.1 carries over easily to settings

with transfers and quasilinear utility. We will focus on cardinal type spaces, as is standard

in this literature.

The definitions of an outcome space and a cardinal type space are as before, but for

purposes of this subsection, a mechanism on a type space T now consists of an ordered

pair (f, p), where f : T → ∆(X) as before, and p : T → R is a payment function.

The interpretation is that when the agent announces type u, he receives the lottery over

outcomes f(u) and also receives the net monetary transfer p(u). (The monetary transfer

may be uncertain, in which case p(u) is its expected value.) If his true utility function is

u and he announces v, then, the payoff he receives is u · f(v) + p(v). We therefore say

that the mechanism satisfies the incentive constraint (u, v) if

u · f(u) + p(u) ≥ u · f(v) + p(v),
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or equivalently

u · (f(u)− f(v)) + (p(u)− p(v)) ≥ 0.

As before, a mechanism satisfies a set S of incentive constraints if it satisfies every

constraint in the set. S is sufficient if every mechanism that satisfies S is fully incentive-

compatible, that is, satisfies every possible constraint (u, v) ∈ T × T .

In this setting, sets of local incentive constraints are defined as before. We then have:

Proposition 10 In the setting of mechanisms with monetary transfers, on any convex

cardinal type space T , any set of local incentive constraints is sufficient.

Proof: Let S be a set of local incentive constraints, and (f, p) a mechanism satisfying

S. We wish to show that u · (f(u)− f(v)) + (p(u)− p(v)) ≥ 0 for every u, v ∈ T .

So consider any such u, v. Write uα = (1− α)u + αv, for α ∈ [0, 1]. As in the proof of

Proposition 1, we are assured the existence of a finite sequence 0 = α0 < α1 < · · · < αk = 1

with (uαi
, uαi+1

) ∈ S and (uαi+1
, uαi

) ∈ S for each i = 0, 1, . . . , k−1. These local incentive

constraints then give us

uαi
· (f(uαi

)− f(uαi+1
)) + (p(uαi

)− p(uαi+1
)) ≥ 0,

uαi+1
· (f(uαi+1

)− f(uαi
)) + (p(uαi+1

)− p(uαi
)) ≥ 0.

Multiplying these two constraints by αi+1 and αi, respectively, and adding gives

[αi+1uαi
− αiuαi+1

] · (f(uαi
)− f(uαi+1

)) + (αi+1 − αi)(p(uαi
)− p(uαi+1

)) ≥ 0.

But again, αi+1uαi
− αiuαi+1

= (αi+1 − αi)u, so we have

(αi+1 − αi)u · (f(uαi
)− f(uαi+1

)) + (αi+1 − αi)(p(uαi
)− p(uαi+1

)) ≥ 0.

Dividing by the positive number αi+1 − αi now gives

u · (f(uαi
)− f(uαi+1

)) + (p(uαi
)− p(uαi+1

)) ≥ 0.

Finally, summing over i = 0, 1, . . . , k − 1 and telescoping gives

u · (f(uα0)− f(uαk
)) + (p(uα0)− p(uαk

)) ≥ 0,
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or more simply put,

u · (f(u)− f(v)) + (p(u)− p(v)) ≥ 0.

¤

3.6 On methods of proof

So far, all of our proofs of sufficiency results have followed the same general method:

showing that the linear inequality corresponding to any desired incentive constraint can

be obtained by “adding up” the inequalities corresponding to local incentive constraints.

It is natural to ask whether or not every sufficiency result can always be proven in this

manner. In this subsection, we investigate that question and show that the answer is

negative: we give a type space and a set of local incentive constraints that are sufficient,

but whose sufficiency cannot be proven by adding up. Along the way, we develop tools

to study when an incentive constraint can be proven by adding up. In particular, we

show (Proposition 13) that any such proof essentially must be of the form used to prove

Proposition 1, by breaking up a single line segment into pieces. This result is of some

independent interest, and it will be useful again in Section 4 when we discuss examples

of insufficiency.

We must first be precise about what it means for an incentive constraint to be provable

by adding up other constraints. We will again focus on cardinal type spaces for the rest of

this subsection. Let T be a cardinal type space, and let S be a set of incentive constraints.

Let 1 ∈ Rm denote the vector all of whose components are 1, and let ei denote the ith

unit vector for i = 1, . . . , m. For any mechanism f , we have

1 · f(u) = 1 (5)

for all u ∈ T , and

ei · f(u) ≥ 0 (6)

for i = 1, . . . ,m and all u ∈ T . If f satisfies S, then we also have

u · (f(u)− f(v)) ≥ 0 (7)

for each (u, v) ∈ S.

We say that an incentive constraint (u∗, v∗) ∈ T × T is provable from S by adding up

28



if the inequality

u∗ · (f(u∗)− f(v∗)) ≥ 0 (8)

can be obtained as a finite linear combination of the equations (5) and inequalities (6),

(7), with nonnegative coefficients on the inequalities. That is, (u∗, v∗) is provable from S

by adding up if there exist real numbers

• au for u ∈ T ,

• biu for i = 1, . . . , m, u ∈ T , and

• cuv for (u, v) ∈ S,

such that all but finitely many of these numbers are zero, all the biu and cuv are nonnega-

tive, and such that adding up au times (5), biu times (6), and cuv times (7) gives (8). (For

notational convenience, we will assume cuv to be defined for all u, v ∈ T , with cuv = 0

whenever (u, v) /∈ S.)

We can write out the adding-up conditions explicitly, by comparing coefficients of

f(u), for each u ∈ T . Assume u∗ 6= v∗ (otherwise (8) just reads 0 = 0 which is trivially

provable by adding up). Then the adding-up condition says that for each u, we have

au1 +
m∑

i=1

biuei +
∑
v∈T

cuvu−
∑
v∈T

cvuv =





u∗ if u = u∗

−u∗ if u = v∗

0 otherwise.

(9)

Also, for the constant terms, the adding-up condition is simply

∑
u∈T

au = 0. (10)

We say that the set S of incentive constraints implies the incentive constraint (u∗, v∗) ∈
T × T if every mechanism that satisfies S also satisfies (u∗, v∗).

The present question is: If S implies (u∗, v∗), must the constraint (u∗, v∗) necessarily

be provable from S by adding up? When S is finite, the answer is affirmative:

Lemma 11 If T is a cardinal type space and S a finite set of incentive constraints that

implies the incentive constraint (u∗, v∗), then (u∗, v∗) is provable from S by adding up.

Proof: We may as well assume that T consists only of the types that appear in

constraints of S and u∗, v∗, since any other types that may exist are irrelevant. Thus,
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T is finite. A mechanism f satisfying S then consists simply of a choice of m · |T | real

numbers — the components of the |T | vectors f(u) for u ∈ T — satisfying (5), (6), and

also (7) for (u, v) ∈ S. The hypothesis is that any such numbers must also satisfy (8).

This can be recast as a linear programming statement: for any choice of m · |T |
real numbers satisfying the nonnegativity constraints (6) and the linear equations (5)

and inequalities (7), the minimum value of the linear function u∗ · (f(u∗) − f(v∗)) is 0.

(Note that this minimum is attained, for example, by any mechanism such that f(u) is

constant across all u.) The duality theorem of linear programming then tells us that (8)

is expressible as a linear combination of (5), (6), (7), with nonnegative coefficients on the

inequalities. That is, (u∗, v∗) is provable from S by adding up. ¤
In particular, this result implies that on any finite cardinal type space, if some set of

incentive constraints is sufficient, then sufficiency can be proven by adding up.

(With a little more work, we could prove an analogue of Lemma 11 for polyhedral type

spaces. However, we will not bother to present it here, since our interest in provability

by adding up is merely instrumental — no exhaustive investigation is intended.)

To proceed further, it will be helpful to have an alternative, cleaner definition of

provability by adding up. Let Π ⊆ Rm be the hyperplane orthogonal to 1, and for any

u ∈ Rm, let u denote its orthogonal projection onto Π.

Lemma 12 Assume u∗ 6= v∗. Then (u∗, v∗) is provable from S by adding up if and only

if there exist numbers cuv ≥ 0, finitely many of which are nonzero, such that the equation

∑
v∈T

cuvu−
∑
v∈T

cvuv =





u∗ if u = u∗

−u∗ if u = v∗

0 otherwise.

(11)

holds for each u ∈ T , and cuv = 0 unless (u, v) ∈ S.

Proof: First suppose that (u∗, v∗) is provable from S by adding up under the original

definition; let au, biu, cuv be the coefficients satisfying (9). By summing (9) over all choices

of u we get
∑

u au1 +
∑

i

∑
u biuei = 0. (On the left side, each cuv occurs once multiplied

by u and once multiplied by −u. On the right side, we get one u∗, one −u∗, and all zeroes

otherwise.) From (10), this reduces to
∑

i

∑
u biuei = 0. Since the biu are nonnegative,

they must all be zero. Once we know this, then, taking (9) and projecting orthogonally

onto Π gives (11).

Conversely, suppose there are coefficients cuv satisfying (11). Put biu = 0 for all i and
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all u. Note that (11) implies that for each u, the expression





∑
v cuvu−

∑
v cvuv − u∗ (u = u∗)∑

v cuvu−
∑

v cvuv + u∗ (u = v∗)∑
v cuvu−

∑
v cvuv (otherwise)

must be some multiple of 1. Choose au so that this expression is equal to −au1. Then it

is immediate that (9) is satisfied for each u. Moreover, summing (9) across all u ∈ T , the

cuv terms cancel as in the previous paragraph, and we are simply left with
∑

u au1 = 0;

hence, with this choice of au, (10) is satisfied as well. Finally, au 6= 0 only when u = u∗, v∗

or when cuv or cvu is nonzero for some v; thus, only finitely many of the au are nonzero.

Thus, the original definition of provability by adding up is satisfied. ¤
Now we arrive at a result that is crucial in understanding the limits of provability by

adding up. For u∗, v∗ ∈ T , let T[u∗,v∗] be the set of all types in T that are equivalent to

(1− α)u∗ + αv∗ for some α ∈ [0, 1], and let

S[u∗,v∗] = {(u, v) ∈ S | u, v ∈ T[u∗,v∗]}.

Proposition 13 Let T be a cardinal type space and S a set of incentive constraints such

that (u∗, v∗) is provable from S by adding up. Assume that v∗ is not equivalent to −u∗.

Then (u∗, v∗) is provable from S[u∗,v∗] by adding up.

This result says that if an incentive constraint (u∗, v∗) can be proved by adding up con-

straints in S, then it can be proved by adding up in a way that only uses types equivalent

to convex combinations of u∗ and v∗ — the kind of argument used to prove Proposition

1. The proof of Proposition 13 proceeds by taking the coefficients cuv satisfying (11) and

successively replacing them by zero, checking that (11) still holds at each step, until only

constraints in S[u∗,v∗] have nonzero coefficients.

Proof: We may assume that u∗ is not indifferent, since otherwise the conclusion is

immediate: (11) holds with all cuv equal to 0. We also assume u∗ 6= v∗; otherwise the

conclusion is again trivial.

Let cuv be the coefficients satisfying (11), with cuv > 0 only if (u, v) ∈ S. We may

as well assume that S consists only of the (finitely many) incentive constraints (u, v) for

which cuv > 0, and T consists only of the types appearing in these constraints — all other

types can be ignored.

Now consider any fixed vector w ∈ Π with the following properties:
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(i) w · u∗ > 0;

(ii) w · v∗ ≥ 0;

(iii) if u ∈ T and w · u = 0, then u = 0.

We claim that if (u, v) ∈ S such that either

(a) w · u > 0 and w · v < 0, or

(b) w · u > 0 and w · v = 0 and v 6= v∗, or

(c) w · u < 0 and w · v ≥ 0,

then cuv = 0.

Proof: Consider any u ∈ T such that w · u < 0. Take the dot product of w with (11).

We get ∑
v∈T

cuv(w · u)−
∑
v∈T

cvu(w · v) = 0

(note that u 6= u∗, v∗). Now sum over all u such that w · u < 0. For each incentive

constraint (u, v) ∈ S such that w · u < 0 and w · v < 0, the term cuv(w · u) appears once

with a + sign and once with a − sign, so these cancel out. The remaining terms give us

∑
w·u<0; w·v≥0

cuv(w · u)−
∑

w·u<0; w·v≥0

cvu(w · v) = 0.

Since each cuv is nonnegative, every term in the first sum is ≤ 0 and every term in the

second sum is ≥ 0. Hence, every term must be equal to zero. This implies that whenever

w · u < 0 and w · v ≥ 0, cuv = 0, and when moreover w · v > 0, we also have cvu = 0.

This covers (a) and (c). For (b), when w · v = 0 and v 6= v∗, (11) for v gives∑
u cvuv −

∑
u cuvu = 0. Dotting with w gives

∑
u cuv(w · u) = 0 (after canceling). We

have already established that cuv = 0 if w · u < 0, so all the terms on the left are

nonnegative, and hence they must all be zero. So cuv = 0 whenever w · u > 0.

This proves the claim.

Next, for each u, v ∈ T , define c′uv = cuv if w · u ≥ 0 and w · v ≥ 0; and c′uv = 0

otherwise. Then we again have, for each u,

∑
v

c′uvu−
∑

v

c′vuv =





u∗ if u = u∗

−u∗ if u = v∗

0 otherwise.

(12)
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Proof: If u is such that w · u < 0 then (12) is trivial since both sides are zero. If

w · u > 0, then the left side of (12) differs from the left side of (11) by the terms cuvu and

−cvuv for w · v < 0. These are all zero, by cases (a) and (c) of the claim, respectively;

thus (12) follows from (11). If w · u = 0 and u 6= v∗, then again all the left-hand-side

terms of (12) are zero:

• all the c′uvu are zero because u = 0, by condition (iii) on w;

• c′vuv = 0 for w · v > 0 by (b) of the claim;

• c′vuv = 0 for w · v = 0 again by (iii) on w;

• c′vuv = 0 for w · v < 0 by definition of c′vu.

So both sides of (12) are zero, and it again holds.

Thus, (12) is verified for all u except possibly for u = v∗. But summing (12) over all

u ∈ T gives the identity 0 = 0; so if it holds for all u except u = v∗, it must hold for

u = v∗ as well.

At this point, we have shown the following: If we start with coefficients cuv for which

(11) holds, pick any w ∈ Π satisfying (i)-(iii), and replace cuv by 0 whenever w · u < 0 or

w · v < 0, then (11) still holds.

If we find any finite set of vectors w1, . . . , wq ∈ Π, each satisfying conditions (i)-(iii),

and for each wi we successively replace cuv by 0 whenever wi · u < 0 or wi · v < 0, then

the resulting coefficients will still satisfy (11).

Now let T[u∗,v∗]+ consist of the types in T[u∗,v∗] together with all indifferent types

(equivalently, all types that are equivalent to αu∗ + βv∗ for some α, β ≥ 0); and let

S[u∗,v∗]+ = {(u, v) ∈ S | u, v ∈ T[u∗,v∗]+}. We will show that, for any u ∈ T that is not in

T[u∗,v∗]+ , there is some w ∈ Π satisfying (i)-(iii) with w · u < 0. If we consider each such

w in turn, and successively replace cuv’s by 0 as in the previous paragraph, we will be left

with coefficients cuv ≥ 0 that still satisfy (11), and such that cuv = 0 unless u, v ∈ T[u∗,v∗]+ .

Therefore, we will have shown that (u, v) is provable from S[u∗,v∗]+ by adding up.

Thus, consider any u ∈ T \T[u∗,v∗]+ . We wish to show that there exists w ∈ Π satisfying

(i)-(iii) with w · u < 0. The assumptions that v∗ is not equivalent to −u∗ and u∗ is not

indifferent imply that there exists w′ ∈ Π with

w′ · u∗ > 0, w′ · v∗ ≥ 0
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and the latter inequality holding strictly unless v∗ = 0. The assumption u /∈ T[u∗,v∗]+

implies that u is not a nonnegative combination of u∗ and v∗; hence there is some w′′ ∈ Π

such that

w′′ · u∗ ≥ 0, w′′ · v∗ ≥ 0, w′′ · u < 0.

Taking w = w′ + κw′′ for large κ will give (i), (ii), and w · u < 0. Finally, by perturbing

w slightly, we can ensure w · v 6= 0 for all v ∈ T , v 6= 0, without breaking any of the strict

inequalities; thus we get (iii) as well.

At this point we have finished showing that (u∗, v∗) is provable from S[u∗,v∗]+ by adding

up.

If v∗ is indifferent, then S[u∗,v∗]+ = S[u∗,v∗] and so we are done. Otherwise, we have to

do just a little more work.

Let cuv now be the coefficients used to prove (u∗, v∗) from S[u∗,v∗]+ by adding up (i.e. the

coefficients satisfying (11)). Whenever u = 0, we can replace cuv by 0 without affecting

the validity of (11) (since cuv only ever appears as part of the product cuvu). So we may

assume cuv = 0 whenever u is indifferent.

Since u∗, v∗ are both non-indifferent and v∗ is not equivalent to −u∗, we can find w ∈ Π

such that w ·u∗ > 0 and w ·v∗ > 0. Thus, for any element of T[u∗,v∗]+ that is not indifferent,

its projection has positive dot product with w.

Now for any indifferent u, taking (11) and dotting with w gives −∑
v cvu(w · v) = 0.

Each term in the sum is nonnegative, so they must all be zero. Hence cvu = 0 whenever v

has positive dot product with w; and the remaining v ∈ T[u∗,v∗]+ are indifferent, so cvu = 0

for them too by assumption. Thus, if u is indifferent then cuv, cvu = 0 for all v.

But this means that (11) holds with cuv zero unless u, v ∈ S[u∗,v∗], so in fact (u∗, v∗) is

provable from S[u∗,v∗] by adding up.

¤
Proposition 13 will be useful because it provides a tool to show that a constraint is

not provable by adding up: (u∗, v∗) cannot be provable by adding up unless it is provable

in a very specific such way.

With this tool, we can carry out the promise made at the beginning of this subsection

— to give an example of a type space and a set of local incentive constraints that are

sufficient, but whose sufficiency cannot be proven by adding up. In fact, we will give a

type space such that any set of local incentive constraints is sufficient, yet there exist

fairly large such sets whose sufficiency cannot be proven by adding up.

Let X have four elements, and let w be some utility function on X that is not indif-
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ferent. Let Tw be the set of all cardinal types that are either indifferent or equivalent to

w, and let T = R4 \Tw be the set of cardinal types not in Tw. Say that two types u, v ∈ T

are Tw-opposed if there exists α ∈ (0, 1) such that (1− α)u + αv ∈ Tw. Let S be any set

of local incentive constraints such that if u and v are Tw-opposed, then (u, v) /∈ S.

This requirement on S can be easily satisfied. Indeed, for each u ∈ T , start with any

neighborhood Nu, and let d(u, Tw) > 0 be the Euclidean distance from u to Tw. Then the

set N ′
u = {v ∈ Nu | d(u, v) < d(u, Tw)} is again an open neighborhood of u, not containing

any types Tw-opposed to u. So S = {(u, v) | u ∈ N ′
v or v ∈ N ′

u} is a set of local incentive

constraints as above.

Proposition 14 With T, S as above, S is sufficient. However, if we choose u∗, v∗ ∈ T

that are Tw-opposed, with u∗ not equivalent to −v∗, then (u∗, v∗) is not provable from S

by adding up.

Proof: First we show that S is sufficient. Let f be any mechanism that satisfies S.

For any possible incentive constraint (u, v), if u and v are not Tw-opposed, then the entire

line segment from u to v is contained in T . Therefore, exactly the same argument as in

the proof of Proposition 1 shows that f satisfies (u, v).

So we need only deal with the case where u, v are Tw-opposed. In this case, notice

that we can choose ui ∈ T arbitrarily close to (u+ v)/2 such that ui is not Tw-opposed to

either u or v. (Any type Tw-opposed to u must lie on the hyperplane Πuw generated by u,

w, and 1. Similarly, any type Tw-opposed to v must lie on the hyperplane generated by

v, w,1, which is again Πuw. There are types in T arbitrarily close to (u + v)/2 not lying

on this hyperplane.) For any such ui, then, we have already shown that f satisfies the

constraints (u, ui), (v, ui), (ui, v); that is:

u · (f(u)− f(ui)) ≥ 0, (13)

v · (f(v)− f(ui)) ≥ 0, (14)

ui · (f(ui)− f(v)) ≥ 0. (15)

So we can choose a sequence of types u1, u2, . . . in T with ui → (u + v)/2, such that

(13)-(15) are satisfied for each ui. Moreover, because the image of f is contained in the

compact set ∆(X), we may assume by passing to a subsequence that f(ui) converges to
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some limit f ∗. Then, taking limits, we get

u · (f(u)− f ∗) ≥ 0, (16)

v · (f(v)− f ∗) ≥ 0, (17)
u + v

2
· (f ∗ − f(v)) ≥ 0. (18)

Adding (16), (17), and twice (18) gives

u · (f(u)− f(v)) ≥ 0

so f satisfies the constraint (u, v).

This shows that S is sufficient.

It remains to prove that if u∗, v∗ ∈ T are Tw-opposed, and u∗ is not equivalent to −v∗,

then (u∗, v∗) is not provable from S by adding up. By Proposition 13, if (u∗, v∗) were

provable from S by adding up, then it would be provable from S[u∗,v∗] by adding up. So

it suffices to show that the latter is not the case.

For any α ∈ [0, 1], let uα = (1 − α)u∗ + αv∗. Let α∗ ∈ (0, 1) be such that uα∗ ∈ Tw.

Notice that if u, v are equivalent to uα, uβ respectively, and (u, v) ∈ S, then α, β are either

both less than α∗ or both greater than α∗: otherwise u, v are Tw-opposed.

Suppose that (u∗, v∗) is provable from S[u∗,v∗] by adding up. Let cuv be the coefficients

that satisfy (11). Let T< be the set of types in S[u∗,v∗] that are equivalent to some uα for

α < α∗. The observation of the previous paragraph implies that if cuv > 0, and one of

u, v is in T<, then the other is as well.

Sum up (11) over all u ∈ T<. The cuvu terms on the left side appear in pairs of opposite

sign, which cancel; thus we are left with 0 = u∗. Since u∗ ∈ T cannot be indifferent, we

have a contradiction. ¤

4 Insufficiency results

The previous section offered numerous examples of type spaces on which local incen-

tive constraints are sufficient. This naturally raises the question of whether there are

important cases where local incentive constraints are insufficient. In this section we dis-

cuss such cases. First, we show that on some cardinal type spaces — roughly, those

which violate convexity in a strong enough way — there are mechanisms that are locally

incentive-compatible but not fully incentive-compatible, and moreover one can construct
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such mechanisms so that they satisfy most of the possible incentive constraints. Second,

we consider the particular case of dichotomous preferences, and show that no incomplete

set of incentive constraints is sufficient to ensure full incentive-compatibility unless it

is very close to being complete. After presenting these cases, we discuss the potential

implications of insufficiency results (or lack thereof) for a mechanism designer.

4.1 Cardinal type spaces

In Subsection 3.1, we showed that on any convex cardinal type space, any set of local in-

centive constraints was sufficient. In this subsection, we show that if convexity is violated

in a strong enough way, then this ceases to be true. (We do not have an exact character-

ization of the cardinal type spaces T for which every set of local incentive constraints is

sufficient.)

In the space Rm, let Π be the subspace of vectors whose sum of components is zero

(as in Subsection 3.6). Let a fair open half-space be a set of the form H = {u | u · λ > 0}
for some nonzero λ ∈ Π. Say that a cardinal type space T is fairly separated if there is

some fair open half-space H such that the set T ∩H is not connected.

Our main result here is:

Proposition 15 Let T be a cardinal type space that is fairly separated. Then there exists

a set of local incentive constraints that is not sufficient.

Fair separatedness certainly implies nonconvexity: if T were convex, then for any fair

open half-space H, T ∩ H would be convex and so connected; so T could not be fairly

separated. Thus fair separatedness is at least logically a strengthening of nonconvexity.

To further explain the relationship between the two concepts, a little graphical intuition

is in order.

For concreteness, suppose X has four elements. Any utility function u is equivalent

to its orthogonal projection onto Π; this effectively reduces the set of possible utility

functions to the three-dimensional space Π. Moreover, by rescaling by a constant, we

can reduce every utility function to lie on the unit sphere in Π, except for the one at the

origin. Thus we can think of the unit sphere, together with the origin, as representing

all utility functions, up to equivalence. This sphere is illustrated in Figure 3. Then, the

upper hemisphere, whose boundary is shown dashed in the figure, corresponds to a fair

open half-space. If T contains the types labeled u and v, but does not contain any type

along the thick curve (or any type equivalent to it), then T is fairly separated, hence there

are local incentive constraints that are not sufficient.
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Figure 3: Illustration of fair separatedness

Notice that if we knew only that T contained u and v but not w (or any equivalent

type), then T would be nonconvex. This is not enough to ensure that there are local

incentive constraints that are insufficient — this is exactly the example in Proposition 14.

On the other hand, if T excludes the whole curve, rather than just one point, then that is

enough, by Proposition 15. This is why we think of fair separatedness as a strengthening

of nonconvexity.1

Fair separatedness might not seem like a natural condition on a type space, so we

give one important example. We have already discussed single-peaked ordinal types, in

Subsection 3.3. Consider now single-peaked cardinal types, and allow indifferences (if

we do not allow indifferences then the type space is clearly disconnected). Then single-

peakedness becomes equivalent to quasiconcavity. That is, let x1, . . . , xm be the elements

of X in a fixed order, and suppose m ≥ 3. A utility function u on X is quasiconcave if

there is some k such that whenever i < j ≤ k or i > j ≥ k, we have u(xj) ≥ u(xi). Let T

be the cardinal type space consisting of all quasiconcave utility functions.

Then T is fairly separated. For example, take any 1 ≤ i < j < k ≤ m, and let

H = {u | u(xi) − 2u(xj) + u(xk) > 0}. If u ∈ T ∩ H, then either u(xi) > u(xj) or

u(xk) > u(xj). So {u ∈ T ∩H | u(xi) > u(xj)} and {u ∈ T ∩H | u(xk) > u(xj)} are two

open, nonempty subsets of T ∩H, whose union is all of T ∩H, and whose intersection is

1The reader might wonder whether four outcomes are really needed to illustrate fair separatedness.
One can construct examples with two or three outcomes. But it would arguably be natural to restrict
attention to type spaces T that are regular in the following sense: if u ∈ T , then any type equivalent
to u is also in T . For regular type spaces, fair separatedness is equivalent to nonconvexity (aside from
inclusion of indifferent types) unless there are at least four outcomes.
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empty (any u satisfying both inequalities would violate quasiconcavity). Hence, T ∩H is

not connected.

Proof of Proposition 15: Let H = {u | u · λ > 0} with λ ∈ Π. Notice first that

there are lotteries L,L′ on X such that H = {u | u · L > u · L′}. Indeed, let L be any

lottery with full support, and let L′ = L− δλ, where δ > 0 is chosen small enough so that

all components of L′ are still positive. Since λ ∈ Π, L′ is again a lottery, and u ·L > u ·L′
if and only if u · λ > 0.

Now write T ∩H = Ta ∪ Tb, where Ta, Tb are open, disjoint, and nonempty. Consider

the following mechanism:

• f(u) = L if u ∈ Ta;

• f(u) = L′ otherwise.

Let S contain all incentive constraints (u, v) such that

• u ∈ T \ Tb and v ∈ T ; or

• u ∈ Tb and v ∈ T \ Ta.

These are local incentive constraints. If u ∈ Ta, then Ta is a neighborhood of u and

(u, v), (v, u) ∈ S for all v ∈ Ta. If u ∈ Tb, then similarly for Tb. And otherwise, u ∈ T \H,

and then (u, v), (v, u) ∈ S for any v ∈ T whatsoever.

And f satisfies the incentive constraints S. Indeed, the image of f is {L,L′}. If u ∈ Ta

then f(u) = L, and if u ∈ T \H, then f(u) = L′; either way, f(u) is (weakly) preferred

by u to the other possible value of f , so u · (f(u) − f(v)) ≥ 0 for any v ∈ T . If u ∈ Tb

and v ∈ T \ Ta, then f(u) = f(v) = L′ so that u · (f(u)− f(v)) = 0.

Finally, f is not fully incentive-compatible: choose u ∈ Tb, v ∈ Ta, and then f(u) = L′,

f(v) = L, and u · (f(u)− f(v)) < 0. Thus, the incentive constraints S are not sufficient.

¤
In the proof of this proposition, the set S constructed consists of all possible incentive

constraints except those of the form (u, v) where u ∈ Tb and v ∈ Ta. Depending on the

situation, this may be a fairly large set. But it may not be large enough, and a mechanism

designer interested in understanding locally incentive-compatible mechanisms might be

concerned that an agent would consider manipulations outside this set (that is, an agent

whose true utility function is in Tb would consider misreporting as some type in Ta).

We indicate now how one can construct mechanisms that satisfy a larger set of incentive
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constraints, but still are not fully incentive-compatible. The point is that the conclusion

of Proposition 15 is fairly robust to the choice of local incentive constraints.

For any ε ≥ 0, let BΠ(0, ε) be the closed ball of radius ε about the origin in Π (under

the Euclidean distance in Rm). Similarly, for any lottery L, let B∆(X)(L, ε) be the closed

ball of radius ε about L in ∆(X).

For any utility function u, let û denote the point of BΠ(0, 1) whose dot product with u

is highest. (In the representation of Figure 3, û is the point on the sphere corresponding

to u. û is uniquely defined, unless u is indifferent, in which case we let û = 0.) For

any lottery L and any ε, then, L + εû is the point of B∆(X)(L, ε) preferred by the utility

function u, as long as this point belongs to ∆(X).

Now, as in the preceding proof, write T ∩H = Ta ∪ Tb, and let lotteries L,L′ with full

support satisfy L′ = L− δλ. For ε ≥ 0, define the mechanism f on T as follows:

• if u ∈ Ta, then f(u) = L + εû;

• otherwise, f(u) = L′ + εû.

As long as δ, ε are small enough, these values are actual lotteries (none of the probabilities

specified are negative). When ε = 0 we recover the mechanism defined in the proof above.

It is straightforward to check that this f still satisfies all the incentive constraints in

S = ((T \Tb)×T )∪ (Tb× (T \Ta)), using the fact that u · (û− v̂) ≥ 0 for any u, v. So f is

locally incentive-compatible, and in fact the only incentive constraints it can fail to satisfy

are those of the form (u, v) with u ∈ Tb, v ∈ Ta. In this case, f(u)−f(v) = −δλ+ε(û− v̂),

so we see that u · (f(u)− f(v)) ≥ 0 is equivalent to

u · û− u · v̂
u · λ ≥ δ

ε
. (19)

Let R(u, v) denote the left-hand side of (19). Then suppose the small positive numbers

ε, δ are chosen so that δ/ε is appropriately small. Specifically, suppose δ/ε is close to,

but larger than, infu∈Tb,v∈Ta R(u, v). Then most pairs (u, v) will satisfy (19). That is, f

will satisfy most of the incentive constraints (u, v), with u ∈ Tb, v ∈ Ta, and all incentive

constraints not of this form, but it will still not be fully incentive-compatible.

4.2 Dichotomous preferences

If T is a finite cardinal type space (with more than one element), then it is certainly

disconnected. In this case, local incentive constraints as we have defined them are unin-

teresting (the trivial constraints {(u, u) | u ∈ T} qualify as local); on the other hand, the
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above discussion shows us how to construct fairly large sets of incentive constraints that

are not sufficient. In fact, however, we can get stronger results.

Suppose u, v ∈ T are distinct types such that u is not indifferent nor equivalent to −v,

and such that T contains no types equivalent to convex combinations of u and v except

for u, v themselves. If S is any set of incentive constraints with (u, v) /∈ S, then S cannot

be sufficient. Indeed, for S to imply (u, v), we know from Propositions 11 and 13 that

(u, v) would have to be provable by adding up from S[u,v] ⊆ {(u, u), (v, u), (v, v)}; one

easily checks that this cannot happen. This argument shows that, on finite cardinal type

spaces, a set S of incentive constraints typically needs to contain most of the possible

constraints in T × T in order to be sufficient.

In the present subsection we further expand on this observation for a particular finite

cardinal type space that has received much attention in mechanism design. The type

space of dichotomous preferences (over a fixed outcome space X) is the cardinal type

space consisting of all utility functions u such that u(x) ∈ {0, 1} for all x ∈ X. For

an agent with such a utility function, each outcome is either acceptable or unacceptable;

there are no further grades of preference. Dichotomous preferences may arise, for example,

for workers scheduling a meeting (for each possible time, any given worker is either able

or unable to attend); they also arise in organ transplantation (each donor is compatible

or incompatible with a given recipient). Bogomolnaia, Moulin, and Stong [15] investigate

the general social choice problem with dichotomous preferences; matching mechanisms for

dichotomous preferences are studied by Bogomolnaia and Moulin [14] and Roth, Sönmez,

and Ünver [39].

Continuing to abuse notation, we can identify types in this space with subsets of X:

the utility function u is identified with the set {x | u(x) = 1}. A mechanism then maps

subsets of X into lotteries over X; an incentive constraint is an ordered pair of subsets of

X.

There are several situations where an incentive constraint can be implied by a combi-

nation of other constraints. For example, the incentive constraints (∅, Y ) and (X,Y ) are

always satisfied by any mechanism (because the utility functions corresponding to ∅ and

X are both indifferent among all outcomes). For a less trivial example, suppose Y, Z ⊆ X

with Y ∩ Z = ∅. Then, if a mechanism satisfies the incentive constraints (Y, Y ∪ Z),

(Z, Y ∪ Z), and (Y ∪ Z, Z), it must also satisfy (Y, Z). This is easily shown by the usual

adding-up argument from the proof of Proposition 1, noting that the utility function Y ∪Z

is equivalent to (Y + Z)/2. Similarly, if Y ∪ Z = X, then any mechanism that satisfies

(Y, Y ∩ Z), (Z, Y ∩ Z), and (Y ∩ Z,Z) must also satisfy (Y, Z).
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However, these are exceptional cases: most incentive constraints are not implied by

any combination of other incentive constraints. This is immediate from the discussion at

the beginning of this subsection, but let us give a full, explicit statement.

Proposition 16 Suppose that T is the type space of dichotomous preferences over X,

and S is a set of incentive constraints. Suppose Y, Z ⊆ X with (Y, Z) /∈ S, and suppose

that Y 6= Z, Y ∩ Z 6= ∅ and Y ∪ Z 6= X. Then, there exists a mechanism f satisfying S

but not satisfying the incentive constraint (Y, Z). In particular, S is not sufficient.

Proof: If S implies (Y, Z), then by Proposition 11, (Y, Z) is provable from S by adding

up. The hypotheses ensure that Proposition 13 applies, so in fact (Y, Z) is provable from

S[Y,Z] by adding up. However, there is no type in T equivalent to (1 − α)Y + αZ for

any α ∈ (0, 1), since any such convex combination is a utility function with at least

three distinct values (namely 0 on any outcome in X \ (Y ∪ Z), 1 on any outcome in

Y ∩ Z, and α or 1− α on any outcome in Y \ Z or Z \ Y ), but utility functions in T can

only have two distinct values. So the only types in T[Y,Z] must be equivalent to Y or Z.

Since Y and Z are not equal to ∅ or X, the only such types are Y, Z themselves. Hence

S[Y,Z] ⊆ {(Y, Y ), (Z, Z), (Z, Y )}. It is easy to check that (Y, Z) is not provable from such

a set by adding up. So we have a contradiction, and in fact S cannot imply (Y, Z). ¤
When X is large, almost all of the possible incentive constraints (Y, Z) satisfy the

conditions Y 6= Z, Y ∩ Z 6= ∅, Y ∪ Z 6= X of the proposition. More specifically, of the 4m

incentive constraints one could write down (one for each of the 2m possible choices of Y

and 2m possible choices of Z), only 2·3m−2 violate the conditions, and (2·3m−2)/4m → 0

as m → ∞. Thus, Proposition 16 implies that, in order to be sufficient, the set S must

contain most of the possible incentive constraints.

At this point we turn to considering whether our conclusions apply to deterministic

mechanisms. In Section 3, there was no need to consider deterministic mechanisms sepa-

rately: the sufficiency results held for all probabilistic mechanisms, so they automatically

applied to deterministic mechanisms. With our insufficiency results, however, it may be

that some set of constraints is not sufficient for probabilistic mechanisms but still suffi-

cient for deterministic mechanisms. (We raise the issue only now, not in Subsection 4.1,

because the present type spaces are specific enough to give concrete results.)

In our setting of dichotomous preferences, a deterministic mechanism is one for which

f(Y ) is a degenerate lottery for all Y ⊆ X. Taking a notational shortcut once again,

we now think of f(Y ) as an element of X. We call a set of incentive constraints S

sufficient for deterministic mechanisms if every deterministic mechanism that satisfies S
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is fully incentive-compatible. Notice that an incentive constraint (Y, Y ′) is satisfied unless

f(Y ) /∈ Y and f(Y ′) ∈ Y .

Our first observation on deterministic mechanisms is that the lesson of Proposition 16

does not apply: there are sets of incentive constraints that are sufficient for deterministic

mechanisms and are relatively sparse. That is, there exists a sufficient set Sm of incentive

constraints when |X| = m, such that |Sm|/4m → 0 as m →∞.

Proposition 17 Suppose that T is the type space of dichotomous preferences over X.

Let S be a set of incentive constraints such that

• for every Y ⊆ X with |Y | ≥ 2, and every x ∈ Y , there exists a proper subset Y ′ of

Y , containing x, such that (Y, Y ′) ∈ S;

• for every Y ⊆ X with |Y | = 1, and every Y ′ ⊆ X, (Y, Y ′) ∈ S.

Then S is sufficient for deterministic mechanisms.

Proof: Let f be a deterministic mechanism satisfying the incentive constraints S. For

all Y , either f(Y ) ∈ Y , or f(Y ) /∈ Y . Call Y pleased in the former case and displeased in

the latter. Suppose that f fails to satisfy some incentive constraint (Z, Z ′) /∈ S. So Z is

displeased, whereas f(Z ′) ∈ Z.

Now let Y be a minimal displeased set containing f(Z ′). (Some such displeased set

exists, namely Z.) If |Y | ≥ 2, then by hypothesis there is some proper subset Y ′ ⊂ Y

with f(Z ′) ∈ Y ′ such that (Y, Y ′) ∈ S. By minimality, Y ′ is pleased: f(Y ′) ∈ Y ′ ⊂ Y .

But since f(Y ) /∈ Y , then, f violates the incentive constraint (Y, Y ′), a contradiction.

If on the other hand |Y | = 1, then Y = {f(Z ′)}. Now f(Y ) /∈ Y (because Y is

displeased) but f(Z ′) ∈ Y , so f violates the incentive constraint (Y, Z ′) ∈ S, again a

contradiction. ¤
On the other hand, the set of incentive constraints cannot be made too sparse without

losing sufficiency:

Proposition 18 Suppose that T is the type space of dichotomous preferences over X.

Let x ∈ X, and let Z be any set containing x and not equal to {x}. If S is a set of

incentive constraints such that ({x}, Z) /∈ S, then there exists a deterministic mechanism

satisfying S but not satisfying the constraint ({x}, Z). In particular, S is not sufficient

for deterministic mechanisms.

This proposition in particular implies that, for deterministic mechanisms over dichoto-

mous type spaces, the trial-and-error manipulation argument for computationally limited
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agents (as sketched out in the introduction) does not apply. Suppose we are designing

a mechanism for an agent, and we predict that if the agent’s true type is {x}, then he

will contemplate only misreports in some known set, which may vary with m but whose

size grows more slowly than 2m. Then there are deterministic mechanisms that are not

fully incentive-compatible but that the agent will nonetheless fail to manipulate, for large

enough m.

Proof: We give a construction. Define f as follows:

• f({x}) is any element of X other than x;

• f(Z) = x;

• f(∅) is any element of X other than x;

• for any other Y , f(Y ) is an arbitrary element of Y distinct from x.

Using the terminology from the proof of Proposition 17, every set is pleased except for {x}
and ∅. Therefore, f satisfies every possible incentive constraint (Y, Y ′) except possibly

when Y = {x} or Y = ∅. If Y = ∅, then f(Y ′) /∈ Y for all Y ′, so (Y, Y ′) is again satisfied.

Finally, if Y = {x}, then by construction f(Y ′) /∈ Y unless Y ′ = Z. So f fails to satisfy

the incentive constraint ({x}, Z), but it satisfies every other possible incentive constraint.

¤
We can reach the following conclusions for deterministic mechanisms on dichotomous

type spaces. The strong insufficiency result for probabilistic mechanisms (Proposition

16) no longer holds; a set S of incentive constraints can be sufficient for full incentive-

compatibility without needing to contain most of the incentive constraints in T × T . On

the other hand, if we specify that every single agent type can only consider a small number

of misreports, i.e. for each Y there are a small number of Y ′ such that (Y, Y ′) ∈ S, then

we once again get that S is not sufficient.

4.3 Implications of insufficiency

To put our insufficiency results more fully into context, we now return to our main motivat-

ing question: Can one get around impossibility results such as the Gibbard-Satterthwaite

theorem by substituting local incentive-compatibility conditions in place of full incentive-

compatibility? For type spaces where local incentive constraints are sufficient, the answer

is definitively no. However, when local incentive constraints are insufficient, the answer

may or may not be yes.
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We illustrate with a simple example, voting rules. For simplicity we restrict attention

to deterministic mechanisms in this discussion. Suppose that X consists of m ≥ 4 out-

comes, and T is the full ordinal type space. Suppose there are n ≥ 2 agents. A voting

rule is a function f : T n → X, specifying a single outcome for each profile of the agents’

preferences. As in the discussion at the end of Subsection 2.1, we say that a voting rule

satisfies a set S of incentive constraints if, for each agent i, each constraint (ti, t
′
i) ∈ S

and each profile t−i of types of the other agents, ti weakly prefers f(ti, t−i) over f(t′i, t−i).

We also say that the voting rule is anonymous if, for all types t1, . . . , tn ∈ T and every

permutation π of the agents 1, . . . , n, we have f(t1, . . . , tn) = f(tπ(1), . . . , tπ(n)). The vot-

ing rule is dictatorial if there exists some fixed agent i such that f(t1, . . . , tn) equals the

outcome ranked highest by ti, for all t1, . . . , tn. It is unanimous if, whenever all types

t1, . . . , tn have the same top-ranked outcome x, then f(t1, . . . , tn) = x.

Let S = T × T be the full set of incentive constraints. Then one statement of the

Gibbard-Satterthwaite theorem [22, 43] in this context is as follows:

Proposition 19 Let f be a unanimous voting rule that satisfies S. Then f is dictatorial.

A slightly weaker statement is:

Proposition 20 Let f be a unanimous voting rule that satisfies S. Then f is not anony-

mous.

What happens when we replace S by some insufficient set of incentive constraints?

Consider the set S ′ consisting of all constraints (t, t′) such that t and t′ have the same

bottom-ranked outcome. This set is insufficient for deterministic mechanisms (for exam-

ple, it is satisfied by the one-agent mechanism that assigns each type its bottom-ranked

outcome). If we replace S by S ′, then Proposition 19 no longer holds, but Proposition 20

does still hold.

To see that Proposition 19 is overturned, just consider any voting rule that chooses a

different dictator depending on the agents’ bottom choices. For example, for some fixed

x ∈ X, let f(t1, . . . , tn) be t1’s top-ranked outcome if x is bottom-ranked by t1, and

otherwise let it be t2’s top-ranked outcome. This is unanimous, satisfies S ′ (because each

agent cannot change the identity of the dictator without changing her bottom-ranked

outcome), and is not dictatorial.

To see that Proposition 20 still holds, just fix any x ∈ X and restrict attention to the

type profiles at which x is every agent’s bottom-ranked outcome.

More precisely: Let f be unanimous and satisfy S ′. If all agents rank x bottom, then f

cannot choose the outcome x. To see this, suppose there does exist some profile where all
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agents rank x at the bottom, yet f chooses x. Fix an outcome y ∈ X distinct from x, and

consider such a profile for which the number of agents ranking y at the top is maximal.

There must be some agent i whose type ti does not rank y at the top, since otherwise f

would choose y, by unanimity. But then, if i instead reported a type t′i ranking y at the

top and x at the bottom, the outcome would not be x (by maximality). This means that

f violates the incentive constraint (ti, t
′
i) ∈ S ′, a contradiction.

So, let X̃ = X \{x} and T̃ be the full ordinal type space on X̃, and let S̃ = T̃ × T̃ . We

can define a voting rule f̃ : T̃ n → X̃, simply by appending x to the bottom of each agent’s

preference ranking and applying f . The previous paragraph ensures that the image of f̃

is contained in X̃. Because f is unanimous, so is f̃ ; because f satisfies S ′, f̃ satisfies S̃.

So by the Gibbard-Satterthwaite theorem, f̃ is dictatorial, and in particular it cannot be

anonymous. This implies that f cannot be anonymous either.

The point of this discussion is that, by replacing full incentive-compatibility with

satisfaction of some insufficient set of incentive constraints, we may or may not succeed

in overturning impossibility theorems.

Admittedly the example does not perfectly match the modeling approach we have

taken, since S ′ is not a set of local incentive constraints. A slightly more complicated

variant is immune to this criticism. Suppose m ≥ max{5, n+2}, and fix y ∈ X. Let T be

the set of all ordinal types for which y is ranked second-to-last. Then arguments similar

to the above again show that the analogues of Propositions 19 and 20 both hold when

S = T × T ; if instead we use the set S ′ of local incentive constraints, Proposition 19 no

longer holds, while Proposition 20 still does.

Even if it is possible to overturn impossibility theorems by requiring only local incentive-

compatibility, a mechanism designer who accepts this relaxation should be aware that

doing so involves strong implicit assumptions about the limits to agents’ sophistication.

For example, simply believing that agents are computationally limited is not enough jus-

tification. Suppose that the designer works with a set S of local incentive constraints in

some type space that is not sufficient, but there is some other set S ′ of incentive con-

straints that is sufficient, and for every t the set {t′ | (t, t′) ∈ S ′} is small. Then agents

with limited computational power but adequate forethought might simply decide to use

S ′ rather than S when looking for advantageous misreports, and thereby end up finding

some. Thus, in being satisfied with mechanisms that satisfy the constraints S, the de-

signer must be fairly committed to the assumption that agents will not look elsewhere for

potential manipulations.

Alternatively, suppose that the mechanism designer wants to use local incentive-
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compatibility to overturn some known impossibility theorem: no mechanism exists satisfy-

ing full incentive-compatibility (together with some other desiderata), but the mechanism

designer finds an f that satisfies only local incentive-compatibility instead. Suppose there

is a published proof of the theorem available that is “explicit” — that is, it proceeds

by contradiction, supposing the desired fully incentive-compatible mechanism exists, and

each time incentive-compatibility is applied, the misreport under consideration is fully

spelled out. If the agents are aware of this proof, they can simply go through it step by

step and eventually encounter the step which fails to hold for the given f ; this step must

use some nonlocal misreport that is potentially advantageous under f . Thus, agents who

are aware enough to read an explicit proof may discover a profitable misreport, contrary

to the designer’s expectation. (To this author’s knowledge, every known impossibility

result has an explicit proof available in the literature.)

All of these issues are somewhat unimportant in the grand scheme of things, since on

the type spaces for which we have shown insufficiency results (in particular, the dichoto-

mous type space), the known mechanism design results are mostly positive ones. The

point is simply that one should be cautious in interpreting insufficiency results. We have

presented such results in order to show that the ideas of Section 3 do not apply every-

where; but the results by themselves do not argue for or against imposing local rather

than full incentive-compatibility constraints. If a practitioner wants to impose only the re-

quirement of local incentive-compatibility, there had better be reasonable a priori grounds

for doing so.

5 Conclusion

This paper has examined the question of whether or not a small set of incentive constraints

is sufficient to ensure that all other incentive constraints are automatically satisfied, in

many common mechanism design settings. In particular, we have given an arguably

natural definition of “local” incentive constraints for cardinal and polyhedral (including

ordinal) type spaces. For many type spaces, we have shown that local incentive constraints

are sufficient to imply full incentive-compatibility. This holds for convex spaces of cardinal

types; polyhedral type spaces with convex closure; type spaces of single-peaked ordinal

preferences (as well as single-troughed ordinal preferences, or single-peaked ordinal pref-

erences on a tree); and for type spaces of successive single-crossing ordinal preferences.

Additionally, while we have focused on mechanisms that specify distributions over finite

outcome spaces, we also showed that local incentive constraints are sufficient over convex
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cardinal type spaces in settings where monetary transfers are possible and utilities are

quasilinear. All of these proofs consisted of obtaining any desired incentive constraint as

a sum of inequalities associated with local incentive constraints; we also gave an example

where local incentive constraints ensure full incentive-compatibility but no such proof by

adding up exists.

These results provide an immediate strengthening of many existing impossibility and

characterization theorems in mechanism design, as well as a possible shortcut to proving

future incentive-compatibility results.

On the other hand, for cardinal type spaces meeting a strong nonconvexity condition,

we have insufficiency — there are probabilistic mechanisms that are locally incentive-

compatible but not fully incentive-compatible. This result is robust to the choice of

local incentive constraints, in the sense that there are mechanisms that satisfy most

incentive constraints but still are not fully incentive-compatible. In particular, for the

dichotomous type space over a large outcome space, almost every incentive constraint has

the property that it can be violated by a mechanism that nonetheless satisfies all other

incentive constraints. However, our results should not immediately be interpreted as a

license to impose only local incentive-compatibility rather than full incentive-compatibility

in these type spaces.

Our work here is in response to a broader conceptual challenge in mechanism design:

how to formulate incentive constraints that are strong enough to ensure that agents’

behavior in the resulting mechanisms can be accurately predicted, without being overly

restrictive. The usual notion of incentive-compatibility says that no type should have an

incentive to imitate any other type; but in practice, this requirement may be unnecessarily

strong, if the task of finding a profitable misreport is difficult for the agents. Thus,

thinking about mechanisms that are hard, but not impossible, to manipulate may provide

a useful avenue for getting around negative results. This paper has explored one version

of this approach, by imagining that agents of any given type consider only a limited

subset of the possible misreports, focusing on misreports that are close to the true type.

Our results show many settings in which this change does not affect the set of possible

mechanisms, and some in which it does.
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