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Auction theory is generalized by allowing the number of bidders to be stochastic. 
In a first-price sealed-bid auction with bidders having constant absolute risk aver- 
sion. the expected selling price is higher when the bidders do not know how many 
other bidders there are than when they do know this. Thus the seller should conceal 
the number of bidders if he can. Moreover, a bidder’s ex ante expected utility is the 
same whether or not there is a policy of concealing the number of bidders: con- 
cealment therefore Pareto-dominates announcement. With risk-neutral bidders, the 
optimal auction is the same whether or not the bidders know who their competitors 
are. Journal qf Economic Literafure Classification Numbers: 022. 026. 1’ 1987 

Acadenuc Press. Inc. 

1. INTR~DucTT~N 

Asymmetric information and imperfect competition are the two essential 
ingredients of the theory of auctions. But it is presumed in the existing 
auction models’ that one piece of information is common knowledge: all 
bidders know how much competition they face. Is it appropriate to model 
the bidders as knowing who their competitors are? 

In an English auction, a bidder often cannot identify his rivals. The other 
bidders may be acting on behalf of anonymous principals. Not all the 
people present are active bidders. Bidders use subtle signals to hide their 
bidding. “Such signals may be in the form of a wink, a nod, scratching an 
ear, lifting a pencil, tugging at the coat of the auctioneer, or even staring 
into the auctioneer’s eyes-ail of them perfectly legal. This method of com- 
municating bids gives the process of bidding an aura of secrecy” (Cassady 
[l, pp. 149-1501). 

In a sealed-bid auction, there is still less reason to suppose that bidders 
know the number or the identities of their competitors, since the bidders do 

* We thank an Associate Editor and a referee for their perceptive comments. and the 
Ontario Economic Council and the Social Sciences and Humanities Research Council of 
Canada for research support. 

r See McAfee and McMillan [9] and Milgrom [lo, 111 for surveys of auction theory. 
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not assemble together in one place. With some government-contract bid- 
ding, the government invites selected contractors to submit bids. In this 
case, the government knows in advance the number of bidders. The 
government therefore has available an extra policy instrument for fostering 
competition among the bidders, in addition to choosing the form of the 
auction, setting reserve prices, etc. : the government can choose either to 
conceal or to reveal the number of bidders.2 

Are the results of auction theory sensitive to the assumption that each 
bidder knows exactly how many bidders there are? This paper will show 
that they are. First, if the bidders are risk averse (with constant absolute 
risk aversion) the seller’s expected revenue in a first-price sealed-bid auc- 
tion is higher if the bidders do not know how many bidders there are than 
if they do know this. Second, with risk-neutral bidders, the optimal direct, 
incentive-compatible auction is the same whether or not the bidders know 
the number and the identities of the other bidders. However, knowledge 
about the set of bidders still matters, because if different bidders have dif- 
ferent (albeit Bayesian consistent) expectations over the set of bidders, then 
if the set of bidders is not known, the optimal auction cannot be implemen- 
ted using a first-price sealed-bid auction, although it can be implemented 
using an English auction. 

Milgrom and Weber [ 121 showed that, in many circumstances, it is in 
the seller’s interest to reveal any information he has. This paper exhibits a 
different set of circumstances in which the seller should conceal infor- 
mation. 

In Section 2, we examine probability distributions over subsets of poten- 
tial bidders: this is necessary since the set of active bidders is a random 
variable. In Section 3 we consider, in an independent-private-values auc- 
tion, the effects of the bidders’ knowing how many bidders there are. If the 
bidders have constant absolute risk aversion, the seller’s revenue is on 
average higher if he conceals the number of bidders than if he reveals it. 
Interestingly, the bidders’ expected utility is the same in either regime, 
which means that the policy of concealment Pareto-dominates the policy of 
announcement. 

In Section 4, we allow the bidders to be different ex ante, in the sense 
that their valuations of the good are drawn from different distributions. In 
addition, they may have different priors on how many bidders are present 
as long as these priors are Bayesian consistent. Thus revealing the number 
of bidders is not the only issue, for the seller could also reveal the identities 
of the bidders, as they are not ex ante the same. If the bidders are risk 
neutral, the seller is indifferent between revealing and concealing the bid- 

’ For example, Ontario Hydro, Ontario’s electrical utility, has a policy of keeping secret 
the number of firms it has invited to submit bids; see McAfee and McMillan [S. Chap. 73. 
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ders’ identities; his expected revenue is the same in either case. To prove 
this, we construct the optimal auction, extending the optimal-auctions 
literature to the case of unknown bidders. 

2. NUMBER OF BIDDERS 

We index the potential bidders with natural numbers YI = { 1, 2, 3,...}. 
For any finite set A G $3, let DA represent the probability that A is the set of 
active bidders. We presume that the set of active bidders is finite with 
probability I, 

5 c 8.4 = 1, (1) 
tr=o A IAl=, 

where 1 A / is the cardinality of A and CA,,,4, =,, denotes the sum over all 
sets A with cardinality n. Thus the probability that n bidders are present is 

Y,, = c PA. (2) 
A 

I .4 I = ,I 

The expected number of bidders is 

n* = i ny,,. (3) 
n= I 

We assume n* < co. 
The process by which bidders are selected is taken to be exogenous, 

embodied in the probabilities PA. For example, in government-contract 
bidding, bidders are selected from a list of qualified bidders on a rotating 
basis (McAfee and McMillan [S, Chap. 71). This analysis generalizes the 
standard model, where PA = 1 if A = {l,..., n} and PA = 0 otherwise. It is 
presumed that all bidders are Bayesians and know the &‘s. 

Once bidder k is selected, he updates his probability of the number of 
bidders being present 

P:= c 8.4 c BA 
.4 i .4 

IAl=n X-GA 
k E .4 
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In Section 3, but not in Section 4, symmetric priors among active bidders 
will be assumed: 

(5) 

The remainder of this section develops some properties of (5). 

EXAMPLE 1. Suppose at most m bidders can be present, and y,,,..., y,,, 
are given, satisfying 

f y,,=l. 
,, = 0 

Then one assignment of /Ill’s that satisfies (5) is 

In addition 

Thus 

if A E {l,..., m} and /A ( = n 

otherwise. 

p;= c PA 1 pII=!!& p=!?, 
A 1 kt‘4 m 1 ,=o m n* 

k E .4 
IAl=! 

EXAMPLE 2. 

/L,; =--L- 
2(3-y) 

filkr =g, k32 
i 

B{k.kCJ = 
3(1 -y)2.--” 

3-y ’ 
k>l 

(6) 

(7) 

(8) 

(9) 

(10) 

BA =o otherwise. 
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It is easily verified that 

Y 
p’; = 3 - 2y 

(11) 

pf:=o, n > 2. 

Example 1 proves that, as long as there is an upper bound to the number 
of active bidders, there is a probability distribution on the finite subsets of 
‘8 which yields any desired distribution of the number of bidders and 
satisfies (5). In addition, it illustrates that P,~ = (ny,?)/n*, which Lemma 1 
will show to be true if (5) holds, and which is useful in the analysis of the 
symmetric-bidders case in Section 3. Example 2 provides an example with 
infinitely many potential bidders, and with (5) still satisfied. 

LEMMA 1. Given (5), 

tz*p,, = ny,,. (12) 

Proof: 

=,!, P,,( c PA> (by(d)and(5)) 
A 

kcA 

=Pnx 1 ljA 
A k 

k.sA 

=P,C IAl BA =pnn* (by (1)). Q.E.D. 
A 

Lemma 1 has an intuitive explanation. Any particular individual is n 
times as likely to be a participant when the number of bidders is n than 
when it is one. The posterior probability is thus proportional to ny,. For 
the probabilities to sum to one, the constant of proportionality is l/n*. 
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Lemma 1 is illustrated by the following “classroom size” problem. Con- 
sider polling professors on the size of their classes, and suppose y, is the 
proportion of professors reporting a class size of n. If p, is the proportion 
of students in the classes reporting class size of n, then yn and pn are related 
by Lemma 1.3 

3. SEALED-BID AUCTION WITH RISK-AVERSE BIDDERS 

In this section we consider a first-price sealed-bid auction. The bidders 
have independent private values, drawn from a distribution F with density 
fi Assumefis continuous andf(x) is strictly positive if x E (0, X). Following 
Matthews [4] and Milgrom and Weber [12], we assume the bidders have 
the same constant-absolute-risk-aversion utility function 

(13) 

for some constant 2 > 0. We assume there exists a symmetric Bayes-Nash 
equilibrium, and denote by B(x) the corresponding equilibrium bidding 
function, which we assume to be strictly increasing. 

How does a policy of concealing the number of bidders affect the bid- 
ders’ expected utility? Expected utility can be evaluated at two different 
times: first, before anyone knows whether he is a participant and what his 
value ,Y is; and second, after the bidders have been selected. We shall 
denote an agent’s expected utility at the former time-point ex ante utility, 
and at the latter time-point interim utility. 

THEOREM 1. The interim utility of a bidder with given value is the same 
whether or not the bidders are to be informed about the number of bidders. 

Proof. The probability that any particular bidder wins with bid b is 
F”- ‘(B-‘(b)). Thus the bidder’s ex ante expected utility is 

EAU(b)= f p,, F”‘(B-‘(b))f(1 -e-“-Ypb)) 1 . (14) 
n=l * 

’ An alternative to this model was suggested by Paul Milgrom. Suppose there are con- 
tinuum many bidders, indexed on [0, 11. Select the bidders by first selecting the number of 
bidders n using the probabilities r,. and then selecting n bidders using a uniform distribution. 
This satisfies (5) (by symmetry) and Lemma 1. 
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At a Nash bidding equilibrium, 

BEAU 

ab 
= 0. 

h = B(r) 

7 

(15) 

Thus 

.,i, P,,F”-‘(x) e-i(-r-B(y))B,(x) 

=“t, p,(n- 1) FfzP2(x)f(x)i(l -ePrc.yPB’r”). (16) 

Represent the bidder’s equilibrium ex ante expected utility by 
EEAU(x) = EAU(B(x)). Thus 

EEAU(x)= 2 p,,F”-I(,~);(1 -e-ic\-PB’.r’)). 
,1= I 

(17) 

Differentiate ( 17), 

-&(EEAU(x))= f p..[(nl)F”-‘(l),~(~~)~(~-e~~(.~-””)) 
n=l 

+Fn~‘(x)e~“(‘~B();))(l -I’) 
1 

=,F, p, F”- ‘(x) - 2EEA U, (18) 

using (15) and (16). Now solve this linear differential equation: 

EEAU(x)=ePi.” K+S’; f p,,F”~‘(s)e”dr], 
0 n=l 

for some constant K. To evaluate K, note that if the minimum 
follows that EEAU llzo = 0, or 

EEA U( x ) = e ~ ‘-’ + ‘(s)e” ds 
1 

. 

(19) 

bid is zero, it 

(20) 
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Thus, from (17) and (20), 

f, pnF”-l(x);(l -e-i(x-B(x))) 

Thus 

or 

f p,~~- l(X)e-i(.Y- B(I)) 

I, = I 

=e pi.’ f pn 1: (n - 1)e”F”-*(s) f(s) ds (22) 
n=l 

(21) 

f p,,Fn-‘(x)ei.B(X)= f pn j: (n - 1)e”” F”-*(s) f(s) ds. (23) 
n=l n=l 

Consider now the equilibrium bids in the case in which the bidders know 
the number of bidders n. It follows from (23), by setting p,, = 1 for the 
announced n and pm = 0 for m #n, that the equilibrium bid B”(x) when n 
is announced satisfies 

I F”- yx) elB”(.xl = 
s 

(n - 1)e”” FnP2(s) f(s) ds. (24) 
0 

Thus, from (23) and (24), 

f p,F”- I(X)elB(-d = cl p,,F”-- ‘(x)eAB”(-‘). (25) 
n=l 

From (25), 

‘f p,,F”-’ 
n=I 

(x); (1 _ ,-l(r-ml) 

= -f pnF”-’ 
n=l 

(x);(, -e-ilr-B”(rn). (26) 
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The left side of (26) is (from (17)) equilibrium interim expected utility 
when n is not known. The right side of (26) is equilibrium interim expected 
utility when the policy of announcing n is in effect. Q.E.D. 

THEOREM 2. The ex ante utility of’any bidder is the same whether or not 
the bidders are to be informed about the number qf bidders. 

Proof: From the seller’s point of view, the expected utility of all agents 
is 

(the first step using (12) the second (26) and the third (12)). Q.E.D. 

The difference between Theorems 1 and 2 lies in the timing of the 
announcement of the number of bidders. In Theorem 1, the interim utility 
occurs after the bidder has learned his value and also learned he is a bid- 
der. Thus, the posterior probabilities pt are used in calculating expected 
utility. In Theorem 2, the prior probabilities Y,, are used, and the expec- 
tation is taken before the potential bidder knows his value. An alternative 
interpretation of Theorem 2 is that the expected utility of the winner of the 
auction is invariant to the policy of concealment.4 

THEOREM 3. Concealing the number of bidders in the first-price sealed- 
bid auction does not lower the ex ante expected selling price, and strictly 
raises it if the bidders are risk averse (i.e., A> 0) and the distribution of the 
number of bidders is nontrivial (i.e., 0 < p, < 1 for some n). 

Proof: The seller obtains expected revenue EB(.u) (with concealment) 

4 The point at which the assumption of constant absolute risk aversion is used is Eq. (18). 
which is a differential equation defining the bidding function B: this is a linear differential 
equation if and only if the bidders have constant absolute risk aversion (McAfee and 
McMillan [7]). 
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or E&‘(x) (with announcement), where the expectation is given by, for 
any 8, 

&?(n, x) = f y,, p fl(n, x) nF”- ‘(x) f(x) dx 
n=l 

/?(n, x) F”-‘(x) f(x) dx. (28) 

From (25) and (12), 

5 ny,,FH- ‘(x) = f ny,F”- ‘(x) ej.‘B”“‘-B(-Y)). 

,I= I ,t = I 

Multiplying by f(x) and integrating yields 

> ei.EIBnl.~)- B(.r)] 
, 2 (30) 

the inequality following because ei’ is convex in z. Thus 

0 2 /lE[B”(x) - B(x)]. (31) 

Hence 

ml”(x) <HI(x). (32) 

Further, strict inequality holds if A > 0 (so that eiZ is strictly convex) and 
the expectation is nontrivial (y, $ (0, 1) for some n). Q.E.D. 

It should be stressed that what is essential in the proof of Theorem 3 is 
the difference in the objective and subjective probabilities over the number 
of bidders as shown in Lemma 1: the bidders do not act as though there 
are the objectively expected number of bidders. Theorem 3 is not merely a 
consequence of the fact that the expectation of a convex function exceeds 
the function of the expectation. In the next section, it will be shown that, 
when the bidders have symmetric expectations (as is assumed in this 
section) and are risk-neutral, the expected selling price is the same whether 
or not the number of bidders is announced. 

To summarize: if the seller has the option of announcing in advance the 
number of bidders, should he do so? The answer is striking: concealment 
Pareto-dominates announcement. With constant absolute risk aversion, the 
bidders are neither worse off nor better off in ex ante terms with the policy 
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of concealment; and, with risk-averse bidders, the seller is strictly better 
Off.5 

In an English auction, the price is the same whether or not the number 
of bidders is known, since in either case the bidding stops at the second- 
highest valuation; the same applies to a Vickrey auction. With independent 
private values and risk-averse bidders, the English auction and the Vickrey 
auction yield lower revenue for the seller than the first-price sealed-bid 
auction with the number of bidders known (Riley and Samuelson [ 151); 
in turn, as we have seen, this yields lower revenue than the first-price 
sealed-bid auction with an unannounced number of bidders. Thus, with 
risk-averse bidders, the auction form considered in this section, the 
first-price sealed-bid auction with the number of bidders concealed, is the 
best of the simple auction forms from the point of view of the seller.6 

Milgrom and Weber [ 121 examined the release of information by the 
seller in a model in which bidders’ valuations are affiliated (which means, 
roughly, that bidders’ valuations may be correlated). They obtained the 
following results. With risk-neutral bidders, the release of information by 
the seller raises the expected selling price in a first-price sealed-bid, Vickrey, 
or English auction. With risk-averse bidders, releasing information raises 
the price in an English or a Vickrey auction. The results obtained above 
imply that, in a first-price sealed-bid auction with risk-averse bidders (the 
case not examined by Milgrom and Weber), information release can result 
in either an increase or a decrease in the expected price. 

The tendency for the selling price to rise after information release when 
bidders’ valuations are affiliated is caused by what Milgrom and Weber 
[ 123 called the linkage effect. A rough intuition for this is as follows (for a 
more precise description, see Milgrom [ 11 I). It is intuitively clear that, in 
general, any reduction in the variance of the bidders’ estimates of the item’s 

5 While the process by which potential bidders become actual bidders is exogenous, the 
analysis is consistent with an endogenous process of bidder selection. Suppose the 
probabilities Da are determined by some exogenous stochastic costs incurred by the potential 
bidders in submitting bids. Then if some particular set of PA’s is an equilibrium distribution 
for the sealed-bid auction in which the auctioneer reveals the number of bidders, it is also an 
equilibrium distribution for the sealed-bid auction in which the auctioneer conceals the num- 
ber of bidders, This is because the bidders’ ex ante expected utility is the same for each auc- 
tion; thus the payoff to learning one’s value and then submitting a bid is the same for each 
auction. Thus concealing or revealing n would not atTect any potential bidder’s decision to 
submit a bid. Hence, even if the probability that any one bidder submitted a bid were 
endogenous, this probability would be the same for either auction. 

6 How large can the seller’s gain from concealment be? In a simulation with ;‘? =y, 
yi = 1 -7, L = 1 and F uniform on [0, 11, concealment increases revenue by 2.5% for small y, 
and by 10% for y = f. In addition, the percentage increase in revenue is a decreasing function 
of y in this simulation. 
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value increases bidding competition and drives up the price. The release of 
affiliated information links bidders’ estimates to the now-public infor- 
mation: it reduces the advantages from private information. In other 
words, the release of information has a similar effect to a reduction in the 
variance of perceived valuations. 

With risk-averse bidders in a first-price sealed-bid auction, Theorem 3 
above showed that there is a contrary tendency for the release of infor- 
mation to drive down the price. To understand this effect, note that a 
policy of revealing information would not on average change bidding 
behavior in an independent-private-values Vickrey or English auction: the 
expected second-highest valuation remains unchanged. In contrast, in a 
first-price sealed-bid auction with risk-averse bidders and independent 
private values, revealing information does change bidding behavior. If the 
revealed information is good news then each bidder knows that his rivals 
will bid more aggressively, so he must do likewise. Bad news similarly 
generates less aggressive bidding. Thus the policy of revealing information 
results in a higher variance of bids than the policy of concealing infor- 
mation. It therefore results in a lower price on average. We shall call this 
effect the bid-dispersion effect. 

Milgrom [ 1 l] pointed out that linkages increase the randomness in 
bidders’ payoffs. The foregoing results are consistent with this. From 
Theorem 2, bidders with independent private values in a first-price sealed- 
bid auction are indifferent between the policy of revealing information and 
the policy of concealing information. From Theorem 3, bids are on average 
lower with information revelation. It follows that the risk-averse bidders 
must be faced with more risk under revelation than under concealment. 

Thus the bid-dispersion effect is absent from a Vickrey or English auc- 
tion or when bidders are risk neutral; it operates by itself in a first-price 
sealed-bid auction with risk-averse bidders having independent valuations; 
and it operates in the opposite direction to the linkage effect in a first-price 
sealed-bid auction with risk-averse bidders having affiliated valuations. 

The usual examples of information that can be revealed by the seller (an 
expert’s appraisal of a painting, a geological survey of an oil well, etc.) do 
not apply to the independent-private-values model, since each bidder 
knows with certainty the value of the item to him. As discussed above, 
however, there is one type of information that is useful to a bidder when 
valuations are independent: information about the amount of competition. 

In an extension of the present analysis, Matthews [6] has shown that 
the result that the seller prefers to conceal the number of bidders continues 
to hold when the bidders have decreasing absolute risk aversion. However, 
the bidders prefer a policy of revelation when they have decreasing absolute 
risk aversion, and a a policy of concealment when they have increasing 
absolute risk aversion. 
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4. THE OPTIMAL AUCTION WITH A STOCHASTIC SET OF BIDDERS 

What is the optimal auction when the number of bidders is unknown? 
For the sake of tractability, we restrict attention now to the case of risk- 
neutral bidders. 

Drop last section’s assumption that potential bidders are identical. Sup- 
pose instead that potential bidder i independently draws his valuation x, 
from a distribution F,, which may vary from bidder to bidder; assume 
Fi(0) = 0 and let F; =fi. Thus informing bidders about the number of 
active bidders is now not the only issue; bidders also may or may not be 
informed about the identities of the other active bidders. 

The problem just defined is the optimal-auction problem solved by 
Myerson [14], but generalized in one respect: in this problem the bidders 
know neither how many other active bidders there are, nor the identities 
(that is, the Fis) of the other active bidders. Myerson’s case is obtained in 
the analysis to follow by setting DA = 1 and pL) = 0 for B# A, where A 
represents Myerson’s known set of bidders. 

We simplify the analysis relative to Myerson’s by assuming the dis- 
tributions F, satisfy the regularity condition 

(33) 

(cf. Myerson [ 14, p. 661). This simplifies the analysis because, when (33) 
fails, the seller must randomize (Maskin and Riley [2]). 

Suppose the seller values the object at x0 B 0. The seller uses an incen- 
tive-compatible direct mechanism by announcing sets rt G WI”, i E A, and 
functions LYE: 9PA’ + 9 so that, if the set of actual bidders is A and the bid- 
ders report valuations xA, then each bidder SEA pays an amount c(:‘(.x”) 
and is awarded the good if xA E rf. We use the notation 

I,..., a’,‘} =A; (34) 

w,, Y) = bL,‘...’ x0,-,, Y> x,,+,>..., XqJ (35) 

dxA u, = dx,, . . dx,_, Ax,+, . . . dx,,,, ; (37) 

fAbA)= lJ fi(xJ; (38) 
itA 
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44(z)= (x”; 1 (XAi, Z)d-4) if ieA; (39) 

cqqz, = (41) 

jEA 

Here (36) defines the set of reports x for which the seller keeps the good. If 
the x’s represent true evaluations, (35) gives the vector of responses when 
bidder i reports z and everyone else is honest. Equation (39) gives the set of 
others’ valuations for which i wins the good with a report of z. Equation 
(40) gives the probability that i wins with the report z, while (41) gives is 
expected payment with the report z. Let C,V,HC,Vj denote the sum over w  
satisfying H(W). 

The incentive-compatibility constraints are 

(42) 

The free-exit constraints are 

THEOREM 4. The seller maximizes his expected revenue by setting I-4 to 
satisfy 

rf = 
1 

x E 9i?lA’ 1 x, - ’ ,;“;(;j’ > max [x0, xj - ’ ,f:(F)]}. (44) 
I J 

Proof Rewrite the incentive-compatibility constraints 

CA bA[a:(z) -owl d 1 PAZ,%;(~) - /&zO)] (45 1 
A 

,tA it .4 
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and 

A A 
iGA iEA 

Divide by z-z,, and take limits to yield 

xA ~A[“t’(z)l = c 

A 
(47) 

should these derivatives exist. The free-exit constraint (43) implies 
a:(O) GO; but the seller wants at(O) to be as large as possible, so that 
a;(O) = 0. Hence 

The seller expects to earn 

f”(x”) dXA + c j&# cq(xA) f”(x”) dYA{ 

I 
,EA 

= ; DA ix0 [’ - Ei jp fAtxA) dr”] 

ieA 

+ c j m  a:(z) f;(z) dz 
i O 

i6A 

=xO-xO~PA 1 j+.f”(x”W” 
A isA , 

+ 1; CA bA jam “:‘(Z, f:(Z) dz 

ia% rtA 

= Xo - Xo 1 c bAjp f”(X”) dxA 
i A 

is% isA 

642.43.‘1-2 
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+ [l -Fi(Z)] SZ/Lf(l) dt 
[ 0 II 

m 
0 

-j-@ Cl-Fi(z)l/c’(z)dz 
0 II 

=x0-x0 c ~PA~pfA(XA)dXA 
;A 

+ 1 1 PA [ jti [X, - ’ ;,;;+j f”(x”) dx”] 
I A 

ie% itA 

= xO + 1 c bA { Iti [x; - xO - 1 ,;;;“I f"(x") dx"} 
i A 

=x0 + C PA 1 Jp {xi -x0 -’ ,;;ri’) f”(x”) dxA. (49) 
AG’R ieA I 

Maximizing @ with respect to r4, subject to r4 n rt = 4 for i # j, i, j E A 
yields, from Stokes’ Theorem (Sagan [ 14, p. 5423) 

1 - Fi(xi) 
xA (xi-x0- f;,(xi) >max 

1 - Fj(xj) 

.fJxj) 
* (50) 

Condition (50) gives the unconstrained maximizer of @. However, @ must 
be maximized subject to the constraint that the function CA fiAp:(z) is 
nondecreasing in z (which is necessary for incentive compatibility). The 
regularity condition (33) ensures that the unconstrained maximizer in (50) 
does in fact satisfy the monotonicity constraint. Q.E.D. 

Since the payment function 84 is contingent on the set of bidders A, the 
seller implicitly reveals the set of bidders when he announces the payment 
function. However, if the seller wishes to conceal the set of bidders, he can 
make payment not contingent on A (provided he knows the probabilities 
PA) by using the payment function 

a,(z)= 1 PAa:‘tz) 
i 

1 PA. (51) 
A A 

iEA isA 
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The noteworthy feature of Theorem 4 is that the optimal auction does 
not depend on the probabilities over the sets of active bidders, /IA. Thus 
the optimal auction derived by Myerson [ 141 when the set of bidders is 
common knowledge remains the optimal auction when the bidders do not 
know the set of bidders. This implies the following result. 

COROLLARY. The seller’s maximum expected revenue with risk-neutral 
bidders having independent private values is the same whether or not the 
bidders know the set of bidders. 

Consider the case in which F, = F, = F for all i, j: all bidders draw their 
valuations from the same distribution. Then Theorem 4 says that the seller 
optimally sets a reserve price r satisfying x0 = r - (1 - F(r))/f(r) and 
chooses the highest remaining bidder (as in Myerson [ 141 and Riley and 
Samuelson [ 151). If F, # F, for some i, j, then reserve prices are again used 
but the optimal auction discriminates against certain bidders, in that a 
lower-valuation bidder can win the item despite the presence of a higher- 
valuation bidder. (See Myerson [14] for details.) 

How can the optimal auction be implemented in practice in the case 
of symmetric bidders (i.e., Fj = F, for all i, j)? When the set of bidders is 
common knowledge, it is well known that the optimal direct, incentive- 
compatible auction can be mimicked by either an English auction or a 
first-price sealed-bid auction, provided appropriate reserve prices are 
imposed (Milgrom [ 111, Myerson [ 141, Riley and Samuelson [ 151). Does 
this remain the case when the bidders do not know the set of bidders? In 
the case of symmetric expectations, it does. If the bidders’ expectations over 
the set of bidders, while Bayesian consistent, are not identical, then the 
optimal auction can be implemented using an English auction, because in 
the English auction, the second-last bidder drops out of the bidding when 
the bids reach the value of the second order statistic; this gives the seller 
the same expected revenue as the optimal direct auction of Theorem 4. 
However, it is important to note that the optimal auction cannot be 
implemented by a first-price sealed-bid auction when bidders have different 
expectations. This is because the bidding functions of different bidders will 
fail to coincide; as a result, it is possible that the highest bidder in the first- 
price sealed-bid auction is not the appropriate winner as defined by the 
optimal rA. Note also that the converse of this applies: if the bidders have 
different expectations over the set of bidders, then only for a measure-zero 
set of F:s is the first-price sealed-bid auction optimal. Thus we have a 
result contrary to the Revenue-Equivalence Theorem, even though bidders 
are symmetric, risk neutral, and have independent private values. 
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5. CONCLUSION 

The results of auction theory are sensitive to the assumption that the set 
of bidders is common knowledge. In a first-price sealed-bid auction with 
bidders who have independent private values and are risk averse (with con- 
stant absolute risk aversion), the expected selling price is strictly higher 
when the bidders do not know how many other bidders there are than 
when they do know this. In an ex ante sense, any bidder is indifferent 
between the policy of being told and the policy of not being told the num- 
ber of bidders. With risk-neutral bidders, the optimal auction is the same 
whether or not the bidders know who their competitors are. However, this 
optimal auction may not be implementable using a first-price sealed-bid 
auction, although it is implementable using an English auction. 

More generally, in a first-price sealed-bid auction with bidders who are 
risk-averse and have affiliated private values, the release of any affiliated 
information by the seller generates two opposing tendencies: the linkage 
effect, identified by Milgrom and Weber [ 121, which tends to raise the 
selling price; and the bid-dispersion effect identified above, which tends to 
lower the selling price. 

The limits of the foregoing results should be stressed. As Milgrom and 
Weber [ 121 argued, the independent-private-values assumption is restric- 
tive: it requires that each bidder has no doubt about the value of the item 
to him, and that there be no possibility of reselling the item later at some 
as yet unknown price. The analysis of Section 3 assumed constant absolute 
risk aversion: Matthews [6] showed that some of the results change when 
this assumption is relaxed. The results of Section 4 depend upon the 
assumption of risk neutrality, as is shown by the results on optimal auc- 
tions with risk-averse bidders of Maskin and Riley [3], Matthews [4, 51, 
and Moore [13]. 
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