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The number of rivals may be unknown when a bidding strategy is formulated in an auction. In a symmetric model with
risk-neutral bidders holding independent information, we obtain explicit equilibrium bidding functions for first-price and
second-price auctions with uncertainty about the number of rivals. Five auctions are revenue-equivalent: first-price and
second-price auctions, each with the number of bidders known or uncertain, and English auctions.

1. Introduction

Most auctions models assume the number of bidders is fixed and common knowledge. Often,
though, bidders do not know when formulating strategies how many rivals will compete, particularly
in markets organized with sealed bidding. Recent papers by Matthews (1987) and McAfee and
McMillan (1987) have made the number of bidders random, with a known distribution. Both papers
adopt the independent-private-values model [Vickrey (1961)], and analyze effects of bidder risk
aversion upon seller’s and bidders’ preferences across auction institutions. Both implicitly assume
that the seller knows the number of bidders (in advance), and the key institutional choice is whether
the seller reveals this information. All their analysis is indirect; equilibrium bid functions when the
number of rivals is uncertain are not presented.

Clearly, an equilibrium bid facing this ‘numbers uncertainty’ will be weighted average of the bids
that would have been chosen for each number of rivals. What are the weights? We obtain explicit
symmetric equilibrium bid functions for risk-neutral bidders in a more general independent model
which allows for asset value uncertainty. Weights differ for first-price and second-price auctions.
Five auctions are revenue-equivalent: first-price and second-price auctions, each with the number of
bidders known or uncertain, and English auctions.

* We acknowledge support from the National Science Foundation’s Information Science and Technology Division, and
thank, without implicating, Steven Matthews for pointing out an error in an earlier version, and Douglas Dyer, Oded
Palmon, and James L. Smith for helpful comments.
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2. The model

An indivisible asset is for sale at auction. All n < oo potential bidders are risk neutral. The
number who actually bid is a, which may be unknown when formulating strategies. A known
symmetric distribution governs a, established as follows. Each subset 4 of N = {1,..., n} is the set
of bidders with probability ,; sets with the same cardinality have the same chances. So the seller’s
ex ante probability of a bidders is

s,= 3 my, a=1,...,n. (1)
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Let a:=min{a€ N |s,>0}. The corresponding probability for a bidder is influenced by his
becoming an actual bidder. Using symmetry, it is
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Thus, relative to the seller, bidders rationally place lower probability on events with fewer bidders.
Each actual bidder i observes a real-valued signal X,, an independent draw from distribution F

with support [x, X] and density f(x) > 0 on (x, X). The asset value to actual bidder / depends, in

general, on his signal and those of actual rivals, and is represented by a symmetric function

Vie=Vie( X X) = V(X (X}, 20) (3)

which is assumed non-negative, non-decreasing, continuous, and bounded in expectation for all
ae N. Let (Y{,...,Y{ ) be (X,,..., X,) arrayed descendingly. Define

Uu(x)’=E[V1u|X1=X:Y1u]~ a&eN, (4)

which is the expected asset value conditional on the two highest of a signals being x. ' We assume
zero reserve prices and entry fees throughout.

3. First-price auctions

The symmetric equilibrium bid function when bidders are informed that the actual number of
rivals is a (‘contingent bidding’; see section 6) is defined by the differential equation

ba(x) = [v,(x) = b,(x)](a = 1)(f(x)/F(x)), (5)
with initial condition b,(x) = v,(x) [from Milgrom and Weber (1982)].

' The independent-private-values model is a special case. Common-value auctions [Wilson (1977)] are inconsistent with
independence of signals, but the characteristic that the event of winning is informative about asset value can be
incorporated, e.g. V;,(Xi,..., X,) =3[ X; + max{ X,,..., X, }+min{ X,,..., X, }].

NPT N
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9 Suppose b(x) with b’(x) >0 is a symmetric equilibrium of a first-price auction with numbers
uncertainty. > It must solve:

maXhZPaE[(Vla_b)1<b(y,“)<b)|X1 =X, a], (6)
a

where 1., takes value 1 in event (z), 0 otherwise. Equation (6) yields:

b'(x)=(z[uu(x)—b(x)](a—l)w,,(x))%, (7)

a

with initial condition b(x) = v,(x), where the weights

1 Fa~1( )
X) Py
w,(x) = = 20 (8)
LF TN (x)p
are the probabilities of a bidders conditional on x being the highest signal observed [derivation
follows Milgrom and Weber (1982, pp. 1106-1107)].
Theorem 1. In first-price auctions, the unique symmetric equilibrium bid function facing numbers
uncertainty is precisely the expected payment conditional upon winning under contingent bidding:
_ b(x) = 2w, (x)b,(x). (%)
< a
{ |

Proof. Applying L’Hdpital’s rule to (8) at x, w,(x) =0 for a > a, to satisfy the initial condition.
Non-differentiable symmetric equilibria can be ruled out as in Maskin and Riley (1984, Theorem 2).
Differentiating (9): )

b'(x) = 2w, (x)bi(x) + (f(X)/F(X))(Zwa(X)ba(x)(a -1)

“E[w0n T D))
l Removing b/(x) via (5) and inserting b(x) via (9) yields

' (x) = (f(2)/F() | T () ([ () = by ()] (@ = 1) + by (x)(a=1))

~b(x)L (i = Dw,(x)}

= (f(x)/F(x) X [va(x) = b(x)](a = D)w,(x),

the last by switching the index i to a. O

2 The assumption that b’(x) is positive is seldom justified [cf. McAfee and McMillan (1987)], but can be shown when v,(x)
is non-increasing with a (see footnote 3).
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Thus, in first-price auctions, the equilibrium weights bidders attach to differing numbers of rivals
are the probabilities that will be correct in the event of winning.

4. Second-price auctions

The unique symmetric equilibrium contingent bidding function for second-price auctions is v,(x)
in (4) [cf. Matthews (1977), Levin and Harstad (1986)]. We state without proof:

Proposition 1. Under contingent bidding, first-price and second-price auctions have the same expected
payment upon winning, and the same expected revenue.

Let the uncertain-number analogue to (4) be B(x), expec:ced asset value given that the two highest
of an uncertain number of signals are both x. This is

B(x) =Y W,(x)v,(x), (10)
where

W,(x) = ((a= DF*2(x)p) /[ S = DF (), ). (1)

Theorem 2. In second-price auctions with numbers uncertainty,

(A) If B(x) in (10) is non-decreasing, then (B,..., B) is a symmetric equilibrium.

(B) If a symmetric equilibrium exists, then B(x) is non-decreasing, and (B,..., B) is the unique
symmetric equilibrium. *

(C) Expected payment conditional on winning and expected revenue are the same as under contingent
bidding.

Proof (A). Focus on bidder 1. Let a random variable M denote the highest rival bid when all actual
rivals use B(-). When X, = x, 1’s choice between B(x) and any b > B(x) is solely decided by the
positive probability event (ignoring ties for brevity):

={B(x)<M<b}.

3 Suppose, as is intuitive, that (4) falls as a rises. Then (10) can be used to show that (9) is increasing, as asserted. Let d(x) be
the denominator of (8) divided by the denominator of (11). Substituting into (7):

b'(x) = 3 [0a(x) = b, () Wa(x)d(x) [ (x) =d(x)f(x) [ B(x) = b(x) 1 Wa(x)]

=[B(x)—b(x)]d(x)f(x)>0, since

B(X) ZZE[Vla|Xl=x2Yla]Wa(X) ZZE[VM|XI=X2YM]W0(X) >b(x)’

where the first inequality follows from (4), (10) and (3) being non-decreasing, the second from (8) weighting cases of fewer
bidders proportionately higher than (11), the last from expected profit being positive.
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(Thus, ¥, will refer to £7_,.) Define X by M = B(X). In event 0: X > x; bidding B(x) earns zero
profit; bidding b obtains an asset of expected value

YEV. 1 X =x, ]1Pr[a| X, =x, 6]

<Y E[V, 1 Xi=x, Y4 = X]Pr[a| X, =x, 0]

) @ )F )R,
= ZEDA X = Ya = XIS 00 () (),

.

= ZE[Vla | Xl =X, Yal =X]Wa(X)

= ZE[Vla I Xl = Yal =X]Wa(_‘¥) =B(£()’

which is the price. The first inequality results from substituting a more optimistic event (a rival signal
} above X is inconsistent with 8); the second is strict except when V,, is degenerate. The argument for
any b < B(x) is parallel.

(). B modifies A in ways parallel to Levin and Harstad (1986), details are omitted for brevity.
(0). Let S(y|x) represent the density of the second-highest signal being y given that the highest
signal is x. Let W,(x, y) be the probabilities of a bidders, given that x is the highest and y the

second-highest signal; these are the weights used to calculate expected payment upon winning with
contingent bidding. These weights are

= ~ (a=D)f()DF (D) Pa _
Wl ) = s i O F ) (12)

Multiplying both sides of (12) by v,(y)S(y|x)dy and integrating both over [x, x] yields the
conclusion. 0

Thus, the weights in second-price auctions are the probabilities of a bidders conditional on the
event that a bidder is indifferent over winning in equilibrium.

5. English auctions

Given independence of signals, information learned about rivals’ signals from their drop-out
prices in English auctions may affect behavior, but it does not affect expected payment.
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Proposition 2. The second-highest bidder drops out of an English auction, on average, at his
second-price (contingent) equilibrium bid.

Proof. Rewriting (4):

= [ [ e x) T (5) dx)

=(a— 2)!/}(&’—1_/;%72/;“/):(1/“()(, X, X3y Xgoeeos Xg) f(x5) dx5... f(x,) dx,.
(13)

The right-hand side of (13) is the expected drop-out point of the second-highest bidder in an English
auction, rewriting eq. (6) in Milgrom and Weber (1982). O

This result combines with Proposition 1 and Theorems 1 and 2(C) to yield expected payment and
expected revenue equivalence of all five auction forms discussed.

6. Contingent bidding

McAfee and McMillan (1987, p. 2) suggest that ‘knowledge about the set of bidders... matters,
because if different bidders have different (albeit Bayesian consistent) expectations over the set of
bidders, then if the set of bidders is not known, the optimal auction cannot be implemented using a
first-price sealed-bid auction...” This paper has shown that bidders unsure of the number of rivals
are always led to select bids on the basis of different expectations about the number of bidders.
However, the quoted concern that the seller may not be able to resolve this uncertainty (if, for
example, congregating bidders is expensive) is unnecessary. The seller can introduce contingent
bidding. That is, each potential bidder submits a list of bids, one for each number (‘I bid $42 if there
are 3 bidders, $47 if 4, $48 if...’). The seller is precommitted to using only the contingent bid
corresponding to the number of submissions received. In essence, each bidder selects his bid
effectively knowing the number of rivals he faces.
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