
Notes on Border’s Theorem

1 Background

Consider a setting where an object needs to be allocated to n agents. Each agent i has

a private value vi for the object. Assume that the value of each agent i is drawn using

some distribution Fi with some support Vi. A planner/designer sets up an allocation rule

to allocate the object. Such an allocation rule assigns probabilities of winning the object

to each agent at every profile of values (v1, . . . , vn). Given such an allocation rule, an agent

i with value vi can compute her interim allocation probability of winning the object. This

induces an interim allocation rule, which maps each vi ∈ Vi to a number in [0, 1]. Thus,

every allocation rule induces n interim allocation rules.

These interim allocation rules form the heart of many problems in economic theory.

For instance, if the allocation rule is used in an auction, the incentive constraints can be

reformulated to be just monotonicity constraints of interim allocation rules and the objective

function of a revenue-maximizing seller can be written in terms of interim allocation rules.

Suppose we are given n arbitrary maps: from Vi to [0, 1] for each i. Border’s theorem

asks if such maps can correspond to n valid interim allocation rules. That is, if there

exists an allocation rule which can generate these n maps as interim allocation rules. The

initial motivation for such a question came from auction theory: early necessary conditions

and conjectures were due to Matthews and Maskin. However, Border’s theorem now has

applicability in other areas of economic theory.

There are two (related) versions of Border’s theorem: (1) with a finite type space; (2) with

a continuum type space. This note covers both the versions. We start with a symmetric

model and finite type space. We then extend this finite type space characterization to a

model without symmetry. We then look a continuum type space with symmetry and without

symmetry. We then give some applications of Border’s theorem.

2 The symmetric model

A single object is to be allocated to a set of n agents. The set of agents are denoted by

N . Agents are ex-ante identical: each agent i draws its values from some finite set X and

1

the corresponding probability distribution is F . So, F (x) ∈ [0, 1] is the probability that an

agent has value x ∈ X, and
∑

x∈X F (x) = 1. A profile of values is n draws from X using

the same distribution F .

It may be useful to represent a profile of values alternatively. A counting function is

a map c : X → {0, 1, . . . , n} such that

∑
x∈X

c(x) = n

Let C be the set of all counting functions. Each counting function c ∈ C represents a profile of

values (and all its permutations): if a value x belongs to this profile if and only if c(x) > 0.

Further, c(x) represents the number of agents who have value x. A counting function is

thus an anonymous representation of a profile of values since it only counts the number of

occurrences of a particular value.

We are now ready to define a symmetric allocation rule.

Definition 1 A symmetric allocation rule is a map q : X × C → [0, 1] such that

q(x, c) = 0 if c(x) = 0∑
x∈X

c(x)q(x, c) ≤ 1 ∀ c ∈ C

A symmetric allocation rule assigns all agents with identical value the object with identical

probability. Hence, q(x, c) defines the probability with which an agent of type x receives

the object when any valuation profile corresponding to count function c occurs. The first

constraint ensures that the object is only given to values that appear in the profile. The

second condition ensures that the total probability is less than 1.

Let λ(c) be the probability with which a profile of values corresponding to counting

function c is realized: this is the sum of probabilities of all profile of values that generate the

counting function c. This probability can be computed from F as:

λ(c) =
∏
x∈X

[F (x)]c(x) ∀ c ∈ C

We are now ready to introduce interim allocation rules.

2

Definition 2 An interim allocation rule is a map Q : X → [0, 1].

The interpretation of Q(x) is the (interim) probability with which an agent with value x

wins the object (in some allocation rule). Of course, every allocation rule q generates an

interim allocation rule Q as follows.

nQ(x)F (x) =
∑
c∈C

c(x)q(x, c)λ(c) ∀ x ∈ X (1)

The LHS of equation (1) calculates (using Q) the probability that winner is an agent with

value x. The RHS calculates the same thing using q. It may be useful to define Q̃ from Q

as follows:

Q̃(x) = nQ(x)F (x)

Hence, (1) can be rewritten as follows:

Q̃(x) =
∑
c∈C

c(x)q(x, c)λ(c) ∀ x ∈ X (2)

Definition 3 An interim allocation rule Q : X → [0, 1] is implementable if there exists

an allocation rule q such that equation (2) (or, equivalently (1)) holds.

This leads to our first theorem.

Theorem 1 (Finite Symmetric Border) An interim allocation rule Q is implementable

if and only if

∑
x∈S

Q̃(x) ≤ 1−
(∑
x∈X\S

F (x)
)n

∀ S ⊆ X (3)

Proof : We first construct a layered network as follows. There is a source s and a sink

vertex t. First layer consists of all the types in X, i.e., a vertex for each type x ∈ X. Second

layer consists of all the counting functions C, i.e., a vertex for each counting function c ∈ C.
There is an edge (s, x) for each x ∈ X and there is an edge (c, t) for each c ∈ C. There is an

edge (x, c) if and only if c(x) > 0. Capacity of edges (x, c) is infinite: κ(x, c) := ∞. Capacity

3

of edge (s, x) is κ(s, x) := Q̃(x) = nQ(x)F (x). Capacity of edge (c, t) is κ(c, t) := λ(c). A

representative network is shown in Figure 1.

(3, 0, 0)

(0, 3, 0)

(0, 0, 3)

(2, 0, 1)

(2, 1, 0)

(1, 0, 2)

(1, 2, 0)

(0, 2, 1)

(0, 1, 2)

(1, 1, 1)

x1

x2

x3

s t

X = {x1, x2, x3}
Count : (c1, c2, c3), ci is count of xi

Capacity: nQ(xi)F (xi)

Infinite capacity

Capacity: λ(c)

Figure 1: Network corresponding to three types

Flow defines f(e) for every edge e such that capacity constraints and flow balancing

constraints hold. The first step of the proof is to show that Q is implementable if and only

if there is a “maximal” flow f such that f(s, x) = Q̃(x) = nQ(x)F (x) for all x.

4

Necessity. Suppose Q is implementable by q. Then, define the following flow:

f(s, x) = Q̃(x) = κ(s, x) ∀ x ∈ X

f(x, c) = c(x)q(x, c)λ(c) ≤ κ(x, c) ∀ x, c

f(c, t) =
∑

x:c(x)>0

c(x)q(x, c)λ(c) ≤ λ(c) = κ(c, t) ∀ c

So, by definition, f satisfies capacity constraints. For flow balancing, we see that for any

vertex x in the first layer, the incoming flow is Q̃(x). The outgoing flow is

∑
c:c(x)>0

c(x)q(x, c)λ(c) = Q̃(x)

Hence, flow balancing holds at x. Now, pick c. Outgoing flow is

∑
x:c(x)>0

c(x)q(x, c)λ(c)

which is also the sum of incoming flows. So, this is a feasible flow. Since the edges (s, x) for

each x flow at full capacity, it is a maximal flow.

Sufficiency. Suppose there is a maximal flow f where each edge (s, x) flows at full capacity.

Then, define q from f as follows. For every (x, c) with c(x) > 0,

q(x, c) :=
f(x, c)

c(x)λ(c)

If c(x) = 0, we set q(x, c) = 0. We show that q is feasible. First, for every x, flow balancing

at x gives

nQ(x)F (x) = f(s, x) =
∑

c:c(x)>0

f(x, c) =
∑

c:c(x)>0

c(x)q(x, c)λ(c)

Hence, q generates the interim probabilities Q. By definition q(x, c) ≥ 0. By flow balancing

5

at c, we see that

∑
x:c(x)>0

f(x, c) =
∑

x:c(x)>0

c(x)q(x, c)λ(c) = f(c, t) ≤ λ(c)

where the last inequality is because of capacity constraint on (c, t). As a result, we have for

every c,

∑
x:c(x)>0

c(x)q(x, c) ≤ 1

which is the desired feasibility constraint. This completes the first step of the proof.

The next step shows that Border’s (symmetric) inequalities hold if and only if there is a

maximal flow f where each edge (s, x) flows at full capacity. This in turn is true if and only

if the “the cut” where source s is on one side and all other vertices are on the other side is

a “minimum cut”, where we explain the meanings of cut and minimum cut below.

For this, we use the max-flow equals min-cut theorem. First, a cut is a partitioning of set

of vertices such that s and t are on different sets. Second, the capacity of a cut is the capacity

of all the edges that go from s side of the cut to t side of the cut. Given this definition, the

candidate minimum cuts must have no vertex x on s-side and a corresponding c on t side

such that c(x) > 0. This is because the capacity of these edges is infinite. Hence, we only

consider cuts where some S ⊆ X set of types are on s-side and every c with c(x) > 0 for

some x ∈ S is also on s-side. The capacity of this cut is thus the capacities of all edges from

the c vertices on s-side to sink t and all edges from s to vertices in X \ S:

n
∑
x∈X\S

Q(x)F (x) +
∑

c:c(x)>0 for some x∈S

λ(c)

Using the fact that
∑

c λ(c) = 1, we get

∑
c:c(x)>0 for some x∈S

λ(c) = 1−
∑

c:c(x)=0 ∀ x∈S

λ(c)

6

Hence, the total capacity is

n
∑
x∈X\S

Q(x)F (x) + 1−
∑

c:c(x)=0 ∀ x∈S

λ(c)

The capacity of the cut involving S = ∅ is

n
∑
x∈X

Q(x)F (x)

Hence, a necessary and sufficient condition for the S = ∅ cut to be minimal is

n
∑
x∈X

Q(x)F (x) ≤ n
∑
x∈X\S

Q(x)F (x) + 1−
∑

c:c(x)=0 ∀ x∈S

λ(c)

⇔ n
∑
x∈S

Q(x)F (x) ≤ 1−
∑

c:c(x)=0 ∀ x∈S

λ(c)

Finally, the probability of the event c : c(x) = 0 ∀ x ∈ S is the probability that type of each

agent lies in X \ S. This probability is

[
1−

∑
x∈S

F (x)
]n

Hence, the relevant necessary and sufficient condition is

n
∑
x∈S

Q(x)F (x) ≤ 1−
[
1−

∑
x∈S

F (x)
]n

■

2.1 Submodularity and polymatroids

In continuous optimization problems, concave maximization plays an important role. A

counterpart of concave maximization in the framework of discrete optimization is submodular

optimization.

We study a class of optimization problems for which a greedy solution exists. Further,

whenever the primitives of the problems are integral, then the greedy solution is also an inte-

7

gral solution. This illustrates an important class of problems where the total unimodularity

property, a widely applied sufficient condition for existence of integral extreme points, need

not hold, but still we get integral extreme points.

We will be talking about set functions. Let X be a finite set and P(X) be the set of all

subsets of X. We will be interested in functions ψ : P(X) → R, where we will normalize

ψ(∅) = 0 throughout.

To think of a real like example, think of firm producing a single product. To produce

the first unit, it requires some investment in machines and other fixed costs. To produce

the second unit, the cost is usually lower. As the production becomes large, there is natural

economies of scale, and the extra unit of cost of production goes down. This idea is captured

in the following definition.

Definition 4 A function ψ : P(X) → R is submodular if for all A,B ⊆ X, we have

ψ(A ∪B) + ψ(A ∩B) ≤ ψ(A) + ψ(B)

A function ψ : P(X) → R is non-decreasing if for all A,B ⊆ X with A ⊆ B, we have

ψ(A) ≤ ψ(B).

If a function ψ : P(X) → R is both submodular and non-decreasing it is called a poly-

matroid.

Consider an example with X = {a, b, c} and ψ({a}) = ψ({b}) = ψ({c}) = 1, ψ({a, b}) =
3, ψ({b, c}) = 2, ψ({c, a}) = 4, ψ({a, b, c}) = 4. The function ψ is non-decreasing. However,

it is not submodular since ψ({a}) + ψ({b}) = 2 < 3 = ψ({a, b}).
An alternate definition of a submodular function is the following.

Theorem 2 A set function ψ : P(X) → R is submodular if and only if for all A,B ⊆ X

with A ⊆ B and for all b /∈ B, we have

ψ(B ∪ {b})− ψ(B) ≤ ψ(A ∪ {b})− ψ(A)

The theorem says that the “marginal” contribution to a smaller subset is larger than to

a bigger subset. This is consistent with the idea that the derivative of a concave function is

non-increasing.

8

Proof : Suppose ψ : P(X) → R is a submodular function. Pick A ⊆ B ⊆ X and b /∈ B.

Note that (A ∪ {b}) ∪ B = B ∪ {b} and (A ∪ {b}) ∩ B = A. Using submodularity we get,

ψ(A ∪ {b}) + ψ(B) ≥ ψ(B ∪ {b}) + ψ(A), which gives the desired inequality.

For the converse, pick any A,B ⊆ N . If B ⊆ A, then A ∪ B = A and A ∩ B = B.

As a result, trivially, ψ(A) + ψ(B) = ψ(A ∪ B) + ψ(A ∩ B). So, assume B ⊈ A, and let

B \ A := {b1, . . . , bk}. Now,

ψ(A ∪B)− ψ(B) = ψ(B ∪ {b1, . . . , bk})− ψ(B)

= ψ(B ∪ {b1, . . . , bk})− ψ(B ∪ {b1, . . . , bk−1})

+ ψ(B ∪ {b1, . . . , bk−1})− ψ(B ∪ {b1, . . . , bk−2})

+ . . .

+ ψ(B ∪ {b1})− ψ(B)

≤ ψ((A ∩B) ∪ {b1, . . . , bk})− ψ((A ∩B) ∪ {b1, . . . , bk−1})

+ ψ((A ∩B) ∪ {b1, . . . , bk−1})− ψ((A ∩B) ∪ {b1, . . . , bk−2})

+ . . .

+ ψ((A ∩B) ∪ {b1})− ψ(A ∩B)

= ψ((A ∩B) ∪ {b1, . . . , bk})− ψ(A ∩B)

= ψ(A)− ψ(A ∩B)

which gives the desired submodular inequality. ■

Just like submodular functions, we can talk about supermodular functions. A function

ψ : P(X) → R is supermodular if and only if −ψ submdoular. In other words, for every

A ⊆ B and b /∈ B,

ψ(B ∪ {b})− ψ(B) ≥ ψ(A ∪ {b})− ψ(A)

So, for supermodular functions, marginal contributions increase for larger sets. A function

ψ : P(X) → R is modular if it is both submodular and supermodular (i.e., the inequalities

in the definitions of submodular and supermodular functions hold with equality). A useful

characterization of modular function essentially says that they are “linear” functions. We

skip the proof.

9

Theorem 3 A function ψ : P(X) → R is modular if and only if there is some vector

v : X → R such that ψ(S) =
∑

x∈S v(x) for all S ⊆ N .

2.2 Polymatroid Optimization

For simplicity of notation, we will denote X = {x1, . . . , xm}. Sometimes, we will also refer

to xi as i. We will be interested in the following polyhedron associated with a polymatroid

set function ψ : P (X) → R: 1

Pψ := {z ∈ Rm
+ :

∑
j∈S

zj ≤ ψ(S) ∀ S ⊆ X}.

Technically, z is a map from X to R+. However, it is easier to write it as a vector in Rm
+ ,

and denote by zj the value of the map for type xj.

We will attach a linear program with the feasible set being this polyhedron. In particular,

we will consider the following linear program:

max
z

∑
j∈X

cjzj subject to z ∈ Pψ

where c ∈ R|X|. We will denote this linear program as LPψ.

max
z

∑
j∈X

cjzj

subject to (LPψ)∑
j∈S

zj ≤ ψ(S) ∀ S ⊆ X

zj ≥ 0 ∀ j ∈ X

We show that a greedy algorithm gives an optimal solution of (LPψ). The greedy algorithm

works as follows.

1. Without loss of generality, order the coefficients c1 ≥ c2 ≥ . . . ≥ cr > 0 ≥ cr+1 ≥ . . . ≥
1Since ψ(∅) = 0 and ψ in non-decreasing, ψ(S) ≥ 0 for all S.

10

cm.

2. Set

zi =

ψ(Si)− ψ(Si−1) if i ∈ {1, . . . , r}

0 otherwise

where Si = {1, . . . , i} for all i ∈ {1, . . . , r} and S0 = ∅.

Theorem 4 The greedy algorithm finds an optimal solution of (LPψ) for any polymatroid

set function ψ : P(X) → R.

Proof : As ψ is non-decreasing, zi = ψ(Si) − ψ(Si−1) ≥ 0 for all i ∈ {1, . . . , r}. Also, for

each T ⊆ X, we note that

∑
j∈T

zj =
∑

j∈T∩Sr

zj =
∑

j∈T∩Sr

[
ψ(Sj)− ψ(Sj−1)

]
≤

∑
j∈T∩Sr

[
ψ(Sj ∩ T)− ψ(Sj−1 ∩ T)

]
≤

∑
j∈Sr

[
ψ(Sj ∩ T)− ψ(Sj−1 ∩ T)

]
= ψ(Sr ∩ T)− ψ(∅)

≤ ψ(T),

where the first inequality followed from submodularity and the second and the last one from

non-decreasingness of ψ.

This shows that the greedy solution is a feasible solution. The objective function value

from the greedy solution is
r∑
i=1

ci
[
ψ(Si)− ψ(Si−1)

]
.

Now, to prove optimality, we consider the dual of the linear program LPψ. The dual of this

11

linear program has variables yS for every S ⊆ X.

min
y

∑
S⊆X

ψ(S)yS

subject to (DLPψ)∑
S:j∈S

yS ≥ cj ∀ j ∈ X

yS ≥ 0 ∀ S ⊆ X

We first give a solution to the dual (DLPψ). Let

yS =

ci − ci+1 if S = Si for some i ∈ {1, . . . , r − 1}

cr if S = Sr

0 otherwise

Note that non-negativity constraint is satisfied. Further, for any j ≤ r,

∑
S:j∈S

yS ≥ ySj + ySj+1 + . . .+ ySr = cr +
r−1∑
i=j

[ci − ci+1] = cj

For any j > r, cj ≤ 0, and hence

∑
S:j∈S

yS ≥ 0 ≥ cj

Thus, the {yS}S is a feasible solution of the dual problem (DLPψ). The objective function

value of the dual from this feasible solution is

∑
S⊆N

ψ(S)yS = crψ(S
r) +

r−1∑
i=1

[ci − ci+1]ψ(S
i) =

r∑
i=1

ci
[
ψ(Si)− ψ(Si−1)

]
Hence, the objective function value of the primal feasible solution from the greedy al-

gorithm and the dual feasible solution is the same. By strong duality theorem, these are

optimal solutions. ■

12

Two interesting observations from the proof of Theorem 4 emerge. First, if ψ(S ∪{a})−
ψ(S) is integral for all S ⊆ X and a ∈ X \ S, then there is a greedy integral optimal

solution. Second, if ψ(S ∪ {a}) − ψ(S) ∈ {0, 1} for all S ⊆ X and a ∈ X \ S, then the

greedy algorithm gives a {0, 1} feasible solution that is optimal. In this case, ψ is called a

submodular rank function.

This point further highlights an important point that even though the constraint matrix is

not totally unimodular, a widely applied sufficient condition for existence of integral optimal

solution of linear programs, we have a new class of problems where LP relaxation solves the

integer program.

The proof also highlights another interesting point. It identifies the extreme points of

the polyhedron Pψ. To define the extreme points, let S ⊆ X be some subset of types in

X (S may be empty also). Let ≻S be a strict ordering of types in S. For simplicity, let

S = {1, . . . , ℓ} and 1 ≻S 2 ≻S . . . ≻S ℓ and for every i ∈ {1, . . . , ℓ}, define

Si := {1, . . . , i}

Then, consider the following feasible solution of Pψ:

zi =

ψ(Si)− ψ(Si−1) if i ∈ S

0 otherwise

We call this a priority solution given by (S,≻S). As the proof shows every priority solution

is a feasible point in Pψ. Theorem 4 implies that these are the only extreme points of Pψ.

Theorem 5 Every priority solution is an extreme point of Pψ. Conversely, every extreme

point of Pψ is a priority solution.

Proof : We use the following characterization of extreme points of a polyhedron. A feasible

solution z∗ ≡ (z∗1 , . . . , z
∗
m) ∈ Pψ is an extreme point of Pψ if and only if there exists c1, . . . , cn

such that z∗ is the unique solution of

max
z

∑
j∈N

cjzj subject to z ∈ Pψ

13

Now, fix a priority solution (S,≻S). Without loss of generality let S = {1, . . . , r} and

1 ≻S 2 ≻S 3 ≻S . . . ≻S r. Then, choose c such that c1 > c2 > . . . > cr > 0 > cr+1 ≥
cr+2 ≥ . . . ≥ cm. We argue that the priority solution identified in Theorem 4 (via the greedy

algorithm) is the unique optimal solution.

Let z be an optimal solution of (LPψ). Consider the constructed optimal dual solution

of (DLPψ) in the proof of Theorem 4:

yS =

ci − ci+1 if S = Si for some i ∈ {1, . . . , r − 1}

cr if S = Sr

0 otherwise

By Complementary slackness, x is optimal if and only if

yS

[
ψ(S)−

∑
j∈S

zj

]
= 0 ∀ S ⊆ X (CS− 1)

zj

[∑
S:j∈S

yS − cj

]
= 0 ∀ j ∈ X (CS− 2)

Now if ci ̸= 0 for all i ∈ X and ci ̸= cj for all i, j ∈ X with ci, cj > 0, we get that yS > 0

if S = Si for some i ∈ {1, . . . , r} and yS = 0 otherwise. By (CS− 2), zj = 0 for all

j /∈ {1, . . . , r}. Also, by (CS− 1):

ψ(Si) =
∑
j∈Si

zj ∀ j ∈ {1, . . . , r}

Since Si := {1, . . . , i}, this implies that xi = ψ(Si) − ψ(Si−1) for all i ∈ {1, . . . , r} This is

the solution identified in the greedy algorithm.

This completes the proof that every priority solution is an extreme point. Finally, for

any choice of c, there is some priority solution that is an optimal solution. So, every extreme

point is a priority solution. ■

14

2.3 The extreme points of Border polytope

Theorem 5 can be used to derive extreme points of “Border polytope”, which is about the

extreme points of reduced-form implementable allocation rules. But, we can say even more.

We can identify the allocation rules corresponding to these extreme points. For this define

the hierarchical allocation rules as follows.

Definition 5 An allocation rule q : X × C → [0, 1] is a hierarchical allocation rule if

there exists S ⊆ X and a strict order over the types in ≻S such that for all (x, c) ∈ X × C,

q(x, c) =

0 if c(x) = 0 or x /∈ S

1 if c(x) > 0 and x ≻s y ∀ y ∈ S with c(y) > 0

Hence, in any heirarchical allocation rule, given by (S,≻S), the object is not allocated at a

type profile if every type is outside S. Otherwise, the object is equally shared by the agents

who have their type equal to the highest type in S according to ≻S that appear in this type

profile.

Theorem 6 Suppose q is an allocation rule. Then, there exists a collection of heirarchical

allocation rules q1, . . . , qk and non-negative weights λ1, . . . , λk ∈ [0, 1] such that
∑

j λj = 1

and for every x ∈ X

Q(x) =
k∑
j=1

λjQ
j(x)

Proof : Define for every S ⊆ X

ψ(S) := 1−
[∑
x/∈S

F (x)
]n

Clearly ψ is non-decreasing. Pick any S ⊆ T and y /∈ T . Then,

ψ(T ∪ {y})− ψ(T) =
[
F (y) +

∑
x/∈(T∪{y})

F (x)
]n

−
[∑
x/∈(T∪{y})

F (x)
]n

15

Denoting
∑

x/∈T∪{y} F (x) as F
−
T , we see

ψ(T ∪ {y})− ψ(T) =
[
F (y) + F−

T

]n
−

[
F−
T

]n
= F (y)

[
(F (y) + F−

T)
n−1 + (F (y) + F−

T)
n−2FT + (F (y) + F−

T)
n−3(F−

T)
2

+ . . .+ (F−
T)

n−1
]

Note that F−
T is decreasing in T , i.e., F−

S > F−
T . Hence,

ψ(T ∪ {y})− ψ(T) < ψ(S ∪ {y})− ψ(S)

This shows that ψ is strictly submodular.

By Theorem 1, an interim allocation rule Q is implementable if and only if

∑
x∈S

nQ(x)F (x) =
∑
x∈S

Q̃(x) ≤ ψ(S) ∀ S ⊆ X

By Theorem 5, we know that any solution of this can be expressed as a convex combination

of priority solutions. Hence, any interim allocation rule Q is implementable if and only if

it is a convex combination of allocation rules that generate the priority solutions as interim

allocation rules. Hence, we show that every interim allocation rule which is a priority solution

can be generated from a hierarchical allocation rule. To do so, fix an interim allocation rule

Q which is a priority solution (S,≻S). Without loss of generality we let X = {x1, . . . , xm}
and S = {x1, . . . , xr} with x1 ≻S . . . ≻S xr. Hence,

Q̃(xi) =

ψ(S
i)− ψ(Si−1) =

[∑
x/∈Si−1 F (x)

]n
−
[∑

x/∈Si F (x)
]n

if i ∈ {1, . . . , r}

0 otherwise

Now, consider the hierarchical allocation rule with same (S,≻S). The probability that

a type x /∈ S is given the object is zero in this allocation rule. The probability that a type

xi ∈ S gets the object can be computed as follows.

• The probability that an agent of type x1 wins the object if there is at least one agent

16

of type x1, and this probability is

1−
[∑
x/∈{x1}

F (x)]n =
[∑
x∈X

F (x)
]n

−
[∑
x/∈{x1}

F (x)
]n

The expected number of agents of type x1 is nF (x1). Hence, the probability that an

agent of type x1 wins the object in this hierarchical allocation rule is

1

nF (x1)

[(∑
x∈X

F (x)
)n − (∑

x/∈{x1}

F (x)
)n]

• The probability that an agent of type x2 wins the object if there is no agent of type

x1 and at least one agent of type x2. This probability is

(∑
x/∈{x1}

F (x)
)n − (∑

x/∈{x1,x2}

F (x)
)n

The expected number of agents of type x2 is nF (x2). Hence, the probability that an

agent of type x2 wins the object in this hierarchical allocation rule is

1

nF (x2)

[(∑
x/∈{x1}

F (x)
)n − (∑

x/∈{x1,x2}

F (x)
)n]

• . . . For any j ∈ {1, . . . , r}, the probability that an agent of type xj wins the object if

there is no agent of type x1, . . . , xj−1 and at least one agent of type xj. This probability

is

(∑
x/∈{x1,...,xj−1}

F (x)
)n − (∑

x/∈{x1,x2,...,xj}

F (x)
)n

The expected number of agents of type xj is nF (xj). Hence, the probability that an

agent of type xj wins the object in this hierarchical allocation rule is

1

nF (xj)

[(∑
x/∈{x1,...,xj−1}

F (x)
)n − (∑

x/∈{x1,x2,...,xj}

F (x)
)n]

This is exactly the priority solution (S,≻S). ■

17

2.4 The must-sell case: connection to convex game of Shapley

We remain in the symmetric environment. Then, the Border’s condition is for all S ⊆ X,

n
∑
x∈S

Q(x)F (x) ≤ 1−
(
1−

∑
x∈S

F (x)
)n

(4)

However, if the object is allocated with probability one at every type profile, these in-

equalities are familiar. We call it the must-sell case. In the must sell case an allocation rule

q must satisfy for every c,

∑
x∈X

c(x)q(x, c) = 1

Hence, we have

n
∑
x∈X

Q(x)F (x) =
∑
x∈X

∑
c∈C

c(x)q(x, c)λ(c) =
∑
c∈C

λ(c)
∑
x∈X

c(x)q(x, c) =
∑
c∈C

λ(c) = 1

As a result, we get LHS of Border’s condition (4) for S = X equal to

n
∑
x∈X

Q(x)F (x) = 1 (5)

In fact if we rewrite the inequality (4) a bit using (5): for all S ⊆ X

n
∑
x∈S

Q(x)F (x) ≤ 1−
(∑
x/∈S

F (x)
)n

= n
∑
x∈X

Q(x)F (x)−
(∑
x/∈S

F (x)
)n

⇔
(∑
x/∈S

F (x)
)n

≤ n
∑
x/∈S

Q(x)F (x)

In the must-sell case, the Border’s inequality can be rewritten as:

(∑
x∈S

F (x)
)n

≤ n
∑
x∈S

Q(x)F (x) ∀ S ⊆ X

18

with equality holding for S = X. Note that for any S

ψ(S) = 1−
(∑
x/∈S

F (x)
)n

= ψ(X)−
(∑
x/∈S

F (x)
)n

Hence,

W (S) =
(∑
x∈S

F (x)
)n

= ψ(X)− ψ(X \ S) ∀ S ⊆ X

Since ψ is submodular and increasing, we get W is supermodular and increasing.

So, we can define a cooperative game with set of players equal to X, worth of coalition

S as

W (S) =
[∑
x∈S

F (x)
]n

Then, defining a new variable Q̃(x) = nQ(x)F (x) for all x ∈ X, we get the following

inequality

W (S) ≤
∑
x∈S

Q̃(x) ∀ S ⊆ X

with equality holding for S = X. This is exactly the core inequality for game (X,W). Indeed

W is supermodular, and (X,W) is a convex game.

The extreme points of the convex games are well understood. Let |X| = m. Then, order

the types in X as x1 ≻ x2 . . . ≻ xm. Now, the following is an extreme point of the convex

game:

Q̃(x1) = W (X)−W (X \ {x1})

Q̃(x2) = W (X \ {x1})−W (X \ {x1, x2})

.

Q̃(xm) = W (xm)

Here, it is clear that Q̃(x1) ≥ Q̃(x2) ≥ . . . ≥ Q̃(xm).

19

Example. Suppose X = {x1, x2, x3}. Assume F (x1) = F (x2) = F (x3) =
1
3
and three agents

n = 3. Then, in the must-sell case, we have the following constraints.

W ({x1}) = W ({x2}) = W ({x3}) =
(1
3

)3

=
1

27

W ({x1, x2}) = W ({x2, x3}) = W ({x1, x3}) =
(2
3

)3

=
8

27

W ({x1, x2, x3}) = 1

The core constraints of this game are the Border constraints:

Q̃(x1) ≥
1

27

Q̃(x2) ≥
1

27

Q̃(x3) ≥
1

27

Q̃(x1) + Q̃(x2) ≥
8

27

Q̃(x2) + Q̃(x3) ≥
8

27

Q̃(x1) + Q̃(x3) ≥
8

27

Q̃(x1) + Q̃(x2) + Q̃(x3) = 1

20

In this case, Q̃(x) = Q(x) because nF (x) = 3× 1
3
= 1. Hence,

Q(x1) ≥
1

27

Q(x2) ≥
1

27

Q(x3) ≥
1

27

Q(x1) +Q(x2) ≥
8

27

Q(x2) +Q(x3) ≥
8

27

Q(x1) +Q(x3) ≥
8

27

Q(x1) +Q(x2) +Q(x3) = 1

These inequalities are shown in Figure 2 in the simplex.

Q(x1)

Q(x2)Q(x3)

Figure 2: Polytope corresponding to three types

21

The extreme points are as follows. Assume the order x1 ≻ x2 ≻ x3.

Q(x1) = 3
[
W ({x1, x2, x3})−W ({x2, x3})

]
= 3

19

81
=

19

27

Q(x2) = 3
[
W ({x2, x3})−W ({x3})

]
= 3

7

81
=

7

27

Q(x3) = 3W ({x3}) = 3
1

81
=

1

27

Note that (at least in this case), independent of the ordering of the types, the first type

always gets 19
27
, the second type always gets 7

27
, and the third type always gets 1

27
. Hence, if

x1, x2, x3 ∈ R and x1 > x2 > x3, BIC constraints will imply that Q(x1) ≥ Q(x2) ≥ Q(x3).

And, the only way this is possible to hold at an extreme point is if the ordering of types is

x1 ≻ x2 ≻ x3, i.e., the ordering of the types should match the ordering on real number line.

Imposing the monotonicity constraints inside the polytope in Figure 2 gives us Figure 3.

Here it is seen that there are exatcly four extreme points: (a) one extreme point is the the

complete bunching point: Q(x1) = . . . = Q(xm) =
1
m
; (b) the other extreme point is unique

monotone extreme point of the original Border’s must-sell polytope; (c) the other extrem

points are on the faces of the original Border’s must-sell polytope.

Q(x1)

Q(x2)Q(x3)

(1
3
, 1
3
, 1
3
)

Q(x1) ≥ Q(x2) ≥ Q(x3)

Figure 3: Polytope with monotonicity constraints corresponding to three types

22

3 Border’s theorem: finite asymmmetric case

There is a single indivisible object for sale. There are n agents. The set of agents is denoted

by N . For each agent i ∈ N , let Vi be the set of values of agent i for the object. We assume

that Vi is finite. Let V ≡ V1 × . . .× Vn.

Each agent i draws her value using a distribution Fi; i.e., for every vi ∈ Vi, the probability

that i has value vi is equal to Fi(vi).

An allocation rule q ≡ (q1, . . . , qn) is a collection of n maps such that each qi : V → [0, 1]

for every i ∈ N such that
∑

i∈N qi(v) ≤ 1 for all v ∈ V . Given an allocation rule q, we

can generate the interim allocation rule Q ≡ (Q1, . . . , Qn) as follows. For each i ∈ N , the

interim allocation rule of agent i is a map Qi : Vi → [0, 1] such that

Qi(vi) =
∑

v−i∈V−i

qi(vi, v−i)F−i(v−i) ∀ vi ∈ Vi

where F−i(v−i) =
∏

j ̸=i Fj(vj).

Border’s thereom asks the following question. If there is an interim allocation rule Q,

does there exist an allocation rule q that can generate it? If the answer to the previous

question is yes, we say that Q is implementable.

Theorem 7 Interim allocation rule Q is implementable if and only if for every S1 ⊆
V1, . . . , Sn ⊆ Vn, we have

∑
i∈N

∑
vi∈Si

Qi(vi)Fi(vi) ≤ 1−
∏
i∈N

[
1−

∑
vi∈Si

Fi(vi)
]

The left hand side is the probability that the object is assigned to a type in S1∪ . . .∪Sn.

3.1 Proof of Border’s theorem: network flow

Given an interim allocation rule Q, construct a network as follows:

1. There is a source vertex s and a terminal vertex t.

2. There are two more layers of vertices:

23

(a) Layer 1. For every i ∈ N and for every vi ∈ Vi, put a vertex for vi. So, this layer

contains a vertex for every type in V1 ∪ . . . ∪ Vn

(b) Layer 2. For every v ∈ V , there is a vertex corresponding to v.

3. There is a directed edge from source vertex s to every vertex in layer 1, i.e., edges

are of the form (s, vi) for each i ∈ N and each vi ∈ Vi. The capacity of this edge is

Qi(vi)Fi(vi).

4. There is a directed edge from every vertex v ∈ V in layer 2 to terminal vertex t. The

capacity of this edge is
∏

i∈N Fi(vi).

5. There is a directed edge from each vi ∈ Vi to a type profile (vi, v−i) for every v−i. The

capacities of these edges are “sufficiently high”.

This fully describes the network. Let E be the set of edges of this network. Let κ(e)

denote the capacity of edge e ∈ E . A flow is a map x : E → R+ such that

1. capacity constraint: x(e) ≤ κ(e) for all e ∈ E .

2. flow balancing:

x(s, vi) =
∑

v−i∈V−i

x(vi, (vi, v−i)) ∀ vi ∈ Vi ∀ i ∈ N

∑
i∈N

x(vi, v) = x(v, t) ∀ v ∈ V

A flow x is maximal if for every other flow y

∑
i∈N

∑
vi∈Vi

x(s, vi) ≥
∑
i∈N

∑
vi∈Vi

y(s, vi)

The first step of the proof says Q is implementable if and only if there is a maximum

flow where each edge (s, vi) flows equal to capacity. We show this in two steps.

24

Necessity. Suppose Q is implementable. Then, it is generated by some allocation rule q.

Consider the following candidate flow x:

x(s, vi) = Qi(vi)Fi(vi) = κ(s, vi) ∀ i ∈ N ∀ vi ∈ Vi

x(vi, (vi, v−i)) = qi(v)
∏
j∈N

Fj(v) ≤ κ(vi, (vi, v−i)) ∀ i ∈ N, ∀ vi ∈ Vi, ∀ v−i ∈ V−i

x(v, t) =
(∑
i∈N

qi(v)
)∏
j∈N

Fj(v) ≤
∏
j∈N

Fj(v) = κ(v, t) ∀ v ∈ V

where all the capacity constraints hold by definition of capacities. This is a flow if flow

balancing constraints hold. We verify that below. Pick any vertex vi in first layer. We see

that the sum of outflows

∑
v−i∈V−i

x(vi, (vi, v−i)) = Fi(vi)
∑

v−i∈V−i

qi(vi, v−i)
∏
j ̸=i

Fj(vj) = Fi(vi)Qi(vi) = x(s, vi)

Next, pick any vertex v in the second layer. We see that the sum of inflows is equal to

∑
i∈N

x(vi, v) =
∑
i∈N

qi(v)
∏
j∈N

Fj(v) =
(∑
i∈N

qi(v)
)∏
j∈N

Fj(v) = x(v, t)

Hence, flow balancing and capacity constraints hold implying that x is a feasible flow. It

is maximal because the flows match capacity on all edges from the source s.

Sufficiency. Suppose x is a maximal flow such that the edges from source to each vi is

flowing at capacity:

x(s, vi) = Qi(vi)Fi(vi) = κ(s, vi) ∀ i ∈ N ∀ vi ∈ Vi

Then, we can define the allocation rule q as follows. For every v ∈ V and every i ∈ N ,

qi(v) :=
x(vi, (vi, v−i))∏

j∈N Fj(v)

We need to show that this is a feasible allocation rule first. By capacity constraint of

25

flow from v to t, and the flow balancing constraint at v, we know that

∑
i∈N

x(vi, v) = x(v, t) ≤
∏
j∈N

Fj(vj)

Hence,

∑
i∈N

qi(v) =
1∏

j∈N Fj(vj)

∑
i∈N

x(vi, v) ≤ 1

Finally, we show that Q is implemented by q. The flow balancing constraint of the first layer

at vertex vi means

x(s, vi) = Qi(vi)Fi(vi) =
∑
v−i

x(vi, (vi, vi)) =
∑
v−i

qi(v)
∏
j∈N

Fj(v)

⇒ Qi(vi) =
∑
v−i

qi(v)
∏
j ̸=i

Fj(v)

The next step in the proof is the following. For any interim allocation rule Q, the flow in

the corresponding network is maximal with saturated (full capacity) edges from the source

if and only if Border’s inequalities hold. We know that from max-flow min-cut theorem, the

capacity of any s − t cut must be at least the maximum flow. Hence, the capacity of any

s− t cut must be at least the sum of capacities from s to all first layer vertices:

∑
i∈N

∑
vi∈Vi

Qi(vi)Fi(vi) (6)

In fact this is necessary and sufficient for the max flow to have saturated flows from s to all

first layer vertices.

A minimum s − t cut cannot have edges crossing it which go from layer 1 to layer 2 –

such edges have sufficiently high capacity. If Si ⊆ Vi for each i be the subset of vertices

considered from the first layer considered in s side of the cut. Let S = ∪iSi. Then every

vertex in layer 2 connected to a vertex in S must also be considered in the s-side – else, the

edge between them (which has infinite capacity) will cross the cut. Let T be the set of such

26

vertices from layer 2. The capacity of such a cut is:

∑
i∈N

∑
vi∈Vi\Si

Qi(vi)Fi(vi) +
∑

v∈V :∃i∈N,vi∈Si

∏
j∈N

Fj(vj)

=
∑
i∈N

∑
vi∈Vi\Si

Qi(vi)Fi(vi) + 1−
∑

v:vj∈Vj\Sj ∀ j

∏
j

Fj(vj)

=
∑
i∈N

∑
vi∈Vi\Si

Qi(vi)Fi(vi) + 1−
∏
j∈N

∑
vj∈Vj\Sj

Fj(vj)

This is at least the capacity of cut in (6) is equivalent to requiring that

∑
i∈N

∑
vi∈Si

Qi(vi)Fi(vi) ≤ 1−
∏
i∈N

(
1−

∑
vi∈Si

Fi(vi)
)

This proves Border’s theorem.

4 The continuous version of Border’s theorem

27

	Background
	The symmetric model
	Submodularity and polymatroids
	Polymatroid Optimization
	The extreme points of Border polytope
	The must-sell case: connection to convex game of Shapley

	Border's theorem: finite asymmmetric case
	Proof of Border's theorem: network flow

	The continuous version of Border's theorem

