ASSIGNMENT 1 Due date. August 7, 2018

- 1. Prove that every cycle of a bipartite graph has even number of edges. Also, prove that if every cycle of an undirected graph has even number of edges then the graph must be bipartite.
- 2. Let (N,T) be a tree of an undirected graph G = (N,E). Show the following:

$$\sum_{i \in N} \left[2 - d(i) \right] = 2,$$

where d(i) is the degree of vertex *i* in tree (N, T).

- 3. Show that every tree which has a vertex of degree $m \ge 2$ has at least m vertices of degree 1.
- 4. Suppose G is an undirected weighted connected graph. An edge is called a **default** edge if it has the minimum weight over all edges in G. Show that a default edge belongs to some minimum cost spanning tree of G.
- 5. Consider the following algorithm to find an MCST of any undirected connected graph G = (N, E, w). Let $E = \{e_1, \ldots, e_k\}$ be the set of k edges. We order the set of edges such that $w(e_1) \le w(e_2) \le \ldots \le w(e_k)$.

The algorithm is iterative. In every iteration t, it maintains a set of edges E^t such that E^t contains no cycles. It adds an edge $e_j \in E \setminus E^t$ to E^t such that $E^t \cup \{e_j\}$ contains no cycle and e_j is a least weight edge satisfying this no cycle condition, i.e., for any edge $e_p \in E \setminus E^t$ such that $E \cup \{e_p\}$ has no cycles, we have that $w(e_j) \leq w(e_p)$. The algorithm terminates as soon as the number of edges in E^t is n-1, where n = #N is the number of vertices in G. The output of the algorithm is (N, E^{t^*}) , where t^* is the final iteration.

The algorithm is initialized by setting $E^1 = \{e_1\}$, the least weight edge. Show that the algorithm produces an MCST.

6. Let G = (N, E, w) be an undirected weighted connected graph. Assume that $w(e) \neq w(e')$ for every pair of edges $e, e' \in E$. For each $i \in N$, denote by e_i the edge which has the minimum weight over all the edges to which i is an endpoint. Let $\overline{E} = \bigcup_{i \in N} e_i$. Show that the subgraph (N, \overline{E}) is acyclic. Further, show that if $|\overline{E}| = |N| - 1$, then (N, \overline{E}) is an MCST of G.

7. Consider any $m \times n$ matrix. Show that the maximum number of non-zero entries such that no two entries are in the same line (i.e., same column or row) is equal to the minimum number of lines that include all non-zero entries.