
Mathematical Programming with

Applications to Economics

Debasis Mishra1

November 1, 2018

1Economics and Planning Unit, Indian Statistical Institute, 7 Shahid Jit Singh Marg, New Delhi

110016, India, E-mail: dmishra@isid.ac.in

http://www.isid.ac.in/~dmishra

2

Contents

1 Basic Graph Theory 7

1.1 What is a Graph? . 7

1.1.1 Modeling Using Graphs: Examples 8

1.2 Definitions of (Undirected) Graphs . 9

1.2.1 Properties of Trees and Spanning Trees 11

1.3 The Minimum Cost Spanning Tree Problem 13

1.3.1 Greedy Algorithms for MCST . 14

1.3.2 Other Algorithms for MCST . 17

1.4 Application: The Minimum Cost Spanning Tree Game 19

1.4.1 Cooperative Games . 19

1.4.2 The Minimum Cost Spanning Tree Game 21

1.5 Hall’s Marriage Theorem . 23

1.6 Application: Competitive Equilibrium with Indivisible Objects 28

1.7 Maximum Matching in Bipartite Graphs . 31

1.7.1 M-Augmenting Path . 31

1.7.2 Algorithm for Maximum Matching in Bipartite Graphs 34

1.7.3 Minimum Vertex Cover and Maximum Matching 35

1.7.4 Edge Covering . 41

1.7.5 Independent Set . 43

1.8 Basic Directed Graph Definitions . 44

1.8.1 Potentials . 45

1.9 Unique Potentials . 50

1.10 Application: The implementation problem 52

1.11 Application: Fair Pricing . 55

1.12 A Shortest Path Algorithm . 58

1.13 Network Flows . 61

1.13.1 The Maximum Flow Problem . 64

3

1.13.2 Analysis of the Maximum Flow Problem 65

1.13.3 The Residual Digraph of a Flow . 67

1.13.4 Ford-Fulkerson Algorithm . 70

1.14 Disjoint Paths . 73

1.15 Application: Reduced form auctions . 75

2 Introduction to Convex Sets 83

2.1 Convex Sets . 83

2.2 Hyperplanes and Separations . 84

2.3 Farkas Lemma . 87

2.4 Application: Core of Cooperative Games . 93

2.5 Application: Full surplus extraction in auctions 96

2.6 Carathéodory Theorem . 99

2.7 Polyhedra and Polytopes . 102

3 Linear Programming 107

3.1 Introduction . 107

3.2 Steps in Solving an Optimization Problem 108

3.3 Linear Programming . 109

3.3.1 An Example . 109

3.3.2 Standard Form . 110

3.4 History of Linear Programming . 112

3.5 Simplex Preview . 113

3.5.1 First Example . 114

3.5.2 Dictionaries . 116

3.5.3 Second Example . 118

3.6 Pitfalls and How to Avoid Them . 121

3.6.1 Iteration . 122

3.6.2 Cycling . 126

3.6.3 Initialization . 130

3.6.4 An Example Illustrating Geometry of the Simplex Method 135

3.7 Extreme Points and Simplex Method . 136

3.8 Duality . 137

3.8.1 Writing Down the Dual . 139

3.9 The Duality Theorem . 140

3.9.1 Relating the Primal and Dual Problems 142

4

3.9.2 Farkas Lemma and Duality Theory 143

3.9.3 Complementary Slackness . 144

3.9.4 Interpreting the Dual . 146

4 Integer Programming and Submodular Optimization 149

4.1 Integer Programming . 149

4.1.1 Common Integer Programming Problems 150

4.2 Relaxation of Integer Programs . 152

4.3 Integer Programs with Totally Unimodular Matrices 155

4.3.1 Assignment Problem . 158

4.3.2 Potential Constraints are TU . 159

4.3.3 Network Flow Problem . 159

4.3.4 The Shortest Path Problem . 161

4.4 Application: Efficient Assignment with Unit Demand 163

4.5 Application: Efficient Combinatorial Auctions 166

4.5.1 Formulation as an Integer Program 167

4.6 Application: Auction Algorithms for Assignment Problems 171

4.7 Submodular Optimization . 174

4.7.1 Examples . 176

4.7.2 Optimization . 177

4.8 A Short Introduction to Matroids . 179

4.8.1 Equivalent ways of Defining a Matroid 181

4.8.2 The Matroid Polytope . 183

5

6

Chapter 1

Basic Graph Theory

1.1 What is a Graph?

Let N = {1, . . . , n} be a finite set. Let E be a collection of ordered or unordered pairs of

distinct 1 elements from N . A graph G is defined by (N,E). The elements of N are called

vertices or nodes of graph G. The elements of E are called edges of graph G. If E consists

of ordered pairs of vertices, then the graph is called a directed graph (digraph). When we

say graph, we refer to undirected graph, i.e., E consists of unordered pairs of vertices. To

avoid confusion, we write an edge in an undirected graph as {i, j} and an edge in a directed

graph as (i, j).

Figure 1.1 gives three examples of graphs. The rightmost graph in the figure is a di-

rected graph. In all the graphs N = {1, 2, 3, 4}. In the leftmost graph in Figure 1.1, E =

{{1, 2}, {2, 3}, {2, 4}, {3, 4}}. In the directed graph, E = {(1, 2), (1, 3), (2, 3), (3, 2), (3, 4), (4, 1)}.

1 2

34

1 2

34

1 2

34

Figure 1.1: Examples of graph

1In standard graph theory, we do not require this distinct restriction.

7

Often, we associate weights to edges of the graph or digraph. These weights can represent

capacity, length, cost etc. of an edge. Formally, a weight is a mapping from set of edges to

real numbers, w : E → R. Notice that weight of an edge can be zero or negative also. We

will learn of some economic applications where this makes sense. If a weight system is given

for a (di)graph, then we write (N,E,w) as the (di)graph.

1.1.1 Modeling Using Graphs: Examples

Example 1: Housing/Job Market

Consider a market of houses (or jobs). Let there be H = {a, b, c, d} houses on a street.

Suppose B = {1, 2, 3, 4} be the set of potential buyers, each of whom want to buy exactly

one house. Every buyer i ∈ B is interested in ∅ 6= Hi ⊆ H set of houses. This can be

modeled using a graph.

Consider a graph with the following set of vertices: N = H ∪ B (note that H ∩ B = ∅).
The only edges of the graph are of the following form: for every i ∈ B and every j ∈ Hi,

there is an edge between i and j. Graphs of this kind are called bipartite graphs, i.e., a

graph whose vertex set can be partitioned into two non-empty sets and the edges are only

between vertices which lie in separate parts of the partition.

Figure 1.2 is a bipartite graph of this example. Here, H1 = {a}, H2 = {a, c}, H3 =

{b, d}, H4 = {c}. Is it possible to allocate a unique house to every buyer?

1

2

3

4

a

b

c

d

Figure 1.2: A bipartite graph

If every buyer associates a value for every house, then it can be used as a weight of the

graph. Formally, if there is an edge (i, j) then w(i, j) denotes the value of buyer i ∈ B for

8

house j ∈ Hi.

Example 2: Coauthor/Social Networking Model

Consider a model with researchers (or agents in Facebook site). Each researcher wants

to collaborate with some set of other researchers. But a collaboration is made only if both

agents (researchers) put substantial effort. The effort level of agent i for edge (i, j) is given

by w(i, j). This situation can be modeled as a directed graph with weight of edge (i, j) being

w(i, j).

Example 3: Transportation Networks

Consider a reservoir located in a state. The water from the reservoir needs to be supplied

to various cities. It can be supplied directly from the reservoir or via another cities. The

cost of supplying water from city i to city j is given and so is the cost of supplying directly

from reservoir to a city. What is the best way to connect the cities to the reservoir?

The situation can be modeled using directed or undirected graphs, depending on whether

the cost matrix is asymmetric or symmetric. The set of nodes in the graph is the set of cities

and the reservoir. The set of edges is the set of edges from reservoir to the cities and all

possible edges between cities. The edges can be directed or undirected. For example, if the

cities are located at different altitudes, then cost of transporting from i to j may be different

from that from j to i, in which case we model it as a directed graph, else as an undirected

graph.

1.2 Definitions of (Undirected) Graphs

If {i, j} ∈ E, then i and j are called end points of this edge. The degree of a vertex is

the number of edges for which that vertex is an end point. So, for every i ∈ N , we have

deg(i) = |{j ∈ N : {i, j} ∈ E}|. In Figure 1.1, degree of vertex 2 is 3. Here is a simple

lemma about degree of a vertex.

Lemma 1 The number of vertices of odd degree is even.

Proof : Let O be the set of vertices of odd degree. Notice that if we take the sum of the

degrees of all vertices, we will count the number of edges exactly twice. Hence,
∑

i∈N deg(i) =

9

2|E|. Now, ∑i∈N deg(i) =
∑

i∈O deg(i) +
∑

i∈N\O deg(i). Hence, we can write,

∑

i∈O

deg(i) = 2|E| −
∑

i∈N\O

deg(i).

Now, right side of the above equation is even. This is because 2|E| is even and for every

i ∈ N \O, deg(i) is even by definition. Hence, left side of the above equation
∑

i∈O deg(i) is

even. But for every i ∈ O, deg(i) is odd by definition. Hence, |O| must be even. �

A path is a sequence of distinct vertices (i1, . . . , ik) such that {ij, ij+1} ∈ E for all

1 ≤ j < k. The path (i1, . . . , ik) is called a path from i1 to ik. A graph is connected if there

is a path between every pair of vertices. The middle graph in Figure 1.1 is not connected.

A cycle is a sequence of vertices (i1, . . . , ik, ik+1) with k > 2 such that {ij, ij+1} ∈ E for

all 1 ≤ j ≤ k, (i1, . . . , ik) is a path, and i1 = ik+1. In the leftmost graph in Figure 1.1, a

path is (1, 2, 3) and a cycle is (2, 3, 4, 2).

A graph G′ = (N ′, E ′) is a subgraph of graph G = (N,E) if ∅ 6= N ′ ⊆ N , E ′ ⊆ E, and

for every {i, j} ∈ E ′ we have i, j ∈ N ′. A connected acyclic (that does not contain a cycle)

graph is called a tree. Graphs in Figure 1.1 are not trees, but the second and third graph in

Figure 1.3 are trees. A graph may contain several trees (i.e. connected acyclic subgraphs).

The spanning tree of a connected graph G ≡ (N,E) is a subgraph (N,E ′) which is a tree.

Note that E ′ ⊆ E and the set of vertices in a spanning tree is the same as the original graph

- in that sense, a spanning tree spans the original graph. By definition, every tree (N ′, E ′)

is a spanning tree of itself.

Figure 1.3 shows a connected graph (which is not a tree) and two of its spanning trees.

1

2 3

4

1

2 3

4

1

2 3

4

Figure 1.3: Spanning trees of a graph

A subgraph G′ = (N ′, E ′) of a graph G = (N,E) is a component of G if G′ is connected

and there does not exist vertices i ∈ N ′ and j ∈ N such that {i, j} ∈ E \E ′. Hence, G′ is a

maximally connected subgraph of G.

10

Clearly, any graph can be partitioned into its components. A connected graph has only

one component, which is the same graph.

1.2.1 Properties of Trees and Spanning Trees

We now prove some properties of trees and spanning trees.

Proposition 1 Every tree G′ = (N ′, E ′), where G′ is a subgraph of a graph G = (N,E),

satisfies the following properties.

1. There is a unique path from i to j in G′ for every i, j ∈ N ′.

2. If there is an edge {i, j} ∈ E \ E ′ with i, j ∈ N ′, adding {i, j} to E ′ creates a cycle.

3. By removing an edge from E ′ disconnects the tree. In particular, if an edge {i, j} is

removed, then it creates two components one containing i and the other containing j.

4. Every tree with at least two vertices has at least two vertices of degree one.

5. |E ′| = |N ′| − 1.

Proof :

1. Suppose there are at least two paths from i to j. Let these two paths be P1 =

(i, i1, . . . , ik, j) and P2 = (i, j1, . . . , jq, j). Then, consider the following sequence of

vertices: (i, i1, . . . , ik, j, jq, . . . , j1, i). This sequence of vertices is a cycle or contains a

cycle if both paths share edges, contradicting the fact that G′ is a tree.

2. Consider an edge {i, j} ∈ E \ E ′. In graph G′, there was a unique path from i to j.

The edge {i, j} introduces another path. This means the graph G′′ = (N ′, E ′ ∪ {i, j})
is not a tree (from the claim above). Since G′′ is connected, it must contain a cycle.

3. Let {i, j} ∈ E ′ be the edge removed from G′. By the first claim, there is a unique path

from i to j in G′. Since there is an edge between i and j, this unique path is the edge

{i, j}. This means by removing this edge we do not have a path from i to j, and hence

the graph is no more connected.

Now, in the new graph, consider all the vertices Ni to which i is connected and all the

vertices Nj to which j is connected - note i ∈ Ni and j ∈ Nj . Clearly, if we pick i
′ ∈ Ni

and j′ ∈ Nj , then there is no path between i′ and j′. This is because, if there was

such a path, then it would define a path without edge {i, j} in G′ but there is a path

11

involving edge {i, j} between i′ and j′ in G′ - there is a path from i′ to i, then the direct

edge {i, j}, followed by the path from j to j′. This contradicts the fact that there is a

unique path between i′ and j′ in G′. Hence, Ni and Nj along with the corresponding

edges among them define two components. It is also clear that we cannot have any

more components since each vertex is either connected to i or j.

4. We do this using induction on number of vertices. If there are two vertices, the claim

is obvious. Consider a tree with n vertices. Suppose the claim is true for any tree

with < n vertices. Now, consider any edge {i, j} in the tree. By (1), the unique path

between i and j is this edge {i, j}. Now, remove this edge from the tree. By (3), we

disconnect the tree into trees which has smaller number of vertices. Each of these trees

have either a single vertex or have two vertices with degree one (by induction). By

connecting edge {i, j}, we can increase the degree of one of the vertices in each of these

trees. Hence, there is at least two vertices with degree one in the original graph.

5. For |N ′| = 2, it is obvious. Suppose the claim holds for every |N ′| = m. Now, consider

a tree with (m+1) vertices. By the previous claim, there is a vertex i that has degree 1.

Let the edge for which i is an endpoint be {i, j}. By removing i, we get the subgraph

(N ′ \ {i}, E ′ \ {i, j}), which is a tree. By induction, number of edges of this tree is

m − 1. Since, we have removed one edge from the original tree, the number of edges

in the original tree (of a graph with (m+ 1) vertices) is m.

�

We prove two more important, but straightforward, lemmas.

Lemma 2 Let G = (N,E) be a graph and G′ = (N,E ′) be a subgraph of G such that

|E ′| = |N | − 1. If G′ has no cycles then it is a spanning tree.

Proof : Consider a cycle-free graph G′ = (N,E ′) and let G1, . . . , Gq be the components of

G′ with number of vertices in component Gj being nj for 1 ≤ j ≤ q. Since every component

in a cycle-free graph is a tree, by Proposition 1 the number of edges in component Gj is

nj − 1 for 1 ≤ j ≤ q. Since the components have no vertices and edges in common, the total

number of edges in components G1, . . . , Gq is

(n1 − 1) + . . .+ (nq − 1) = (n1 + n2 + . . .+ nq)− q = |N | − q.

By our assumption in the claim, the number of edges in G′ is |N | − 1. Hence, q = 1, i.e., the

graph G′ is a component, and hence a spanning tree. �

12

Lemma 3 Let G = (N,E) be a graph and G′ = (N,E ′) be a subgraph of G such that

|E ′| = |N | − 1. If G′ is connected, then it is a spanning tree.

Proof : We show that G′ has no cycles, and this will show that G′ is a spanning tree. We do

the proof by induction on |N |. The claim holds for |N | = 2 and |N | = 3 trivially. Consider

|N | = n > 3. Suppose the claim holds for all graphs with |N | < n. In graph G′ = (N,E ′),

there must be a vertex with degree 1. Else, every vertex has degree at least two (it cannot

have degree zero since it is connected). In that case, the total degree of all vertices is

2|E| ≥ 2n or |E| = n− 1 ≥ n, which is a contradiction. Let this vertex be i and let {i, j} be
the unique edge for which i is an endpoint. Consider the graph G′′ = (N \ {i}, E ′ \ {{i, j}}).
Clearly, G′′ is connected and number of edges in G′′ is one less than n− 1. By our induction

hypothesis, G′′ has no cycles. Hence, G′ cannot have any cycle. �

We can summarize these results as follows.

Theorem 1 Let G = (N,E) be a graph and G′ = (N,E ′) be a subgraph of G. Then the

following statements are equivalent.

1. G′ is a spanning tree of G.

2. G′ has no cycles and connected.

3. G′ has no cycles and |E ′| = |N | − 1.

4. G′ is connected and |E ′| = |N | − 1.

5. There is a unique path between every pair of nodes in G′.

Note here that if E ′ = E (i.e., G′ = G) in the statement of Theorem 1 above, then we

get a characterization of a tree.

1.3 The Minimum Cost Spanning Tree Problem

Consider a graph G = (N,E,w), i.e., a weighted graph. Assume G to be connected. Imagine

the weights to be costs of traversing an edge. So, w ∈ R|E|
+ . Using these weights, we can

compute the cost of a tree (or path or cycle) by summing the weights of edges on the tree

(or path or cycle). The minimum cost spanning tree (MCST) problem is to find a

spanning tree of minimum cost in graph G. Figure 1.4 shows a weighted graph. In this

figure, one can imagine one of the vertices as “source” (of water) and other vertices to be

cities. The weights on edges may represent cost of supplying water from one city to another.

13

In that case, the MCST problem is to find a minimum cost arrangement (spanning tree) to

supply water to cities.

b

c
d 4

3

2

2

1

1

a

Figure 1.4: The minimum cost spanning tree problem

Of course, one way to find an MCST of a graph is to enumerate all possible spanning

trees of a graph and compare their costs. If the original graph itself is a tree, then of course,

there is nothing to worry as that graph is the unique spanning tree of itself. But, in general,

there may be way too many spanning trees of a graph. Consider a complete graph - a

graph where for every pair of vertices i and j, there is an edge {i, j}. It is known that the

number of spanning trees in a complete graph with n vertices is nn−2 - this is called the

Cayley’s formula 2. Note that according to Cayley’s formula, for 10 vertices the number of

spanning trees is about 108, a high number. Ideally, we would like an algorithm which does

not require us to do so many computations. For instance, as the number of vertices grow,

the amount of computations should not grow exponentially with the number of vertices.

1.3.1 Greedy Algorithms for MCST

There are many greedy algorithms that find an MCST and achieves so in a reasonable amount

of computation (and avoiding explicit enumeration of all the spanning trees). We give a

generic algorithm, and show one specific algorithm that falls in this generic class.

The generic greedy algorithm grows an MCST one edge at a time. The algorithm manages

a subset A of edges that is always a subset of some MCST. At each step of the algorithm, an

edge {i, j} is added to A such that A ∪ {{i, j}} is a subset of some MCST. We call such an

edge a safe edge for A (since it can be safely added to A without destroying the invariant).

2 Many elegant proofs of Cayley’s formula are known. You are encouraged to look at some of the proofs.

14

In Figure 1.4, A can be taken to be {{b, d}, {a, d}}, which is a subset of an MCST. A safe

edge for A is {a, c}.
Here is the formal procedure:

1. Set A = ∅.

2. If |A| 6= |N | − 1, then find an edge {i, j} that is safe for A. Set A← A ∪ {{i, j}}.

3. If If |A| = |N | − 1, then (N,A) is a spanning tree. Return (N,A) as the MCST. Else,

repeat from Step 2.

Remark: After Step 1, the invariant (that in every step we maintain a set of edges which

belong to some MCST) is trivially satisfied. Also, if (N,A) is not a spanning tree but a

subset of an MCST, then there must exist an edge which is safe.

The question is how to identify safe edges. We discuss one such rule. For this, we provide

some definitions. A cut in a graph G = (N,E) is a partition of set of vertices (V,N \ V)
with V 6= N and V 6= ∅. An edge {i, j} crosses a cut (V,N \V) if i ∈ V and j ∈ N \V . We

say a cut (V,N \ V) respects a set of edges A if no edge from A crosses the cut. A light

edge crossing a cut (V,N \ V) is an edge that has the minimum weight among all the edges

crossing the cut (V,N \ V).

Figure 1.5 shows a graph and two of its cuts. The first cut is ({1, 2, 3}, {4, 5, 6}). The

following set of edges respect this cut {{1, 2}, {1, 3}}. Also, the set of edges {{4, 5}, {5, 6}}
and the set of edges {{1, 3}, {4, 5}} respect this cut. Edges {1, 4}, {2, 6}, {3, 4} cross this

cut.

5

1
4

5

6
2

3

6

3

4

2

1

Figure 1.5: Cuts in a graph

The following theorem says how a light edge of an appropriate cut is a safe edge.

15

Theorem 2 Let G = (N,E,w) be a connected graph. Suppose (N, T) is an MCST of G

and A is a set of edges such that A ⊂ T but |A| < n− 1. Let (V,N \V) be any cut of G that

respects A and let {i, j} be a light edge crossing (V,N \ V). Then edge {i, j} is a safe edge

for A.

Proof : If {i, j} ∈ T , then we are done. So, we consider the case when {i, j} /∈ T . Since

(N, T) is a spanning tree, adding edge {i, j} to T creates a cycle (Proposition 1). Hence,

the sequence of vertices in the set of edges T ∪ {{i, j}} contains a cycle between vertex i

and j - the unique cycle it creates consists of the unique path from i to j in MCST (N, T)

and the edge {i, j}. This cycle must cross the cut (V,N \ V) at least twice - once at {i, j}
and the other at some edge {a, b} 6= {i, j} such that a ∈ V , b ∈ N \ V which crosses the cut

(V,N \ V). Note that {a, b} ∈ T . If we remove edge {a, b}, then this cycle is broken and we

have no cycle in the graph G′′ = (N, (T ∪ {{i, j}}) \ {{a, b}}). By Proposition 1, there are

|N | − 1 edges in (N, T). Hence, G′′ also has |N | − 1 edges. By Lemma 2, G′′ is a spanning

tree.

Let T ′ = (T∪{{i, j}})\{{a, b}}. Now, the difference of edge weights of T and T ′ is equal to

w({a, b})−w({i, j}). Since (N, T) is an MCST, we know that w({a, b})−w({i, j}) ≤ 0. Since

{i, j} is a light edge of cut (V,N\V) and {a, b} crosses this cut, we have w({a, b}) ≥ w({i, j}).
Hence, w({a, b}) = w({i, j}). Hence (N, T ′) is an MCST.

This proves that (A ∪ {{i, j}}) ⊆ T ′. Hence, {i, j} is safe for A. �

The above theorem almost suggests an algorithm to compute an MCST. We now describe

this algorithm. This algorithm is called the Dijkstra-Jarnik-Prim (DJP) algorithm or

just Prim’s algorithm - named after the authors who formulated the algorithm indepen-

dently. To describe the algorithm, denote by V (A) the set of vertices which are endpoints of

edges in A.

1. Set A = ∅.

2. Choose any vertex i ∈ N and consider the cut ({i}, N \ {i}). Let {i, j} be a light edge

of this cut. Then set A← A ∪ {{i, j}}.

3. If A contains |N |−1 edges then return (N,A) as the MCST and stop. Else, go to Step

4.

4. Consider the cut (V (A), N \ V (A)). Let {i, j} be a light edge of this cut.

5. Set A← A ∪ {{i, j}} and repeat from Step 3.

16

This algorithm produces an MCST. To see this, by Theorem 2, in every step of the

algorithm, we add a safe edge, and hence it terminates with an MCST.

We apply this algorithm to the example in Figure 1.4. In the first iteration of the

algorithm, we choose vertex a and consider the cut ({a}, {b, c, d}). A light edge of this cut

is {a, c}. So, we set A = {{a, c}}. Then, we consider the cut ({a, c}, {b, d}). A light edge of

this cut is {a, d}. Now, we set A = {{a, c}, {a, d}}. Then, we consider the cut ({a, c, d}, {b}).
A light edge of this cut is {b, d}. Since (N, {a, c}, {a, d}, {b, d}) is a spanning tree, we stop.

The total weight of this spanning tree is 1+2+1 = 4, which gives the minimum weight over

all spanning trees. Hence, it is an MCST.

1.3.2 Other Algorithms for MCST

We give below, informally, three more algorithms for finding an MCST of a weighted graph

G = (N,E,w). We leave the correctness of these algorithms as an exercise. We illustrate

the algorithms by the weighted graph in Figure 1.6.

11

a

b

c

d
e

f g

5

7 8

9 7

15

5

6

8
9

Figure 1.6: Illustration of algorithms to find an MCST

1. Kruskal’s Algorithm. Kruskal’s algorithm maintains two types of sets in each stage

t of the algorithm: (1) Et - the set of added edges till stage t and (2) Dt - the set of

discarded edges till stage t. Initially, E1 consists any one of the smallest weight edges

in E and D1 is empty. In each stage t, one of the cheapest edges e ∈ E \ (Et−1 ∪Dt−1)

is chosen. If Et−1 ∪ {e} forms a cycle, then Dt := Dt−1 ∪ {e} and Et := Et−1. If

Et−1∪{e} does not form a cycle, then Et := Et−1∪{e} and Dt := Dt−1. Then, repeat

from stage (t + 1). The algorithm terminates at stage t if |Et| = |N | − 1.

17

Example. Kruskal’s algorithm is illustrated in Figures 1.7(a) and 1.7(b) for the ex-

ample in Figure 1.6. In Figure 1.7(a) all the edges have been added one by one and

after this, the next candidate edge to be added is {b, c} or {e, f}, and both of them

create cycles. So, they are skipped. Out of the next two candidate edges {b, d} and
{e, g}, {b, d} forms a cycle, and hence, {e, g} is chosen to complete the MCST in Figure

1.7(b).

11

a

b

c

d
e

f g

5

7 8

9 7

15

5

6

8
9

(a)

11

a

b

c

d
e

f g

5

7 8

9 7

15

5

6

8
9

(b)

Figure 1.7: Illustration of Kruskal’s algorithm

2. Boruvka’s Algorithm. 3 This algorithm first picks one of the smallest weight edges

from every vertex. Note that such a set of edges cannot form a cycle (argue why). If the

number of such edges is |N | − 1, then the algorithm stops by producing a tree. Else, it

must produce several components. Now, a new graph is constructed. Each component

is now treated as a new vertex. There might be more than one edge between two

components. In that case, one of the smallest weight edges is kept and all the other

edges are discarded. Now, one of the smallest weight edges from each vertex is selected,

and the step is repeated. The algorithm stops when a tree is chosen in some step. Then,

the algorithm backtracks to find the corresponding spanning tree.

Example. Boruvka’s algorithm is illustrated in Figures 1.8(a) and 1.8(b) for the

example in Figure 1.6. In Figure 1.8(a), the first set of smallest weight edges for each

vertex has been identified, and they form two components. In Figure 1.8(b), these two

components are treated like two vertices and the smallest weight edge ({b, e}) between
these two components (vertices) is chosen to complete the MCST.

3Interestingly, this algorithm was rediscovered by many, including the famous Choquet of Choquet integral

fame.

18

11

a

b

c

d
e

f g

5

7 8

9 7

15

5

6

8
9

(a)

11

a

b

c

d
e

f g

5

7 8

9 7

15

5

6

8
9

(b)

Figure 1.8: Illustration of Boruvka’s algorithm

3. Reverse Delete Algorithm. In this algorithm one edge at a time is deleted from

the original graph G till exactly |N | − 1 edges remain. First, one of the highest weight

edges in E is removed. Next, of the remaining edges, one of the highest weight edges is

removed if it does not disconnect the (remaining edges) graph. The process is repeated

till we are left with exactly |N | − 1 edges.

Example. The reverse delete algorithm is illustrated in Figures 1.9(a) and 1.9(b) for

the example in Figure 1.6. Figure 1.9(a) shows successive deletion of high weight edges.

After this, the next candidate for deletion is {e, g}, but this will result in disconnection

of vertex g. Hence, this edge is skipped. Then edges {b, c} and {e, f} are deleted,

which results in the tree in Figure 1.9(b). After this, deleting any further edge will

lead to disconnection of the graph. Hence, the algorithm stops.

1.4 Application: The Minimum Cost Spanning Tree Game

In this section, we define a cooperative game corresponding to the MCST problem. To do

so, we first define the notion of a cooperative game and a well known stability condition for

such games.

1.4.1 Cooperative Games

A cooperative game consists of a set of agents and a cost that every subset of agents can

incur. Let N be the set of agents. A subset S ⊆ N of agents is called a coalition. Let Ω

19

11

a

b

c

d
e

f g

5

7 8

9 7

15

5

6

8
9

(a)

11

a

b

c

d
e

f g

5

7 8

9 7

15

5

6

8
9

(b)

Figure 1.9: Illustration of reverse delete algorithm

be the set of all coalitions. The main objective of a cooperative game is to resolve conflicts

between coalition to sustain the grand coalition N .

A cooperative game is a tuple (N, c) where N is a finite set of agents and c is a charac-

teristic function defined over the set of coalitions Ω, i.e., c : Ω → R. The value of c(S) can

be thought to be the cost incurred by coalition S when they cooperate 4.

The problem is to divide the total cost c(N) amongst the agents in N when they coop-

erate. If the division of c(N) is not done properly, then coalition of agents may not want

to join the grand coalition. A primary objective of cooperative game theory is to divide the

cost of cooperation among the agents such that the grand coalition can be sustained.

A cost vector x assigns every player a cost share in a game (N, c). The core of a cooper-

ative game (N, c) is the set of cost vectors which satisfies a stability condition.

Core(N, c) = {x ∈ R|N | :
∑

i∈N

xi = c(N),
∑

i∈S

xi ≤ c(S) ∀ S (N}

Every cost vector in the core is such that it distributes the total cost c(N) amongst agents

in N and no coalition of agents can be better off by forming their independent coalition.

There can be many cost vectors in a core or there may be none. For example, look at

the following game with N = {1, 2}. Let c(12) = 5 and c(1) = c(2) = 2. Core conditions

tell us x1 ≤ 2 and x2 ≤ 2 but x1 + x2 = 5. But there are certain class of games which have

non-empty core (more on this later). We discuss one such game.

4Cooperative games can be defined with value functions also, in which case notations will change, but

ideas remain the same.

20

2

3
4

1 2

1

1

2
3

0

Figure 1.10: An MCST game

1.4.2 The Minimum Cost Spanning Tree Game

The minimum cost spanning tree game (MCST game) is defined by a set of agents N =

{1, . . . , n} and a source agent 0 to whom all the agents in N need to be connected. The

underlying graph is (N ∪ {0}, E, c) where E = {{i, j} : i, j ∈ N ∪ {0}, i 6= j} and c(i, j)

denotes the cost of edge {i, j}. For any S ⊆ N , let S+ = S∪{0}. When a coalition of agents

S connect to the source, they form an MCST using edges between themseleves. Let c(S) be

the total cost of an MCST when agents in S form an MCST with the source. Thus, (N, c)

defines a cooperative game.

An example is given in Figure 1.10. Here N = {1, 2, 3} and c(123) = 4, c(12) = 4, c(13) =

3, c(23) = 4, c(1) = 2, c(2) = 3, c(3) = 4. It can be verified that x1 = 2, x2 = 1 = x3 is in the

core. The next theorem shows that this is always the case.

For any MCST (N+, T), let {p(i), i} be the last edge in the unique path from 0 to agent i.

Define xi = c(p(i), i) for all i ∈ N . Call x the Bird cost allocation - named after the inventor

of this allocation. Bird’s cost allocation can be described using the Prim’s algorithm for

finding the MCST. At every stage of the Prim’s algorithm, we identify a light edge {i, j}.
Then, xj = c(i, j) is the cost share of agent j.

Figure 1.11 gives an example with 5 agents (the edges not shown have very high cost).

The MCST is shown with red edges in Figure 1.11. To compute Bird allocation of agent 1,

we observe that the last edge in the unique path from 0 to 1 in the MCST is {0, 1}, which
has cost 5. Hence, cost allocation of agent 1 is 5. Consider agent 2 now. The unique path

from 0 to 2 in the MCST has edges, {0, 3} followed by {3, 2}. Hence, the last edge in this

path is {3, 2}, which has a cost of 3. Hence, cost allocation of agent 2 is 3. Similarly, we can

compute cost allocations of agents 3,4, and 5 as 4, 6, and 3 respectively.

There may be more than one Bird allocation. Figure 1.12 illustrates that. There are two

21

4
5

6

3
8

6
3

4

8

7

0

1

2

3

4

5

Figure 1.11: Bird allocation

0

1
2

1

2
2

Figure 1.12: More than one Bird allocation

MCSTs in Figure 1.12 - one involving edges {0, 1} and {1, 2} and the other involving edges

{0, 2} and {1, 2}. The Bird allocation corresponding to the first MCST is: agent 1’s cost

allocation is 2 and that of agent 2 is 1. The Bird allocation corresponding to the second

MCST is: agent 2’s cost allocation is 2 and that of agent 1 is 1.

Theorem 3 Any Bird allocation is in the core of the MCST game.

Proof : For any Bird allocation x, by definition
∑

i∈N xi = c(N). Consider any coalition

S (N . Assume for contradiction c(S) <
∑

i∈S xi.

Let (N+, T) be an MCST for which the Bird allocation x is defined. Delete for every

i ∈ S, the edge ei = {p(i), i} (last edge in the unique path from 0 to i) from the MCST

22

(N+, T). Let this new graph be (N+, T̂). Then, consider the MCST corresponding to nodes

S+ (which only use edges having endpoints in S+). Such an MCST has |S| edges by Proposi-

tion 1. Add the edges of this tree to (N+, T̂). Let this graph be (N+, T ′). Note that (N+, T ′)

has the same number (|N |) edges as the MCST (N+, T) - |N | edges since the original graph

has |N | + 1 nodes. We show that (N+, T ′) is connected. It is enough to show that there is

a path from source 0 to every vertex i ∈ N . We consider two cases.

Case 1: Consider any vertex i ∈ S. We have a path from 0 to i in (N+, T ′) using the MCST

corresponding S+.

Case 2: Consider any vertex i /∈ S. Consider the path in the original MCST (N+, T) from

0 to i. Let k be the last vertex in this path such that k ∈ S. So, all the vertices from k to i

are not in S in the path from 0 to i. If no such k exists, then the path from 0 to i still exists

in (N+, T ′). Else, we know from Case 1, there is a path from 0 to k in (N+, T ′). Take this

path and go along the path from k to i in (N+, T). This defines a path from 0 to i in (N+, T ′).

This shows that (N+, T ′) is connected and has |N | edges. By Lemma 3, (N+, T ′) is a

spanning tree.

Now, the new spanning tree has cost c(N)−∑

i∈S xi+ c(S) < c(N) by assumption. This

violates the fact that the original tree is an MCST. �

If the number of Bird allocations is more than one, each of them belongs to the core.

Moreover, any convex combination of these Bird allocations is also in the core (this is easy to

verify, and left as an exercise). There are members of core which are not necessarily a Bird

allocation. Such core allocations have been studied extensively, and have better properties

than the Bird allocation.

1.5 Hall’s Marriage Theorem

We now discuss matching in graphs. Fix any graph G = (N,E). We say two edges {i, j},
{i′, j′} in a graph G are disjoint if i, j, i′, j′ are all distinct, i.e., the endpoints of the edges are

distinct. A set of edges are disjoint if every pair of edges in that set are disjoint. Amatching

in graph G is a set of edges which are disjoint. The number of edges in a matching is called

the size of the matching. In general, we are interested in finding the maximal matching of

an arbitrary graph.

Before we address this problem, we look at restricted problem. We consider bipartite

23

graphs and ask an existence question about matching in such graphs. Formally, a graph

G = (N,E) is bipartite if the set of vertices N can be partitioned into two sets H and

B such that for every {i, j} ∈ E we have i ∈ H and j ∈ B. An equivalent way to state

this is that a graph G = (N,E) is bipartite if there is a cut (H,B) of G such that every

edge in E crosses this cut. Bipartite graphs possess many interesting properties. Of course,

not every graph is bipartite. Figure 1.13(a) shows a graph which is not bipartite, but the

graph in Figures 1.13(b) and 1.13(c) are bipartite. For Figure 1.13(b), take H = {1, 3, 5}
and B = {2, 4, 6}, and notice that every edge {i, j} has i ∈ H and j ∈ B. For Figure 1.13(c),

take H = {1, 3, 4} and B = {2, 5, 6}, and notice that every edge {i, j} has i ∈ H and j ∈ B.

6

1

2

3
4

5

(a)

4

1

5

6 2

3

(b)

5
1

2

3

4

6

(c)

Figure 1.13: Bipartite and non-bipartite graphs

The graph in Figure 1.13(c) is a tree. We show that a tree is always a bipartite graph.

Lemma 4 A tree is a bipartite graph.

Proof : We prove the claim by induction on number of vertices. The claim is trivially true

for two vertices. Suppose the claim is true for all trees with n − 1 vertices and consider a

tree G = (N,E) with |N | = n vertices. By Proposition 1, there is a vertex i ∈ N , which has

degree one. Let {i, j} be the unique edge of G with i as one of the end points. Consider the

graph G′ = (N \ {i}, E \ {i, j}). By definition, G′ is a tree and has n − 1 vertices. By our

24

induction hypothesis, G′ is a bipartite graph. Let the parts of G′ be H and B respectively

with H ∪ B = N \ {i}. Suppose j ∈ H . Then, H and B ∪ {i} creates a cut of G such that

every edge of G crosses this cut. Hence, G is also bipartite. �

The graph in Figure 1.13(b) is a cycle with six number of edges but the graph in Figure

1.13(a) contains a cycle with five number of edges. As it turns out a graph containing a cycle

with odd number of edges cannot be bipartite and, conversely, every cycle in a bipartite

graph must have even number of edges - the proofs of these facts are left as an exercise.

We give a specific interpretation of a bipartite graph. Consider an economy with a finite

set of houses H and a finite set of buyers B with |B| ≤ |H|. The set of nodes in our graph

is H ∪ B and (H,B) define the cut corresponding to the bipartite graph. An edge {i, j},
where j ∈ H and i ∈ B represents the fact that house j is compatible with buyer i. We

want to find if houses and buyers can matched in a compatible manner. For every buyer

i ∈ B, a set of houses ∅ 6= Hi are compatible - these are vertices in B so that there is an edge

between i and each of these vertices. Every buyer wants only one house from his compatible

set of houses. Hence, we are interested in a matching in this bipartite graph. We say buyer i

likes house j if and only if j ∈ Hi. This can be represented as a bipartite graph with vertex

set H ∪ B and edge set E = {{i, j} : i ∈ B, j ∈ Hi}. This bipartite graph is denoted as

G = (H ∪B, {Hi}i∈B).
We ask whether there exists a matching with |B| edges, i.e., where all the buyers are

matched. Notice that since |B| ≤ |H|, |B| is the maximum possible size of matching in this

graph. In a bipartite graph where |B| = |H|, a matching with |B| number of edges, is called

a perfect matching.

Figure 1.14 shows a bipartite graph with a matching: {{1, b}, {2, a}, {3, d}, {4, c}}.

1

2

3

4

a

b

c

d

Figure 1.14: A bipartite graph with a matching

We now analyze a bipartite graph G ≡ (H ∪B,E ≡ {Hi}i∈B). Clearly, a matching where

all buyers are matched will not always exist. Consider the case where |B| ≥ 2 and for every

25

i ∈ B, we have Hi = {j} for some j ∈ H , i.e, every buyer likes the same house - j. No

matching where all the buyers are matched is possible in this case.

In general, if we take a subset S ⊆ B of buyers and take the set of houses that buyers in

S like: D(S) = ∪i∈SHi, then |S| ≤ |D(S)| is necessary for a matching where all buyers are

matched to exist. Else, number of houses who buyers in S like, are less, and so some buyer

cannot be matched. For example, if we pick a set of 5 buyers who like only a set of 3 houses,

then we cannot match some buyers.

Hall’s marriage theorem states that this condition is also sufficient.

Theorem 4 A matching with |B| edges in a bipartite graph G = (H ∪B, {Hi}i∈B) exists if
and only if for every ∅ 6= S ⊆ B, we have |S| ≤ |D(S)|, where D(S) = ∪i∈SHi.

Before proving Theorem 4, let us consider an alternate interpretation of this theorem.

We have already defined the degree of a vertex - it is the number of edges for which it is

an endpoint. Now, consider degrees of subsets of vertices. For any graph G ≡ (N,E), the

degree of a subset of vertices S (N is the number of distinct vertices in N \ S with which

a vertex in S has an edge. Denote the degree of a subset of vertices S as deg(S).

Now, consider a bipartite graph G ≡ (H ∪ B, {Hi}i∈B). Notice that deg(S) = |D(S)|
for all ∅ 6= S ⊆ B. Then, the condition in Theorem 4 says that for every ∅ 6= S ⊆ B,

deg(S) ≥ |S|.
We now give some examples where the condition of Theorem 4 is violated and satisfied.

Figure 1.15(a) shows a bipartite graph which violates the condition of Theorem 4 - here,

buyers {b, c, d} demand only {1, 2}. However, the condition of Theorem 4 is satisfied in

Figure 1.15(b). A perfect matching in this bipartite graph is {a, 3}, {b, 4}, {c, 2}, {d, 1}.

H

a

b

c

d

1

2

3

4

B

(a)

H

a

b

c

d

1

2

3

4

B

(b)

Figure 1.15: Illustration of Hall’s Marriage Theorem

26

Proof : Suppose a matching with |B| edges exists in G. Then, we have |B| disjoint edges.
Denote this set of edges as M . By definition, every edge in M has a unique buyer and a

unique house as endpoints, and for every {i, j} ∈ M we have j ∈ Hi. Now, for any set of

buyers ∅ 6= S ⊆ B, we defineM(S) = {j ∈ H : {i, j} ∈M, i ∈ S} - the set of houses matched

to buyers in S in matching M . We know that |S| = |M(S)|. By definition M(S) ⊆ D(S).

Hence |S| ≤ |D(S)|.
Suppose for every ∅ 6= S ⊆ B, we have |S| ≤ |D(S)|. We use induction to prove that

a matching with |B| edges exists. If |B| = 1, then we just match her to one of the houses

she likes (by our condition she must like at least one house). Suppose a matching with |B|
edges exists for any graph with less than l + 1 buyers. We will show that a matching with

|B| edges exists for any graph with |B| = l + 1 buyers.

There are two cases to consider.

Case 1. Suppose |S| < |D(S)| for every ∅ 6= S (B (notice proper subset). Then choose

an arbitrary buyer i ∈ B and any j ∈ Hi, and consider the edge {i, j}. Now consider the

bipartite graph G′ = (H \{j}∪B \{i}, {Hk \{j}}k∈B\{i}). Now, G
′ is a graph with l buyers.

Since we have removed one house and one buyer from G to form G′ and since |S| ≤ |D(S)|−1
for all ∅ 6= S (B, we will satisfy the condition in the theorem for graph G′. By induction

assumption, a matching exists in graph G′ with |B| − 1 edges. This matching along with

edge {i, j} forms a matching of graph G with |B| edges.

Case 2. For some ∅ 6= S (B, we have |S| = |D(S)|. By definition |S| < |B|, and hence by

induction we have a matching in the graph G′ = (S ∪ D(S), {Hi}i∈S) with |S| edges. Now

consider the graph G′′ = ((H \D(S)) ∪ (B \ S), {Hi \D(S)}i∈B\S). We will show that the

condition in the theorem holds in graph G′′.

Consider any ∅ 6= T ⊆ (B \ S). Define D′(T) = D(T) \ D(S). We have to show

that |T | ≤ |D′(T)|. We know that |(T ∪ S)| ≤ |D(T ∪ S)|. We can write |D(T ∪ S)| =
|D(S)|+ |(D(T)\D(S))| = |D(S)|+ |D′(T)|. Hence, |(T ∪S)| = |T |+ |S| ≤ |D(S)|+ |D′(T)|.
But |S| = |D(S)|. Hence, |T | ≤ |D′(T)|. Hence, the condition in the theorem holds for graph

G′′. By definition |(B \S)| < |B|. So, we apply the induction assumption to find a matching

in G′′ with |(B \ S)| edges. Clearly, the matchings of G′ and G′′ do not have common edges,

and they can be combined to get a matching of G with |B| edges. �

Remark: Hall’s marriage theorem tells you when a matching can exist in a bipartite graph.

It is silent on the problem of finding a matching when it exists. We will study other results

about existence and feasibility later.

27

1.6 Application: Competitive Equilibrium with Indivisible

Objects

Let M be a set of m indivisible objects and N be a set of n agents. Each agent can consume

at most one object. The valuation of agent i ∈ N for an object j ∈ M is vij ≥ 0. There is

a dummy object, denoted by 0, whose valuation for all the agents is zero. Unlike objects in

M , the dummy object can be assigned to as many agents as required. The interpretation

of the dummy object is that any agent who is not assigned an object in M is assigned the

dummy object. Denote M ∪ {0} as M0. An allocation is a map µ : N → M0, such that

for all i, k ∈ N , with µ(i), µ(k) ∈ M , we have µ(i) 6= µ(k), i.e., agents are assigned unique

objects if they are assigned to non-dummy objects.

We allow payments. In particular, the seller announces a price vector p ∈ Rm+1
+ , where

p0 = 0 (if an agent is assigned a dummy object, the interpretation is that he is not assigned,

and hence, pays nothing). If an agent i is assigned object j at price vector p, then his net

payoff is vij − pj. We will need the following notion of demand sets. The demand set of

agent i at price vector p is the set of all objects in M0 that maximizes his net payoff, i.e.,

Di(p) = {j ∈M0 : vij − pj ≥ vik − pk ∀ k ∈M0}.
We give an example to illustrate ideas. Let N = {1, 2, 3} and M = {1, 2, 3, 4}. The

valuations of agents are shown in Table 1.1 - valuation for the dummy object is always zero.

Consider a price p as follows: p1 = 2, p2 = 0, p3 = 3, p4 = 4 - by definition, p1 = 0. Then,

D1(p) = {1, 2}, D2(p) = {2}, D3(p) = {2}.

1 2 3 4

v1· 4 2 5 3

v2· 2 5 3 4

v3· 1 4 3 2

Table 1.1: Matching example

Definition 1 An allocation µ and a price vector p is a competitive equilibrium if

(a) for every i ∈ N , µ(i) ∈ Di(p) and

(b) for every j ∈M , if µ(i) 6= j for all i ∈ N , then pj = 0.

A price vector is called a competitive equilibrium price vector if there is an allocation

µ such that (µ, p) is a competitive equilibrium.

28

Condition (a) requires that each agent must be assigned an object that maximizes his net

payoff. Condition (b) requires that unassigned objects must have zero price. While condition

(a) is simply requiring that demand must be met, condition (b) is requiring that supply should

not be more than enough (think of an object with positive price being supplied, and then

condition (b) is saying that supplied objects must be sold).

In the example in Table 1.1, the price vector p1 = 2, p2 = 0, p3 = 3, p4 = 4, gives

D1(p) = {1, 2}, D2(p) = {2}, D3(p) = {2}. Then, it is clear that both conditions for

competitive equilibrium cannot be satisfied - objects 3 and 4 are not demanded and cannot

be assigned, yet their prices are positive, and objects 1 and 2 are demanded by too many

agents. On the other hand, consider the price vector p1 = 0, p2 = 1, p3 = p4 = 0. Here,

D1(p) = {3}, D2(p) = {2, 4}, D3(p) = {2, 3}. Assigning agent 1 to object 3, agent 2 to object

4, and agent 3 to object 2 makes p a competitive equilibrium price vector.

Suppose we observe only demand sets of agents and the price vector. When can we say

that the observed price vector is a competitive equilibrium price vector? One possibility is

to check if there is an allocation that can make it a competitive equilibrium. Hall’s marriage

theorem allows us to verify this using conditions on demand sets only.

To define these conditions, we need some notation. At any price vector p, let M+(p) be

the set of objects with positive price, i.e., M+(p) := {j ∈ M : pj > 0}. For every subset

of objects S ⊆ M , define the demanders of S at a price vector p as U(S, p) := {i ∈ N :

Di(p) ∩ S 6= ∅} - these are agents who demand at least one object from S. Similarly, for

every subset of objects S ⊆ M , define the exclusive demanders of S at a price vector p

as O(S, p) := {i ∈ N : Di(p) ⊆ S} - these are agents who demand objects from S only.

Definition 2 A set of objects S ⊆M is overdemanded at price vector p if |S| < |O(S, p)|.
A set of objects S ⊆ M+(p) is underdemanded at price vector p if |S| > |U(S, p)|.

If a set of objects S is overdemanded, then there are too many agents exclusively demanding

objects from S, and these exclusive demanders cannot be assigned objects from their demand

sets. Similarly, if a set of objects S is underdemanded, then there are too few agents de-

manding these objects, and these objects cannot be assigned even though they have positive

price.

In the example in Table 1.1, the price vector p1 = 2, p2 = 0, p3 = 3, p4 = 4, gives

D1(p) = {1, 2}, D2(p) = {2}, D3(p) = {2}. Then for objects {1, 2}, agents {1, 2, 3} are

exclusive demanders. So, objects {1, 2} are overdemanded. On the other hand, object 3 and

object 4, and the set of objects {3, 4} and {1, 3, 4} are underdemanded.

So, clearly, at a competitive equilibrium price vector no overdemanded or underdemanded

set of objects must exist. We use Hall’s marriage theorem to show that these conditions are

29

also sufficient.

Theorem 5 A price vector is a competitive equilibrium price vector if and only if no set of

objects is overdemanded and no set of objects is underdemanded.

Proof : As argued earlier, if p is a competitive equilibrium price vector, then no set of

objects can be overdemanded or underdemanded. For the converse, suppose that p is a price

vector where for every S ⊆ M , we have |S| ≥ |O(S, p)| and for every S ⊆ M+(p), we have

|S| ≤ |U(S, p)|.
Let N ′ := O(M, p) be the set of exclusive demanders ofM . SinceM is not overdemanded,

|N ′| ≤ |M |. Now, consider the bipartite graph with set of vertices N ′ ∪M and edge {i, j}
exists if and only if j ∈ Di(p). For any set of agents T ⊆ N ′, let D(T, p) be the set of objects

demanded by agents in T . Note that agents in T are exclusive demanders of D(T, p). Since

D(T, p) is not overdemanded, |D(T, p)| ≥ |T |. Hence, by Hall’s marriage theorem, there is

a matching µ1 of this bipartite graph which matches all the agents in N ′. Note that µ1 may

not match all the agents. We can create a matching µ2 by assigning all the agents outside

N ′ to the dummy object and it will satisfy, µ2(i) ∈ Di(p) for all i ∈ N . This shows that

there exists at least one allocation such that for all i ∈ N , the match of i is belongs to

Di(p). Now, choose an allocation µ among all such allocations that maximizes the number

of objects assigned from M+(p).

Let S0 = {j ∈ M+(p) : µ(i) 6= j ∀ i ∈ N} - these are unassigned positive price objects

in µ. We argue that S0 = ∅ and this will show that (µ, p) is a competitive equilibrium price

vector. Assume for contradiction that S0 is not empty. Then, let T 0 be the demanders of

S0 at p. Clearly, no agent in T 0 can be assigned an object with zero price (including the

dummy object) in µ - if such an agent i exists in T 0, we can assign him to an object in

S0 instead of µ(i) and this will increase the number of objects being assigned from M+(p).

Now, let S1 be the set of objects assigned to agents in T 0 in µ. Note that S1 ⊆ M+(p)

and S1 ∩ S0 = ∅. Let T 1 be the set of demanders of S1 outside T 0 and let S2 be the set of

objects assigned to agents in T 1 in µ. No object in S2 can have zero price - if it does, we

can create a sequence of (object, agent) pairs starting from an object in S0 and ending at an

agent in T 1, which gives rise to a new allocation with more objects in M+(p) matched than

µ, giving us a contradiction (think carefully on how you will build this sequence). Now, let

T 2 be the demanders of objects from S2 outsider T 0∪T 1. We repeat this sequence of sets of

objects fromM+(p) and their demanders, (S0, T 0, S1, T 1, . . .), till we discover no new agents.

Since the number of objects is finite, this will eventually terminate. Let (S0, S1, . . . , Sk) be

the set of objects discovered in this process. Then, the set of agents discovered must be

(T 0, T 1, . . . , T k−1). By assumption, agents in T j (j ∈ {0, 1, . . . , k − 1}) are assigned to

30

objects in Sj+1. So, |(T 0∪T 1∪ . . .∪T k−1)| = |(S1∪S2∪ . . .∪Sk)|. But the set of demanders

of S0 ∪ S1 ∪ . . .∪ Sk are T 0 ∪ T 1 ∪ . . .∪ T k−1. Let S := S0 ∪ S1 ∪ . . .∪ Sk, and by definition

S ⊆ M+(p). Since S is not underdemanded, |S| ≤ |U(S, p)| = |(T 0 ∪ T 1 ∪ . . .∪ T k−1)|. This
implies that |S0| ≤ 0, which is not possible since S0 is non-empty, a contradiction. �

1.7 Maximum Matching in Bipartite Graphs

We saw in the last section that matching all buyers in a bipartite matching problem requires

a combinatorial condition hold. In this section, we ask the question - what is the maximum

number of matchings that is possible in a bipartite graph? We will also discuss an algorithm

to compute such a maximum matching.

1.7.1 M -Augmenting Path

We start with the notion of augmenting path in an arbitrary undirected graph. To remind,

in a graph G = (N,E), a matching M ⊆ E is a set of disjoint edges in G. Here, one can

think of nodes in G to be students, the set of edges to be set of possible pairings of students.

The problem of finding roommates for students can be thought to be a problem of finding a

matching (of maximum size) in G. Figures 1.16 and 1.17 show two matchings in a graph -

dark edges represent a matching.

1

2
3

4

56

Figure 1.16: A matching in a graph

Before we introduce the definition of an augmenting path, we introduce some terminology.

The length of a path (cycle) is the number of edges in a path (cycle). Given a graph

G = (N,E), a set of vertices S ⊆ N is covered by a set of edges X ⊆ E if every vertex

in S is an endpoint of some edge in X . If (i1, i2, . . . , ik) is a path, then i1 and ik are called

endpoints of this path.

31

1

2
3

4

56

Figure 1.17: A matching in a graph

Definition 3 Let M be a matching in a graph G = (N,E). A path P (with non-zero

length) in G is called M-augmenting if its endpoints are not covered by M and its edges

are alternatingly in and out of M .

Note that an M-augmenting path need not contain all the edges in M . Indeed, it may

contain just one edge that is not in M . Suppose an M-augmenting path contains k edges

from E \M . Note that k ≥ 1 since endpoints of an M-augmenting path are not covered by

M . Then, there are exactly k−1 edges fromM in this path. If k = 1, then we have no edges

from M in this path. So, an M-augmenting path has odd (2k− 1) number of edges, and the

number of edges in M is less than the number of edges out of M in an M-augmenting path.

Figures 1.18 and 1.19 show two matchings and their respective M-augmenting paths.

The endpoints of the M-augmenting paths are shown in dark, the edges not in the matching

are shown with dashed edges. The edges in the matchings are shown in dark edges.

1

2
3

4

56

Figure 1.18: An M-augmenting path for a matching

Definition 4 A matching M in graph G = (N,E) is maximum if there does not exist

another matching M ′ in G such that |M ′| > |M |.

32

1

2
3

4

56

Figure 1.19: An M-augmenting path for a matching

It can be verified that the matching in Figure 1.16 is a maximum matching. There is

an obvious connection between maximum matchings and augmenting paths. For example,

notice the maximum matching M in Figure 1.16. We cannot seem to find an M-augmenting

path for this matching. On the other hand, observe that the matching in Figure 1.17 is not

a maximum matching (the matching in Figure 1.16 has more edges), and Figure 1.18 shows

an augmenting path of this matching. This observation is formalized in the theorem below.

Theorem 6 Let G = (N,E) be a graph and M be a matching in G. The matching M is a

maximum matching if and only if there exists no M-augmenting paths.

Proof : Suppose M is a maximum matching. Assume for contradiction that P is an M-

augmenting path. Let EP be the set of edges in P . Now define, M ′ = (EP \M)∪ (M \EP).

By definition of an augmenting path, EP \M contains more edges than EP ∩M . Hence, M ′

contains more edges thanM . Also, by definition of an augmenting path, the edges in EP \M
are disjoint. Since M is a matching, the set of edges in (M \ EP) are disjoint. Also, by the

definition of the augmenting path (ends of an augmenting path are not covered in M), we

have that the edges in (EP \M) and edges in (M \EP) cannot share an endpoint. Hence, M ′

is a set of disjoint edges, i.e., a matching with size larger than M . This is a contradiction.

Now, suppose that there exists no M-augmenting path. Assume for contradiction that

M is not a maximum matching and there is another matching M ′ larger than M . Consider

the graph G′ = (N,M ∪M ′). Hence, every vertex of graph G′ has degree in {0, 1, 2}. Now,
partition G′ into components. Each component has to be either an isolated vertex or a path

or a cycle. Note that every cycle must contain equal number of edges fromM andM ′. Since

the number of edges in M ′ is larger than that in M , there must exist a component of G′

which is a path and which contains more edges from M ′ than from M . Such a path forms

an M-augmenting path. This is a contradiction. �

33

Theorem 6 suggests a simple algorithm for finding a maximum matching. The algorithm

starts from some arbitrary matching, may be the empty one. Then, it searches for an

augmenting path of this matching. If there is none, then we have found a maximum matching,

else the augmenting path gives us a matching larger than the current matching, and we

repeat. Hence, as long as we can find an augmenting path for a matching, we can find a

maximum matching.

1.7.2 Algorithm for Maximum Matching in Bipartite Graphs

We describe a simple algorithm to find a maximum matching in bipartite graphs. We have

already laid the foundation for such an algorithm earlier in Theorem 6, where we proved

that any matching is either a maximum matching or there exists an augmenting path of that

matching which gives a larger matching than the existing one. We use this fact.

The algorithm starts from an arbitrary matching and searches for an augmenting path of

that matching. Let M be any matching of bipartite graph G = (N,E) and N = B ∪L such

that for every {i, j} ∈ E we have i ∈ B and j ∈ L. Given the matching M , we construct a

directed graph GM from G as follows:

• The set of vertices of GM is N .

• For every {i, j} ∈M with i ∈ B and j ∈ L, we create the edge (i, j) in graph GM , i.e.,

edge from i to j.

• For every {i, j} /∈M with i ∈ B and j ∈ L, we create the edge (j, i) in graph GM , i.e.,

edge from j to i.

Consider the bipartite graph in Figure 1.20 (left one) and the matching M shown with

dark edges. For the matchingM , the corresponding directed graph GM is shown on the right

in Figure 1.20.

Let BM be the set of vertices in B not covered by M and LM be the set of vertices in L

not covered by M . Note that every vertex in BM has no outgoing edge and every vertex in

LM has no incoming edge.

We first prove a useful lemma. For every directed path in GM the corresponding path in

G is the path obtained by removing the directions of the edges in the path of GM .

Lemma 5 A path in G is an M-augmenting path if and only if it is the corresponding path

of a directed path in GM which starts from a vertex in LM and ends at a vertex in BM .

34

1

2

3

4

a

b

c

d d

1

2

3

4

a

b

c

Figure 1.20: A bipartite graph with a matching

Proof : Consider a directed path P in GM which starts from a vertex in LM and ends at

vertex in BM . By definition, the endpoints of P are not covered by M . Since edges from L

to B are not in M and edges from B to L are in M in GM , alternating edges in P is in and

out of M . Hence, the corresponding path in G is an M-augmenting path.

For the converse, consider an M-augmenting path in G and let P be this path in GM

with edges appropriately oriented. Note that endpoints of P are not covered by M . Hence,

the starting point of P is in LM and the end point of P is in BM - if the starting point

belonged to BM , then there will be no outgoing edge and if the end point belonged to LM ,

then there will be no incoming edge. This shows that P is a directed path in GM which

starts from a vertex in LM and ends at a vertex in BM . �

Hence, to find an augmenting path of a matching, we need to find a specific type of path

in the corresponding directed graph. Consider the matchingM shown in Figure 1.20 and the

directed graph GM . There is only one vertex in LM - {b}. The directed path (b, 1, a, 2, c, 4)

is a path in GM which starts at LM and ends at BM (see Figure 1.21). The corresponding

path in G gives an M-augmenting path. The new matching from this augmenting path

assigns: {1, b}, {2, a}, {4, c}, {3, d} (see Figure 1.21). It is now easy to see that this is indeed

a maximum matching (if it was not, then we would have continued in the algorithm to find

an augmenting path of this matching).

1.7.3 Minimum Vertex Cover and Maximum Matching

The size of a maximum matching in a graph is the number of edges in the maximum

matching. We define vertex cover now and show its relation to matching. In particular, we

show that the minimum vertex cover and the maximum matching of a bipartite graph have

the same size.

35

1

2

3

4

a

b

c

d d

1

2

3

4

a

b

c

Figure 1.21: A bipartite graph with a matching

Definition 5 Given a graph G = (N,E), a set of vertices C ⊆ N is called a vertex cover

of G if every edge in E has at least one end point in C. Further, C is called a minimum

vertex cover of G if there does not exist another vertex cover C ′ of G such that |C ′| < |C|.

Clearly, the set of all vertices in a graph consists of a vertex cover. But this may not

be a minimum vertex cover. We give some examples in Figure 1.22. Figure 1.22 shows two

vertex covers of the same graph - vertex covers are shown with black vertices. The first one

is not a minimum vertex cover but the second one is.

2
3

4

56

1
1

2 3

4

56

Figure 1.22: Vertex cover

An application of the vertex cover can be as follows. Suppose the graph represents a

city: the vertices are squares and the edges represent streets. The city plans to deploy

security office (or medical store or emergency service or park) at squares to monitor streets.

A security officer deployed at a square can monitor all streets which have an endpoint in

that square. The minimum vertex cover problem finds the minimum set of squares where

one needs to put a security officer to monitor all the streets.

Fix a graph G. Denote the size of maximum matching in G as µ(G) - this is also called

the matching number of G. Denote the size of minimum cover in G as κ(G) - this is also

called the vertex cover number of G.

Lemma 6 For any graph G, µ(G) ≤ κ(G).

36

Proof : Any vertex cover contains at least one end point of every edge of a matching. Hence,

consider the maximum matching. A vertex cover will contain at least one vertex from every

edge of this matching - this follows from the fact that the edges of a matching are disjoint.

This implies that for every graph G, µ(G) ≤ κ(G). �

Lemma 6 can hold with strict inequality in general graphs. Consider the graph in Figure

1.23. A minimum vertex cover, as shown with black vertices, has two vertices. A maximum

matching, as shown with the dashed edge, has one edge.

1

2 3

Figure 1.23: Matching number and vertex cover number

But the relationship in Lemma 6 is equality in case of bipartite graphs as the following

theorem, due to Kon̈ig shows.

Theorem 7 (Kon̈ig’s Theorem) Suppose G = (N,E) is a bipartite graph. Then, µ(G) =

κ(G).

1

2

3

4

a

b

c

d

Figure 1.24: Matching number and vertex cover number in bipartite graphs

37

Figure 1.24 shows a bipartite graph and its maximum matching edges (in dark) and

minimum vertex cover (in dark). For the bipartite graph in Figure 1.24 the matching number

(and the vertex cover number) is two.

We will require the following useful result for proving Theorem 7. A graph may have

multiple maximum matchings. The following result says that there is at least one vertex

which is covered by every maximum matching if the graph is bipartite.

Lemma 7 Suppose G = (N,E) is a bipartite graph with E 6= ∅. Then, there exists a vertex

in G which is covered by every maximum matching.

Proof : Assume for contradiction that every vertex is not covered by some maximum match-

ing. Consider any edge {i, j} ∈ E - if the graph contains no edges, then there is nothing to

prove. Suppose i is not covered by maximum matchingM and j is not covered by maximum

matching M ′. Note that j must be covered by M - else adding {i, j} to M gives another

matching which is larger in size than M . Similarly, i must be covered by M ′. Note that the

edge {i, j} is not in (M ∪M ′).

Consider the graph G′ = (N,M ∪M ′). Every vertex in G′ has degree {0, 1, 2}. Hence,

every component of G′ is either an isolated vertex or a path or a cycle. There is a component

of G′ that must contain i. SinceM ′ covers i but i is not covered byM , such a component will

have alternating edges in and out ofM andM ′ and i must be an end point in this component.

Further, this component must be a path - if it was a cycle, then i will be covered by both

M and M ′. Denote this path by P . Note that P contains alternating edges from M and M ′

(not in M). The other endpoint of P must be a vertex k which is covered by M - else, P

defines an M-augmenting path, contradicting that M is a maximum matching by Theorem

6. This also implies that k is not covered by M ′ and P has even number of edges.

We argue that P does not contain j. Suppose P contains j. Since j is covered by M and

not by M ′, j must be an endpoint of P . Since G is bipartite, let N = B ∪L and every edge

{u, v} ∈ E is such that u ∈ B and v ∈ L. Suppose i ∈ B. Since the number of edges in P is

even, both the end points of P must be in B. This implies that j ∈ B. This contradicts the

fact that {i, j} is an edge in G.

So, we conclude that j is not in P . Consider the path P ′ formed by adding edge {i, j}
to P . This means j is an end point of P ′. Note that j is not covered by M ′ and the other

endpoint k of P ′ is also not covered by M ′. We have alternating edges in and out of M ′ in

P ′. Hence, P ′ defines an M ′-augmenting path. This is a contradiction by Theorem 6 since

M ′ is a maximum matching. �

38

Proof of Theorem 7

Proof : We use induction on number of vertices in G. The theorem is clearly true if G has

one or two vertices. Suppose the theorem holds for any bipartite graph with less than n

vertices. Let G = (N,E) be a bipartite graph with n vertices. By Lemma 7, there must

exist a vertex i ∈ N such that every maximum matching of G must cover i. Let Ei be the

set of edges in G for which i is an endpoint. Consider the graph G′ = (N \{i}, E \Ei). Note

that G′ is bipartite and contains one less vertex. Hence, µ(G′) = κ(G′).

We show that µ(G′) = µ(G) − 1. By deleting the edge covering i in any maximum

matching of G (note that i is covered in every maximum matching of G), we get a matching

of G′. Hence, µ(G′) ≥ µ(G) − 1. Suppose µ(G′) > µ(G) − 1. This means, µ(G′) ≥ µ(G).

Hence, there exists a maximum matching of G′, which is also a matching of G, and has as

many edges as the maximum matching matching of G. Such a maximum matching of G′

must be a maximum matching of G as well and cannot cover i since i is not in G′. This is a

contradiction since i is a vertex covered by every maximum matching of G.

This shows that µ(G′) = κ(G′) = µ(G)− 1. Consider the minimum vertex cover C of G′

and add i to C. Clearly C ∪{i} is a vertex cover of G and has κ(G′)+1 vertices. Hence, the

minimum vertex cover of G must have no more than κ(G′) + 1 = µ(G) vertices. This means

κ(G) ≤ µ(G). But we know from Lemma 6 that κ(G) ≥ µ(G). Hence, κ(G) = µ(G). �

Now, we show how to compute a minimum vertex cover from a maximum matching in

a bipartite graph. The computation uses the ideas we used to find M-augmenting paths of

bipartite graphs. For any bipartite graph G = (B ∪ L,E) and a maximum matching M ,

we first construct the directed bipartite graph GM as follows: (a) the set of nodes of GM

is B ∪ L and (b) there is an edge from i ∈ B to j ∈ L if {i, j} ∈ M and (c) there is an

edge from i ∈ L to j ∈ B if {i, j} ∈ E \M . Note: a unique property of this graph is that

every vertex i ∈ B has at most one outgoing edge and every vertex j ∈ L has at most one

incoming edge (since such edges correspond to the matching M).

Consider the bipartite graph G in Figure 1.24. Figure 1.25 shows its maximum matching

(in dark edges) M and the directed graph GM .

Let LM be the set of vertices in L not covered by the maximum matching M and BM

be the set of vertices in B not covered by the maximum matching M . Formally,

LM := {i ∈ L : {i, j} /∈M for all j ∈ B}
BM := {i ∈ B : {i, j} /∈M for all j ∈ L}.

We first consider the set of vertices reachable from the set of vertices in LM in GM - a vertex

39

d

1

2

3

4

a

b

c

Figure 1.25: Minimum vertex cover from maximum matching

j ∈ GM is reachable from a vertex i ∈ LM in the directed graph GM if there is a directed

path from i to j or j ∈ LM . Call such a set of vertices RM . Formally,

RM := {j ∈ B ∪ L : there exists a i ∈ LM such that there is a path from i to j in GM} ∪ LM .

In Figure 1.25, we have LM = {c, d} and RM = {c, d, 1, b}. Note that LM ⊆ RM by definition.

In Figure 1.25, we have 1 ∈ RM since (c, 1) ∈ GM and c ∈ LM and b ∈ RM since c ∈ LM

and there is a path (c, 1, b).

We now define a set of vertices CM of G for the matching M as follows.

CM := (L \RM) ∪ (B ∩ RM).

In Figure 1.25, we have CM := {1, a}, which is a minimum vertex cover. We show that this

is true in general.

Theorem 8 Given a maximum matching M , the set of vertices CM defines a minimum

vertex cover of G.

Proof : We do the proof in several steps.

Step 1. We show that CM defines a vertex cover of G. To see this, take any edge {i, j}
where i ∈ B and j ∈ L. If j ∈ L \RM , then j ∈ CM , and {i, j} is covered. If j ∈ RM , then

there are two cases: (1) {i, j} ∈ M , in that case j /∈ LM and the directed path to j must

40

come from i, and hence i ∈ RM ; (2) {i, j} /∈ M , then there is an edge from j to i in GM ,

and hence i ∈ RM . So, j ∈ RM implies i ∈ B ∩RM , and hence i ∈ CM .

Step 2. We argue that RM ∩ BM = ∅ - because if some vertex in i ∈ RM belongs to BM ,

then it must be the last vertex in the path which starts from a vertex in LM , and this will

define an M-augmenting path, a contradiction since M is a maximum matching.

Step 3. We show that CM is disjoint from BM ∪LM . By definition, LM ⊆ RM . Hence, CM

is disjoint from LM . By Step 2, CM is disjoint from BM . Hence, it is disjoint from BM ∪LM .

Step 4. We conclude by showing that CM is a minimum vertex cover. First, for every edge

{i, j} ∈ M , either i /∈ CM or j /∈ CM . To see this, suppose i, j ∈ CM with i ∈ B and j ∈ L.
But this means i ∈ RM , which means j ∈ RM , which contradicts the fact that j ∈ CM . By

Step 3, it must be that |CM | ≤ |M |. By Step 1, and Kon̈ig’s theorem (Theorem 7), CM is a

minimum vertex cover. �

The problem of finding a maximum matching in general graphs is more involved and

skipped. The analogue of Hall’s marriage theorem in general graphs in called the Tutte’s

theorem. The size of the maximum matching in a general graph has an explicit formula,

called the Tutte-Berge formula. These are topics that I encourage you to study on your

own.

1.7.4 Edge Covering

The problem of edge covering is analogous to the vertex cover problem.

Definition 6 Given a graph G = (N,E), an edge cover of G is a subset of edges S ⊆ E

such that for every i ∈ N , there exists an edge in S with i as the endpoint.

Clearly, if an edge cover exists, then no vertex can have degree zero. Hence, we will only

consider graphs with vertices having positive degree. A minimum edge cover is an edge

cover with the smallest possible number of edges.

The following example in Figure 1.26 shows a graph with a minimum edge cover - edges

{1, 2}, {3, 6}, {4, 5} define a minimum edge cover. Note that this also defines a maximum

matching. Further, the sum of sizes of minimum edge cover and maximum matching is 6

(no. of nodes in this graph). This is true for every graph. For any graph G, we will denote

41

6

1

2 3

4

5

Figure 1.26: A minimum edge cover

the number of edges in a minimum edge cover as ρ(G). To remind, µ(G) denotes the number

of edges in a maximum matching of G.

Theorem 9 For any graph G with no vertex of degree zero, we have µ(G) + ρ(G) = n.

Proof : Consider any maximum matching M . Let V be the set of vertices covered by M ,

i.e., V is the set of endpoints of edges in M . Note that |V | = 2|M | since M is a matching.

First note that for any i, j ∈ N \ V , we have {i, j} /∈ E. This is true since if {i, j} ∈ E and

i, j /∈ V , M ∪ {{i, j}} will define a new matching, contradicting maximality of M .

Now, consider an edge cover S ′ by considering all the edges in M and taking one edge

for every vertex in N \ V - this is possible since each vertex has non-zero degree (also, note

that each such edge must cover a unique vertex in N \ V because of the fact we have shown

in the first paragraph). The number of edges in S ′ is thus

|M | + |N \ V | = |M | + n− |V | = n− |M | = n− µ(G).

Note that |S ′| ≥ ρ(G). Hence,

ρ(G) + µ(G) ≤ n.

We now start by considering a minimum edge cover S of G. Notice that the subgraph

(N, S) will not have any path with more than two edges - because if a path with more than

two edges existed, then some edges in the middle can be deleted to get a smaller edge cover.

Thus, (N, S) will not have any cycles. Hence, (N, S) can be broken down into components

with each component being a tree and has a maximum path length of two - such graphs

are called star graphs. Suppose we have k such components, and denote the components as

1, . . . , k. Suppose component j has ej number of edges and ej + 1 number of nodes. Then,
∑k

j=1 ej + k = n. But
∑k

j=1 ej = ρ(G). Hence, k = n− ρ(G). If we take one edge from each

component, it will define a matching. Hence, the maximum matching must have at least

n− ρ(G) edges. So, we have µ(G) ≥ n− ρ(G) or µ(G) + ρ(G) ≥ n.

These two arguments show that µ(G) + ρ(G) = n. �

An immediate corollary using Konig’s theorem and Theorem 9 is the following.

42

6

1

2 3

4

5

Figure 1.27: A maximum independent set

Corollary 1 For a bipartite graph G with no vertex of degree zero, κ(G) + ρ(G) = n.

1.7.5 Independent Set

We now define a new notion for undirected graphs and show its relation to minimum vertex

cover problem.

Definition 7 Given a graph G = (N,E), a subset of vertices V ⊆ N is called an inde-

pendent set of G if for every i, j ∈ V , we have {i, j} /∈ E.

A subset of vertices V is called amaximum independent set ofG if it is an independent

set of G and every other independent set V ′ of G satisfies |V ′| ≤ |V |.
The following example in Figure 1.27 shows a graph with a maximum independent set -

nodes {1, 3, 4} is a maximum independent set and nodes {2, 5, 6} is a minimum vertex cover.

Note that the sum of sizes of minimum vertex cover and maximum independent set is 6 (no.

of nodes in this graph). This is true for every graph.

The size of the maximum independent set of G will be denoted by δ(G).

Theorem 10 For any graph G = (N,E), δ(G) + κ(G) = n.

Proof : Suppose V is a maximum independent set of G. By considering all the vertices in

N \ V , we get a vertex cover of G. This follows from the definition of an independent set -

there is no edge with both endpoints in V . As a result, κ(G) ≤ |N \V | = n−|V | = n−δ(G).
Hence, κ(G) + δ(G) ≤ n.

Suppose V ′ is a minimum vertex cover of G. The set N \ V ′ must define an independent

set of G. Otherwise, there is an edge {i, j} with i, j ∈ N \ V ′, and since V ′ is a vertex cover,

we get a contradiction. Hence, δ(G) ≥ |N \ V ′| = n− κ(G). Hence, δ(G) + κ(G) ≥ n. This

gives us κ(G) + δ(G) = n. �

Theorems 9, 10, and Konig’s theorem lead us to the following theorem for bipartitie

graphs.

43

Theorem 11 (Gallai’s Theorem) Suppose G = (N,E) is any graph with no vertex of

degree zero. Then,

δ(G) + κ(G) = µ(G) + ρ(G) = n.

If G is a bipartite graph, then

κ(G) + ρ(G) = δ(G) + µ(G) = n, κ(G) = µ(G), ρ(G) = δ(G).

1.8 Basic Directed Graph Definitions

A directed graph is defined by a triple G = (N,E,w), where N = {1, . . . , n} is the set

of n nodes, E ⊆ {(i, j) : i, j ∈ N} is the set of edges (ordered pairs of nodes), and w is a

vector of weights on edges with w(i, j) ∈ R denoting the weight or length of edge (i, j) ∈ E.
Notice that the length of an edge is not restricted to be non-negative. A complete graph is

a graph in which there is an edge between every pair of nodes.

a

b

c

d

e

f

5

4

10

−3

3

−2

2

1

4

Figure 1.28: A Directed Graph

A path is a sequence of distinct nodes (i1, . . . , ik) such that (ij , ij+1) ∈ E for all 1 ≤ j ≤
k−1. If (i1, . . . , ik) is a path, then we say that it is a path from i1 to ik. A graph is strongly

connected if there is a path from every node i ∈ N to every other node j ∈ N \ {i}.
A cycle is a sequence of nodes (i1, . . . , ik, ik+1) such that (i1, . . . , ik) is a path, (ik, ik+1) ∈

E, and i1 = ik+1. The length of a path or a cycle P = (i1, . . . , ik, ik+1) is the sum of the edge

lengths in the path or cycle, and is denoted as l(P) = w(i1, i2) + . . . + w(ik, ik+1). Suppose

there is at least one path from node i to node j. Then, the shortest path from node i

to node j is a path from i to j having the minimum length over all paths from i to j. We

denote the length of the shortest path from i to j as s(i, j).

Figure 1.28 shows a directed graph. A path from a to f is (a, b, d, e, f). A cycle in the

graph is (c, d, e, c). The length of the path (a, b, d, e, f) is 5 + (−3) + (−2) + 4 = 4. The

44

length of the cycle (c, d, e, c) is 1 + (−2) + 2 = 1. The possible paths from a to f with their

corresponding lengths are:

• (a, f): 10.

• (a, b, f): 5 + 3 = 8.

• (a, b, d, e, f): 5 + (−3) + (−2) + 4 = 4.

• (a, c, d, e, f): 4 + 1 + (−2) + 4 = 7.

Hence, s(a, f) = 4, and the shortest path from a to f is (a, b, d, e, f).

Here is a useful lemma.

Lemma 8 Suppose (i, i1, . . . , ik, j) is the shortest path from i to j in the digraph G =

(N,E,w). If G has no cycles of negative length, then for every ip ∈ {i1, . . . , ik}, s(i, ip) =
l(i, i1, . . . , ip) and s(ip, j) = l((ip, . . . , ik, j).

Proof : Let P1 = (i, i1, . . . , ip) and P2 = (ip, . . . , ik, j). By the definition of the shortest

path, s(i, ip) ≤ l(P1). Assume for contradiction, s(i, ip) < l(P1). This implies that there is

some other path P3 from i to ip which is shorter than P1. If P3 does not involve any vertex

from P2, then P3 and P2 define a path from i to j, and l(P3)+ l(P2) < l(P1)+ l(P2) = s(i, j).

But this contradicts the fact that (i, i1, . . . , ik, j) is a shortest path. If P3 involves a vertex

from P2, then P3 and P2 will include cycles, which have non-negative length. Removing these

cycles from P2 and P3 will define a new path from i to j which has shorter length. This is

again a contradiction.

A similar argument works if s(ip, j) < l(P2). �

1.8.1 Potentials

Definition 8 A potential of a directed graph G is a function p : N → R such that

p(j)− p(i) ≤ w(i, j) for all (i, j) ∈ E.

Figure 1.29 illustrates the idea of potentials. The idea of potentials is borrowed from

Physics. Potential of a node can be interpreted as the potential energy at the node. The

weight of an edge represents the gain in energy by going along the edge. The potential

inequality is a feasible energy transfer constraint.

45

i jw(i,j)

p(j)p(i)

p(i) + w(i,j) >= p(j)

Figure 1.29: Idea of potentials

Notice that if p is a potential of graph G, so is {p(j) + α}j∈N for all α ∈ R. Potentials

do not always exist. Consider a directed graph with two nodes {1, 2} and edge lengths

w(1, 2) = 3 and w(2, 1) = −4. For this graph to have a potential, the following system of

inequalities must have a solution:

p(1)− p(2) ≤ w(2, 1) = −4
p(2)− p(1) ≤ w(1, 2) = 3.

But this is not possible since adding them gives zero on the LHS and a negative number on

the RHS.

The following theorem provides a necessary and sufficient condition for a directed graph

to have a potential.

Theorem 12 There exists a potential of directed graph G = (N,E,w) if and only if G has

no cycles of negative length.

Proof : Suppose a potential p exists of graph G. Consider a cycle (i1, . . . , ik, i1). By

definition of a cycle, (ij , ij+1) ∈ E for all 1 ≤ j ≤ k−1 and (ik, i1) ∈ E. Hence, we can write

p(i2)− p(i1) ≤ w(i1, i2)

p(i3)− p(i2) ≤ w(i2, i3)

. . . ≤ . . .

. . . ≤ . . .

p(ik)− p(ik−1) ≤ w(ik−1, ik)

p(i1)− p(ik) ≤ w(ik, i1).

Adding these inequalities, we get w(i1, i2)+. . .+w(ik−1, ik)+w(ik, i1) ≥ 0. The right had side

of the inequality is the length of the cycle (i1, . . . , ik, i1), which is shown to be non-negative.

46

Now, suppose every cycle in G has non-negative length. We construct another graph G′

from G as follows. The set of vertices of G′ is N ∪ {0}, where 0 is a new (dummy) vertex.

The set of edges of G′ is E ∪ {(0, j) : j ∈ N}, i.e., G′ has all the edges of G and new edges

from 0 to every vertex in N . The weights of new edges in G′ are all zero, whereas weights

of edges in G remain unchanged in G′. Clearly, there is a path from 0 to every vertex in G′.

Observe that if G contains no cycle of negative length then G′ contains no cycle of negative

length. Figure 1.30 shows a directed graph and how the graph with the dummy vertex is

created.

1

2 3

4
5 −2

2
1

−3

4

1

4

2 −3 3

2

4−2

10

0

0 0

0

0

Figure 1.30: A directed graph and the new graph with the dummy vertex

We claim that s(0, j) for all j ∈ N defines a potential of graph G. Consider any (i, j) ∈ E.
We consider two cases.

Case 1: The shortest path from 0 to i does not include vertex j. Now, by definition of

shortest path s(0, j) ≤ s(0, i) + w(i, j). Hence, s(0, j)− s(0, i) ≤ w(i, j).

Case 2: The shortest path from 0 to i includes vertex j. In that case, s(0, i) = s(0, j)+s(j, i)

(by Lemma 8). Hence, s(0, i)+w(i, j) = s(0, j)+s(j, i)+w(i, j). But the shortest path from

j to i and then edge (i, j) creates a cycle, whose length is given by s(j, i) + w(i, j). By our

assumption, s(j, i)+w(i, j) ≥ 0 (non-negative cycle length). Hence, s(0, i)+w(i, j) ≥ s(0, j)

or s(0, j)− s(0, i) ≤ w(i, j).

In both cases, we have shown that s(0, j)− s(0, i) ≤ w(i, j). Hence s(0, j) for all j ∈ N
defines a potential of graph G.

An alternate way to prove this part of the theorem is to construct G′ slightly differently.

Graph G′ still contains a new dummy vertex but new edges are now from vertices in G to

the dummy vertex 0. In such G′, there is a path from every vertex in N to 0. Moreover, G′

contains no cycle of negative length if G contains no cycle of negative length. We claim that

−s(j, 0) for all j ∈ N defines a potential for graph G. Consider any (i, j) ∈ E. We consider

47

two cases.

Case 1: The shortest path from j to 0 does not include vertex i. Now, by definition of

shortest path s(i, 0) ≤ w(i, j) + s(j, 0). Hence, −s(j, 0)− (−s(i, 0)) ≤ w(i, j).

Case 2: The shortest path from j to 0 includes vertex i. In that case, s(j, 0) = s(j, i)+s(i, 0).

Hence, s(j, 0) + w(i, j) = s(j, i) + w(i, j) + s(i, 0). But s(j, i) + w(i, j) is the length of

cycle created by taking the shortest path from j to i and then taking the direct edge (i, j).

By our assumption, s(j, i) + w(i, j) ≥ 0. Hence, s(j, 0) + w(i, j) ≥ s(i, 0), which gives

−s(j, 0)− (−s(i, 0)) ≤ w(i, j). �

The proof of Theorem 12 shows a particular potential when it exists. It also shows an

elegant way of verifying when a system of inequalities (of the potential form) have a solution.

Consider the following system of inequalities. Inequalities of this form are called difference

inequalities.

x1 − x2 ≤ 2

x2 − x4 ≤ 2

x3 − x2 ≤ −1
x3 − x4 ≤ −3
x4 − x1 ≤ 0

x4 − x3 ≤ 1.

To find if the above system of inequalities have a solution or not, we construct a graph with

vertex set {1, 2, 3, 4} and an edge for every inequality with weights given by the right hand

side of the inequalities. Figure 1.31 shows the graphical representation. Clearly, a solution

to these difference inequalities correspond to potentials of this graph. It can be easily seen

that the cycle (3, 4, 3) in this graph has a length (−3) + 1 = (−2). Hence, there exists no

potential of this graph by Theorem 12.

From the proof of Theorem 12, we have established how to compute a potential when

it exists. It suggests that if we have a vertex from which a path exists to every vertex or

a vertex to which a path exists from every other vertex, then shortest such paths define a

potential.

Theorem 13 Suppose G = (N,E,w) is a directed graph with no cycle of negative length

and i is a vertex in G such that there is a path from i to every other vertex in G. Then

p(j) = s(i, j) for all j ∈ N \{i} and p(i) = 0 defines a potential of graph G. Similarly, if i is

48

1 2

3

4

2

2
−1

−3

0

1

Figure 1.31: A graphical representation of difference inequalities

a vertex in G such that there is a path from every other vertex in G to i, then p(j) = −s(j, i)
for all j ∈ N \ {i} and p(i) = 0 defines a potential of graph G.

Proof : The proof is similar to the second part of proof of Theorem 12 - the only difference

being we do not need to construct the new graph G′ and work on graph G directly. �

Figure 1.32 gives an example of a complete directed graph. It can be verified that this

graph does not have a cycle of negative length. Now, a set of potentials can be computed

using Theorem 13. For example, fix vertex 2. One can compute s(1, 2) = 3 and s(3, 2) = 4.

Hence, (−3, 0,−4) is a potential of this graph. One can also compute s(2, 1) = −2 and

s(2, 3) = −3, which gives (−2, 0,−3) to be another potential of this graph.

−2

−1

43

1

2
3

−3

4

Figure 1.32: Potentials for a complete directed graph

49

1.9 Unique Potentials

We saw that given a digraph G = (N,E,w), there may exist many potentials. Indeed, if p

is a potential, then so is q, where q(j) = p(j) + α for all j ∈ N and α ∈ R is some constant.

There are other ways to construct new potentials from a given pair of potentials. We say

a set of n-dimensional vectors X ⊆ Rn form a lattice if x, y ∈ X implies x ∧ y, defined by

(x ∧ y)i = min(xi, yi) for all i, and x ∨ y, defined by (x ∨ y)i = max(xi, yi) for all i both

belong to X . We give some examples of lattices in R2. The whole of R2 is a lattice since if

we take x, y ∈ R2, x ∧ y and x ∨ y is also in R2. Similarly, R2
+ is a lattice. Any rectangle in

R2 is also a lattice. However, a circular disk in R2 is not a lattice. To see this, consider the

circular disk at origin of unit radius. Though x = (1, 0) and y = (0, 1) belong to this disk,

x ∨ y = (1, 1) does not belong here.

The following lemma shows that the set of potentials of a digraph form a lattice.

Lemma 9 The set of potentials of a digraph form a lattice.

Proof : If a graph does not contain any potentials, then the lemma is true. If a graph

contains a potential, consider two potentials p and q. Let p′(i) = min(p(i), q(i)) for all

i ∈ N . Consider any edge (j, k) ∈ E. Without loss of generality, let p′(j) = p(j). Then

p′(k)− p′(j) = p′(k)− p(j) ≤ p(k)− p(j) ≤ w(j, k) (since p is a potential). This shows that

p′ is a potential.

Now, let p′′(i) = max(p(i), q(i)) for all i ∈ N . Consider any edge (j, k) ∈ E. Without

loss of generality let p′′(k) = p(k). Then p′′(k)−p′′(j) = p(k)−p′′(j) ≤ p(k)−p(j) ≤ w(j, k)

(since p is a potential). This shows that p′′ is a potential. �

This shows that there is more structure shown by potentials of a digraph. It is instructive

to look at a complete graph with two vertices and edges of length 2 and −1. Potentials exist
in this graph. Dashed regions in Figure 1.33 shows the set of potentials of this graph. Note

that if edge lengths were 1 and −1, then this figure would have been the 45-degree line

passing through the origin.

In this section, we investigate conditions under which a unique potential (up to a constant)

may exist. We focus attention on strongly connected digraphs.

Definition 9 We say a strongly connected digraph G = (N,E,w) satisfies potential

equivalence if for every pair of potentials p and q of G we have p(j)− q(j) = p(k)− q(k)
for all j, k ∈ N .

50

p(1)

p(2)

p(2) − p(1) =−1

p(1) − p(2) = 2

Figure 1.33: Potentials of a complete graph with two vertices

Alternatively, it says that if a digraph G satisfies potential equivalence then for every

pair of potentials p and q, there exists a constant α ∈ R such that p(j) = q(j) + α for all

j ∈ N . So, if we find one potential, then we can generate all the potentials of such a digraph

by translating it by a constant.

Let us go back to the digraph with two nodes N = {1, 2} and w(1, 2) = 2, w(2, 1) = −1.
Consider two potentials p, q in this digraph as follows: p(1) = 0, p(2) = 2 and q(1) =

−1, q(2) = 0. Note that p(1) − q(1) = 1 6= p(2) − q(2) = 2. Hence, potential equivalence

fails in this digraph. However, if we modify edge weights as w(1, 2) = 1, w(2, 1) = −1, then
the p above is no longer a potential. Indeed, now we can verify that potential equivalence is

satisfied. These insights are summarized in the following result.

Theorem 14 Suppose G = (N,E,w) is a strongly connected graph with no cycles of negative

length. Then, G satisfies potential equivalence if and only if s(j, k) + s(k, j) = 0 for all

j, k ∈ N .

Proof : Suppose the digraph G satisfies potential equivalence. Then consider the potentials

of G by taking shortest paths from j and k - denote them by p and q respectively. Note that

p and q exist because G contains no cycles of negative length. Then we have

p(j)− q(j) = p(k)− q(k)
or s(j, j)− s(k, j) = s(j, k)− s(k, k),

where p(j) = s(j, j) = 0 = q(k) = s(k, k). So, we have s(j, k) + s(k, j) = 0.

Now, suppose s(j, k) + s(k, j) = 0 for all j, k ∈ N . Consider the shortest path from j to

k. Let it be (j, j1, . . . , jq, k). Consider any potential p of G - a potential exists because G

51

contains no cycle of negative length. We can write

s(j, k) = w(j, j1) + w(j1, j2) + . . .+ w(jq, k)

≥ p(j1)− p(j) + p(j2)− p(j1) + . . .+ p(k)− p(jq)
= p(k)− p(j).

Hence, we get p(k)−p(j) ≤ s(j, k). Similarly, p(j)−p(k) ≤ s(k, j) or p(k)−p(j) ≥ −s(k, j) =
s(j, k). This gives, p(k) − p(j) = s(j, k). Hence, for any two potentials p and q we have

p(k)− p(j) = q(k)− q(j) = s(j, k). �

1.10 Application: The implementation problem

Consider an agent which can be allocated any one alternative from the finite set A - A can

be a set of objects, it can be a set of public goods, it can be a set of bundles of objects,

it can be |A| units of a homogeneous good etc. The agent has a valuation for each of the

alternatives. A generic valuation vector of the agent is denoted by v ∈ R|A|. The planner

(seller or designer) does not know the valuation vector of the agent. However, he knows that

the set of possible valuations is some set V ⊆ R|A|
+ .

We consider the following procedure or mechanism for allocating an alternative to the

agent: the planner announces two maps (a) an allocation rule f : V → A and (b) a

payment rule p : V → R. Then, the planner asks the agent to report his valuation vector

v̂ and depending on her announcement gives alternative f(v̂) and asks her to pay p(v̂). The

agent need not announce her true valuation vector. If the agent’s true valuation vector is v

and she announces v̂, then her payoff from the mechanism (f, p) is

v(f(v̂))− p(v̂).
This form of payoff function, which is separable in payment, is called quasilinear payoff.

A mechanism (f, p) is incentive compatible if truth-telling maximizes the payoff of the

agent.

Definition 10 A mechanism (f, p) is incentive compatible if for every v ∈ V,
v(f(v))− p(v) ≥ v(f(v̂))− p(v̂) ∀ v̂ ∈ V.

In this case, we say that f is implementable (by the payment rule p).

The question we ask is what f is implementable, i.e., for what f , can we find an appropriate

payment rule p such that (f, p) is incentive compatible.

52

To understand how potentials of directed graph can be used, construct the following graph

Gf . First, the set of nodes in Gf is the set of possible valuation vectors V - this may be an

infinite set. Second, Gf is a complete directed graph, i.e., there is an edge from every v ∈ V
to every other v̂ 6= v. Finally, for every v̂, v ∈ V, the weight of the edge (v̂, v) is equal to

ℓf(v̂, v) := v(f(v))− v(f(v̂)).

Notice that p is implementable if and only if for every v̂, v ∈ V, we have

p(v)− p(v̂) ≤ v(f(v))− v(f(v̂)) = ℓf(v̂, v).

Hence, f is implementable if and only if for every edge (v̂, v) in the type graph Gf , we have

p(v)− p(v̂) ≤ ℓf(v̂, v). This leads to the following immediate result.

Claim 1 An allocation rule is implementable if and only if Gf has a potential.

Now, we can readily apply our result if V is finite. If V is not finite, the graph Gf will

have infinite vertices. For infinite graphs, we need to work a little more. For infinite graphs,

we only worry about cycles having finite set of vertices, i.e., finite cycles. Notice that since

the graph has infinite vertices, there are infinite number of finite cycles.

Definition 11 An allocation rule f is cyclically monotone if every finite cycle of Gf

has non-negative length.

Theorem 15 An allocation rule f is implementable if and only if it is cyclically monotone.

Proof : By Claim 1, if f is implementable, then Gf has a potential p. Consider any finite

cycle (v1, v2, . . . , vk, v1). The potential inequalities along the cycle gives us

p(v2)− p(v1) ≤ ℓf(v1, v2)

. . . ≤ . . .

p(vk)− p(vk−1) ≤ ℓf(vk−1, vk)

p(v1)− p(vk) ≤ ℓf(vk, v1).

Adding them up gives us 0 ≤ ∑k
j=1 ℓ

f(vj, vj+1), where vk+1 = v1. Hence, the cycle has

non-negative length.

For the other direction, we assume that every cycle of Gf has non-negative length and

prove that Gf has a potential. There are two steps in the proof.

53

Step 1. For every v, v′ ∈ V, denote by P (v, v′) all finite paths from v to v′. Define

sf(v, v′) := inf
P∈P (v,v′)

ℓf(P),

where ℓf (P) denotes the length of the path P . First, we show that sf (v, v′) is a real number.

Since the direct edge (v, v′) exists, P (v, v′) is non-empty. Next, for any P ∈ P (v, v′), the

cycle formed by P and the edge (v′, v) has non-negative length. So, ℓf(P) ≥ −ℓf (v′, v).
Hence, sf(v, v′) ≥ −ℓf (v′, v), which means that sf(v, v′) is a real number.

For simplicity, we define sf(v, v) = 0 for all v. Next, we prove the following.

Step 2. Consider any v0, v, v′ ∈ V. We show that

sf (v0, v′) ≤ sf(v0, v) + ℓf(v, v′).

To prove this, we consider various cases. If v = v′, the claim follows trivially. If v0 = v,

then sf(v, v′) ≤ ℓf(v, v′) by definition and we are done. If v0 = v′, then sf(v′, v) + ℓf (v, v′),

which is greater than or equal to zero as shown in Step 1. Hence, we consider the case where

v0, v, v′ are all unique. Consider any path P ∈ P (v0, v). We consider two subcases.

Case a. Path P consists of v′. In that case P consists of a path from v0 to v′, call it Q1,

and a path from v′ to v, call it Q2. So, we have

ℓf(P) = ℓf (Q1) + ℓf (Q2).

Adding ℓf(v, v′) on both sides, we get

ℓf(P) + ℓf(v, v′) = ℓf(Q1) + ℓf(Q2) + ℓf(v, v′) ≥ ℓf(Q1),

where the inequality follows because Q2 and edge (v, v′) form a cycle, which has non-negative

length. Thus,

ℓf(P) + ℓf(v, v′) ≥ sf(v0, v′).

Case b. Path P does not have v′. Hence, P and direct edge (v, v′) makes a path from v0

to v′. Hence, ℓf(P) + ℓf(v, v′) ≥ sf (v0, v′).

So, in both the cases, we have ℓf (P) + ℓf(v, v′) ≥ sf (v0, v′). Taking infimum over all

P ∈ P (v0, v), we get sf(v0, v) + ℓf (v, v′) ≥ sf(v0, v′) as desired.

With this step, the proof is now complete. Define a potential as follows. Choose v0 ∈ V and

let p(v0) = sf(v0, v0) = 0. For every v ∈ V, we define p(v) = s(v0, v). By Step 2, for every

v, v′ ∈ V, we have p(v′)− p(v) ≤ ℓf(v, v′) as desired. �

54

1.11 Application: Fair Pricing

Consider a market with N = {1, . . . , n} agents (candidates) and M = {1, . . . , m} indivisible
goods (jobs). We assume m = n (this is only for simplicity). Each agent needs to be assigned

exactly one good, and no good can be assigned to more than one agent. If agent i ∈ N is

assigned to good j ∈ M , then he gets a value of vij . A price is a vector p ∈ Rm
+ , where p(j)

denotes the price of good j. Price is fixed by the market, and if agent i gets good j, he has to

pay the price of good j. A matching µ is a bijective mapping µ : N →M , where µ(i) ∈M
denotes the good assigned to agent i. Also, µ−1(j) denotes the agent assigned to good j in

matching µ. Given a price vector p, a matching µ generates a net utility of viµ(i) − p(µ(i))
for agent i.

Definition 12 A matching µ can be fairly priced if there exists p such that for every

i ∈ N ,

viµ(i) − p(µ(i)) ≥ viµ(j) − p(µ(j)) ∀ j ∈ N \ {i}.

If such a p exists, then we say that µ is fairly priced by p.

Our idea of fairness is the idea of envy-freeness. If agent i gets object j at price p(j) and

agent i′ gets object j′ at price p(j′), agent i should not envy agent i′’s matched object and

price, i.e., he should get at least the payoff that he would get by getting object j′ at p(j′).

Not all matchings can be fairly priced. Consider an example with two agents and two

goods. The values are v11 = 1, v12 = 2 and v21 = 2 and v22 = 1. Now consider the matching

µ: µ(1) = 1 and µ(2) = 2. This matching cannot be fairly priced. To see this, suppose p is

a price vector such that µ is fairly priced by p. This implies that

v11 − p(1) ≥ v12 − p(2)
v22 − p(2) ≥ v21 − p(1).

Substituting the values, we get

p(1)− p(2) ≤ −1
p(2)− p(1) ≤ −1,

which is not possible. This begs the question whether there exists any matching which can

be fairly priced.

Definition 13 A matching µ is efficient if
∑

i∈N viµ(i) ≥
∑

i∈N viµ′(i) for all other match-

ings µ′.

55

1 2 3

v1· 4 2 5

v2· 2 5 3

v3· 1 4 3

Table 1.2: Fair pricing example

Consider another example with 3 agents and 3 goods with valuations as shown in Table

1.2. The efficient matching in this example is: agent i gets good i for all i ∈ {1, 2, 3}.

Theorem 16 A matching can be fairly priced if and only if it is efficient.

The proof of this fact comes by interpreting the fairness conditions as potential inequal-

ities. For every matching µ, we associate a complete digraph Gµ with set of nodes equal to

the set of goods M . The digraph Gµ is a complete digraph, which means that there is an

edge from every object to every other object. The weight of edge from node j to node k is

given by

w(j, k) = vµ−1(k)k − vµ−1(k)j .

For the example in Table 1.2, we take µ to be the efficient matching, and construct Gµ.

The edge lengths are:

w(1, 2) = v22 − v21 = 3

w(2, 1) = v11 − v12 = 2

w(1, 3) = v33 − v31 = 2

w(3, 1) = v11 − v13 = −1
w(2, 3) = v33 − v32 = −1
w(3, 2) = v22 − v23 = 2.

The digraph Gµ is shown in Figure 1.34.

It is easy to check then that µ can be fairly priced if there exists p such that for every

i ∈ N

p(µ(i))− p(µ(j)) ≤ w(µ(j), µ(i)) ∀ j ∈ N \ {i}.

Hence, µ can be fairly priced if and only if Gµ has no cycles of negative length.

56

1

2
3

3

22

−1

−1

2

Figure 1.34: Digraph Gµ

Without loss of generality, reindex the objects such that µ(i) = i for all i ∈ N . Now,

look at an arbitrary cycle C = (i1, i2, . . . , ik, i1) in Gµ. Denote by R = N \ {i1, . . . , ik}. The
length of the cycle C in Gµ is

w(i1, i2) + w(i2, i3) + . . .+ w(ik, i1) = [vi2i2 − vi2i1] + [vi3i3 − vi3i2] + . . .+ [vi1i1 − vi1ik]

=
k

∑

r=1

virir − [vi1ik + vi2i1 + vi3i2 + . . .+ vikik−1]

=

k
∑

r=1

virir +
∑

h∈R

vhh −
∑

h∈R

vhh − [vi1ik + vi2i1 + . . .+ vikik−1]

Note that
∑k

r=1 virir +
∑

h∈R vhh is the total value of all agents in matching µ. Denote

this as V (µ). Now, consider another matching µ′: µ′(i) = µ(i) = i if i ∈ R and µ′(ih) = ih−1

if h ∈ {2, 3, . . . , k} and µ′(i1) = ik. Note that µ′ is the matching implicitly implied by the

cycle, and V (µ′) =
∑

h∈R vhh + [vi1ik + vi2i1 + vi3i2 + . . . + vikik−1]. Hence, length of cycle C

is V (µ)− V (µ′).

Now, suppose µ is efficient. Then, V (µ) ≥ V (µ′). Hence, length of cycle C is non-

negative, and µ can be fairly priced. For the converse, suppose µ can be fairly priced. Then,

every cycle has non-negative length. Assume for contradiction that it is not efficient. Then,

for some µ′, we have V (µ)−V (µ′) < 0. But every µ′ corresponds to a reassignment of objects,

and thus corresponds to a cycle. To see this, let C = {i ∈ M : µ−1(i) 6= µ′−1(i)}. Without

loss of generality, assume that C = {i1, . . . , ik}, and suppose that µ′(ir) = ir−1 for all r ∈
{2, . . . , k} and µ′(i1) = ik. Then, the length of the cycle (i1, . . . , ik, i1) is V (µ)−V (µ′). Since

lengths of cycles are non-negative, this implies that V (µ) < V (µ′), which is a contradiction.

Let us revisit the example in Table 1.2. We can verify that if µ is efficient, then Gµ has

no cycles of negative length. In this case, we can compute a price vector which fairly prices

57

µ by taking shortest paths from any fixed node. For example, fix node 1, and set p(1) = 0.

Then, p(2) = s(1, 2) = 3 and p(3) = s(1, 3) = 2.

1.12 A Shortest Path Algorithm

In this section, we study an algorithm to compute a shortest path in a directed graph. We

will be given a digraph G = (N,E,w) with a source node s ∈ N . To avoid confusion, we

denote the shortest path from s to every other node u ∈ N as ψ(s, u). We assume that the

there is a path from the source node to every other vertex and weights of edges are non-

negative. Under this assumption, we will discuss a greedy algorithm to compute the shortest

path from s to all vertices in N . This algorithm is called the Dijkstra’s algortihm and is

based on the ideas of dynamic programming.

The algorithm goes in iterations. In each iteration, the algorithm maintains an esti-

mated shortest path (length) to each node. We will denote this estimate for node u as

d(u). Initially, d(s) = 0 and d(u) =∞ for all u 6= s.

The algorithm also maintains a set of nodes S in every stage - these are the nodes for

which shortest paths have already been discovered. Initially, S = ∅. It then chooses a node

u /∈ S with the lowest estimated shortest path among all nodes in N \ S, i.e., d(u) ≤ d(v)

for all v ∈ N \S. Then S is updated as S ← S ∪ {u}. Further, the estimated shortest paths

of all nodes v such that (u, v) ∈ E is updated as follows:

d(v)← min(d(v), d(u) + w(u, v)).

This procedure of updating the estimated shortest path is called relaxation of edge (u, v).

Figure 1.35 shows the process of relaxation of an edge (the numbers on nodes represent

estimated shortest path and number on edges represent edge weights). In the left digraph of

Figure 1.35 the estimated shortest path estimates decrease because of relaxation but on the

right digraph it remains the same. This is a general property - relaxation never increases the

shortest path estimates.

Once all the edges from the chosen node are relaxed, the procedure is repeated. The

algorithm stops when S = N . The algorithm also maintains a predecessor for every node.

Initially, all the nodes have NIL predecessor (i.e., no predecessors). If at any step, by the

relaxation of an edge (u, v), the estimated shortest path decreases, then the predecessor of v

is updated to u. At the end of the algorithm, the sequence of predecessors from any node u

terminates at s and that defines the shortest path from s to u.

We illustrate the algorithm using an example first. The initialized estimated shortest

paths are shown in Figure 1.36(a). We choose S = {s} and relax (s, u) and (s, x) in Figure

58

RELAX

2

2

2

2

5 6

5 6

5 9

5 7

RELAX

Figure 1.35: Relaxation

1.36(b). Then, we add x to S.

inf

s

u v

y
x

10

5

2

64
9

1

3 2

0

inf inf

inf

(a)

5

s

u v

y
x

10

5

2

64
9

1

3 2

0

inf

inf

10

(b)

Figure 1.36: Illustration of Dijsktra’s algorithm

Figure 1.37(a) shows S = {s, x} and relaxation of edges (x, u), (x, v), and (x, y). Then,

we add y to S. Figure 1.37(b) shows S = {s, x, y} and relaxation of edges (y, s) and (y, v).

Then, we add u to S.

8

s

u v

y
x

10

5

2

64
9

1

3 2

0

5

14

7

(a)

13

s

u v

y
x

10

5

2

64
9

1

3 2

0

5

7

8

(b)

Figure 1.37: Illustration of Dijsktra’s algorithm

Figure 1.38(a) shows S = {s, x, y, u} and relaxation of edges (u, v) and (u, x). Then, we

add v to S. Figure 1.38(b) shows S = {s, x, y, u, v}. At each step of the algorithm, we can

59

maintain the edges responsible for shortest path estimates (shown in blue in the figures),

and that gives the shortest path tree (rooted at s).

9

s

u v

y
x

10

5

2

64
9

1

3 2

0

5

7

8

(a)

9

s

u v

y
x

10

5

2

64
9

1

3 2

0

5

7

8

(b)

Figure 1.38: Illustration of Dijsktra’s algorithm

We now examine some properties of relaxation.

Lemma 10 Suppose an edge (u, v) is relaxed, then d(v) ≤ d(u) + w(u, v).

Proof : Follows from the definition of relaxation. �

Lemma 11 For every node v ∈ N , d(v) ≥ ψ(s, v).

Proof : We show that this is true in every iteration. After initialization d(v) = ∞ for all

v ∈ N . Hence, the claim is true for the first iteration. Assume for contradiction that in

iteration t, the claim fails to be true for the first time. Then, it must have happened to a

node v /∈ S in that iteration and because of relaxation of some edge (u, v). So, d(v) < ψ(s, v)

and (u, v) be the edge whose relaxation causes this inequality. Since this edge was relaxed,

it must be d(u) + w(u, v) = d(v) < ψ(s, v) ≤ ψ(s, u) + w(u, v). Hence, d(u) < ψ(s, u) and u

was in S earlier. Since relaxing edge (u, v) does not change d(u) value, this contradicts the

fact that v is the first vertex for which a relaxation destroys the claimed inequality. �

Lemma 12 Let (u, v) be an edge in the shortest path from s to v. If d(u) = ψ(s, u) and after

edge (u, v) is relaxed, we must have d(v) = ψ(s, v).

Proof : After relaxing edge (u, v), we must have d(v) ≤ d(u)+w(u, v) = ψ(s, u)+w(u, v) =

ψ(s, v), where the last equality followed from the fact that the edge (u, v) is on the shortest

path from s to v. By Lemma 11, the claim follows. �

This leads to the correctness of Dijsktra’s algorithm.

60

Theorem 17 The Dijsktra’s algorithm finds the shortest paths from s to every other node.

Proof : We go in the iteration of the Dijkstra’s algorithm. Let u be the first vertex to be

chosen in S for which d(u) 6= ψ(s, u) - here d(u) is final value of d at the end of the algorithm.

By Lemma 11 d(u) > ψ(s, u). Let S be the set of vertices selected so far in the algorithm.

By assumption, for every vertex v ∈ S, d(v) = ψ(s, v). Let P be the shortest path from s to

u. Let x be the last vertex in P such that x ∈ S - note that s ∈ S. Let the edge (x, y) be in

the path P .

We first claim that d(y) = ψ(s, y). Since x ∈ S, d(x) = ψ(s, x). Also, edge (x, y) must

have been relaxed and it belongs on the shortest path from s to y (since it belongs on the

shortest path from s to u). By Lemma 12, d(y) = ψ(s, y).

Now, since y occurs before u in the shortest path and all weights are non-negative,

ψ(s, y) ≤ ψ(s, u). But d(y) = ψ(s, y) ≤ ψ(s, u) < d(u). But both vertices u and y are in

(N \ S) and u was chosen even though d(u) > d(y). This is a contradiction. �

1.13 Network Flows

We are given a directed graph G = (N,E, c), where the weight function c : E → R++

(positive) reflects the capacity of every edge. We are also given two specific vertices of this

digraph: the source vertex, denoted by s, and the terminal vertex, denoted by t. Call such

a digraph a flow graph. So, whenever we say G = (N,E, c) is a flow graph, we imply that

G is a digraph with a source vertex s and terminal vertex t.

A flow of a flow graph G = (N,E, c) is a function f : E → R+. Given a flow f for a

flow graph G = (N,E, c), we can find out for every vertex i ∈ N , the outflow, inflow, and

excess flow as follows:

δ−i (f) =
∑

(i,j)∈E

f(i, j)

δ+i (f) =
∑

(j,i)∈E

f(j, i)

δi(f) = δ+i (f)− δ−i (f).

Definition 14 A flow f is a feasible flow for a flow graph G = (N,E, c) if

1. for every (i, j) ∈ E, f(i, j) ≤ c(i, j) and

2. for every i ∈ N \ {s, t}, δi(f) = 0.

61

3.
∑

i∈N δi(f) = 0.

So, feasibility requires that every flow should not exceed the capacity and excess flow at

a node must be zero.

Instead of defining flows on edges, it may be useful to define flows on s − t paths (i.e.,

paths from s to t) and cycles. A fundamental result in network flows is that every feasible

flow in a digraph can be decomposed into flows of s − t paths and cycles. To state this

formally, we need some notation. For every edges e ∈ E, let Ce and P e be the set of cycles

and s− t paths using e. Let C and P be the set of all cycles and all s− t paths in the digraph

G ≡ (N,E, c).

Theorem 18 If f is a feasible flow of G ≡ (N,E, c), then there exists g : C → R+ and

h : P → R+ such that for every e ∈ E, we have

f(e) =
∑

C∈Ce

g(C) +
∑

P∈P e

h(P).

Proof : The proof is constructive. Consider any feasible flow f of G ≡ (N,E, c). We

will successively define new feasible flows for G. These new flows are derived by using the

observation that by reducing the flow (a) either along an s− t path or (b) along a cycle gives

another feasible flow.

• s− t Paths. Pick any s− t path P . If f(e) > 0 for all e ∈ P , then

h(P) = min
e∈P

f(e)

f(e) := f(e)− h(P) ∀ e ∈ P.

Repeat this procedure till every s− t path has at least one edge with zero flow. Note

that the procedure produces a feasible flow in each iteration.

• Cycles. Once the s − t path flows are determined, the only positive feasible flow

remaining must be along cycles - by definition, no s − t path can have positive flow.

Pick any cycle C. If f(e) > 0 for all e ∈ P , then

g(C) = min
e∈C

f(e)

f(e) := f(e)− g(C) ∀ e ∈ C.

Repeat this procedure till every cycle has zero flow. Clearly, since the s − t paths do
not have positive flow, this procedure will produce a stage where all cycles have zero

flow.

62

These two steps establish the claim of the theorem constructively. �

To get an idea of the construction, consider the digraph in Figure 1.39 - capacities are

infinite in this digraph.

3

2

3

4

5

s

t

5

1

4

5

3

2 1

7

1

2

Figure 1.39: Feasible flow

Figures 1.40(a), 1.40(b), 1.41(a), 1.41(b), and 1.42 illustrate how the flows have been

decomposed into flows along s− t paths and flows along cycles. In each step the flow along

an s − t path is reduced (such a path is shown in Red in the figures) and that amount of

flow is assigned to this path. Eventually (in Figure 1.42), only flows along two cycles remain,

which are assigned to these cycles.

2

2

3

4

5

s

t

1

4
3

2 1
1

0

0

2

3

(a)

3

2

3

4

5

s

t

1

4
3

2 1

0

0

0

1

2

(b)

Figure 1.40: Flow decomposition: s− 3− 5− t and s− 5− t paths

63

3

2

3

4

5

s

t

1

4

1

0

0

0

2

1

0

2

(a)

3

2

3

4

5

s

t

1

1

0

0

0
1

0

0
22

(b)

Figure 1.41: Flow decomposition: s− 4− 5− t and s− 4− t paths

0

2

3

4

5

s

t

1

1

0

0

0
1

0

0
0

1

Figure 1.42: Flow decomposition: s− 2− 4− t path and (2, 4, 2) and (4, 5, 4) cycles

1.13.1 The Maximum Flow Problem

Definition 15 The maximum flow problem is to find a feasible flow f of a flow graph

G = (N,E, c) such that for every feasible flow f ′ of G, we have

δt(f) ≥ δt(f
′).

The value of a feasible flow f in flow graph G = (N,E, c) is given by ν(f) = δt(f). So,

the maximum flow problem tries to find a feasible flow that maximizes the value of the flow.

Figure 1.43 shows a flow graph with a feasible flow. On every edge, capacity followed by

flow amount is written. It is easy to verify that this flow is feasible (but verify that this is

not a maximum flow).

The maximum flow problem has many applications. One original application was rail-

ways. Suppose there are two cities, say Delhi and Mumbai, connected by several possible rail

networks (i.e., routes which pass through various other cities). We want to determine what

is the maximum traffic that can go from Delhi to Mumbai. The capacity of traffic from a

city to another city is given (by the train services between these two cities). So, the solution

of the problem is the solution to the max flow problem.

64

s t

1

2

1/0

2/2

1/1

1/1

2/1

Figure 1.43: Feasible flow

1.13.2 Analysis of the Maximum Flow Problem

We now analyze some properties of the maximum flow problem. The concept of a cut is

important in analyzing the maximum flow problem. In flow graphs, a cut is similar to a

cut in an undirected graph: a partitioning of the set of vertices. An (s, t)-cut of digraph

G = (N,E, c) is (S,N \ S) such that s ∈ S and t ∈ N \ S. For every such cut, (S,N \ S),
define S− := {(i, j) ∈ E : i ∈ S, j /∈ S} and S+ = {(i, j) : j ∈ S, i /∈ S}. The capacity of a

cut (S,N \ S) in flow graph G = (N,E, c) is defined as

κ(S) =
∑

(i,j)∈S−

c(i, j).

Definition 16 An (s, t)-cut (S,N \ S) in flow graph G = (N,E, c) is called a saturated

cut for flow f if

1. f(i, j) = c(i, j) for all (i, j) ∈ S− and

2. f(i, j) = 0 for all (i, j) ∈ S+.

Figure 1.44 shows a saturated cut: ({s, 2}, {1, t}).
The second part of the definition of saturated cut is equally important. Figure 1.45 shows

a cut in the same graph which meets the first part of the definition (i.e. flow in the cut equals

capacity) but fails the second part since f(1, 2) 6= 0.

Lemma 13 For any feasible flow f of a flow graph G = (N,E, c) and any (s, t)-cut (S,N \S)
of G

1. ν(f) ≤ κ(S),

65

s t

1

2

2/2

1/1

1/0

1/1

2/2

Figure 1.44: Saturated cut

s t

1

2

2/2

1/1

1/1

1/0

2/1

Figure 1.45: A cut which is not saturated

2. if (S,N \ S) is saturated for flow f , ν(f) = κ(S).

3. if (S,N \ S) is saturated for flow f , then f is a maximum flow.

Proof : We prove (1) first:

ν(f) = δt(f) =
∑

i∈N\S

δi(f)

=
∑

(i,j)∈S−

f(i, j)−
∑

(i,j)∈S+

f(i, j)

≤
∑

(i,j)∈S−

f(i, j)

≤
∑

(i,j)∈S−

c(i, j) = κ(S),

where the inequality comes from feasibility of flow. Note that both the inequalities are

equalities for saturated flows. So (2) follows. For (3), note that if (S,N \ S) is saturated

66

for flow f , then ν(f) = κ(S). For any feasible flow f ′, we know that ν(f ′) ≤ κ(S) = ν(f).

Hence, (3) follows. �

Lemma 13 says that if there is a (s, t)-cut which is saturated for flow f , then f is a

maximum flow. However, if f is a maximum flow, then not every (s, t)-cut is saturated.

Figure 1.46 shows a maximum flow and an (s, t)-cut which is not saturated.

s t

1

2

2/2

1/1

1/1

1/1

2/2

Figure 1.46: A maximum flow f does not imply every (s, t)-cut is saturated for f

1.13.3 The Residual Digraph of a Flow

We now proceed to identify some key properties which will help us identify a maximum flow.

The first is the construction of a residual digraph. Let f be a feasible flow in flow graph

G = (N,E, c). We define the residual digraph Gf for flow f as follows:

• The set of vertices is N (same as the set of vertices in G).

• For every edge (i, j) ∈ E,

– Forward Edge: if f(i, j) < c(i, j), then (i, j) is an edge in Gf with capacity

cf (i, j) = c(i, j)− f(i, j).
– Reverse Edge: if f(i, j) > 0, then (j, i) is an edge in Gf with capacity cf(j, i) =

f(i, j).

Note that this may create two edges from some i to some j in Gf . In that case, we keep the

edge which has minimum capacity. The set of edges of Gf is denoted as Ef . So, the residual

digraph Gf = (N,Ef , cf). We illustrate the residual digraphs for two flows in Figures 1.47

and 1.48.

The next theorem illustrates the importance of a residual digraph.

67

s t

1

2

2/2

1/1

1/1

1/0

2/1

s t

2

1

1

1

2

1

1

1

Figure 1.47: Residual digraph of a flow

s t

1

2

2/2

1/1

s

2

12
2

1

1/1

2/2

1/0

1

t

1

Figure 1.48: Residual digraph of a flow

Theorem 19 Let f be a feasible flow of a flow graph G = (N,E, c) and Gf be the residual

digraph for flow f . The feasible flow f is a maximum flow for G if and only if there is no

path from s to t in Gf .

Proof : Suppose f is a maximum flow. Assume for contradiction that there is path P = (s ≡
v0, v1, v2, . . . , vk, t ≡ vk+1) from s to t in Gf . Let EP be the set of edges in P corresponding to

original graph G, and let EP+

be the set of forward edges in P and EP−

be the set of reverse

edges in P (again, corresponding to original graph G). Define δ = mini∈{0,...,k} c
f (vi, vi+1)

and let

• f ′(i, j) = f(i, j) + δ if (i, j) ∈ EP+

,

• f ′(i, j) = f(i, j)− δ if (i, j) ∈ EP−

, and

• f ′(i, j) = f(i, j) if (i, j) ∈ E \ EP .

68

Call such a path P an augmenting path. By definition δ > 0.

First, we show that f ′ is a feasible flow of G. We show that in two steps:

Capacity and Non-Negativity Constraints. For any edge not corresponding to path

P in Gf , the capacity constraints are met since f is feasible. For a forward edge (i, j) ∈ EP ,

we have (i, j) as an edge in Gf . So, we increase the flow by δ ≤ cf (i, j) = c(i, j) − f(i, j).
Hence, f(i, j) + δ ≤ c(i, j), and capacity constraints are satisfied. For a reverse edge

(i, j) ∈ EP , the edge in Gf is (j, i). Hence, we decrease flow by δ ≤ cf(j, i) = f(i, j),

and hence, f(i, j)− δ ≥ 0. So, non-negativity constraints in these edges is satisfied.

Flow Balancing Constraints. For any vertex i not part of path P , the flow balancing

constraints hold. For any vertex i /∈ {s, t} in P , let (ip, i) be the edge incoming to i in P

and (i, is) be the edge outgoing from i in P . The following possibilities exist:

1. (ip, i) and (i, is) are forward edges in Gf . Hence, (ip, i) and (i, is) exist in G. In this

case δ is added to incoming flow to i and δ is added from the outgoing flow of i in G.

So, flow balancing holds.

2. (ip, i) is a forward edge and (i, is) is a reverse edge in Gf . Hence, (ip, i) and (is, i) exist

in G. Then, δ is added to incoming flow (by (ip, i)), but subtracted from the incoming

flow (by (is, i)). So, flow balancing holds.

3. (ip, i) is a reverse edge and (i, is) is a forward edge in Gf . So, (i, ip) and (i, is) exist in

Gf . Then, δ is subtracted from the outgoing flow (by (i, ip)) but added to the outgoing

flow (by (i, is)). So, flow balancing holds.

4. (ip, i) and (i, is) are reverse edges in Gf . So, (i, ip) and (is, i) exist in G. Then, δ is

subtracted from outgoing flow and also subtracted from the incoming flow. So, flow

balancing holds.

So, f ′ is a feasible flow. Let (vk, t) be the unique edge in P which is incoming to t. Note

that there is no outgoing edge of t which is part of P . If (vk, t) is a forward edge, then the

inflow to t is increased by δ from f to f ′. If (vk, t) is a reverse edge, then the outflow from t

is decreased by δ from f to f ′. In either case, the excess flow of t is increased from f to f ′

by δ. So, ν(f ′) = ν(f)+ δ > ν(f). Hence, f is not a maximum flow. This is a contradiction.

It is worth going to Figure 1.47, and understand the augmenting path a bit more. Here,

the augmenting path in the residual digraph is (s, 2, 1, t). Note that δ = 1. So, we push 1

69

unit of flow more on (s, 2), then push back 1 unit of flow on (1, 2), and finally push 1 unit of

flow more on (1, t).

Suppose there is no path from s to t in Gf . Let S be the set of all vertices i in Gf such

that there is a path from s to i. Now, (S,N \ S) defines an (s, t)-cut in G. Since there is no

path from s to t in Gf , there is no edge (i, j) ∈ Ef such that i ∈ S and j ∈ (N \ S) in Gf .

This implies that in the original flow graph G,

1. for every edge (i, j) ∈ E such that i ∈ S and j ∈ (N \S), we have f(i, j) = c(i, j), and

2. for every edge (j, i) ∈ E such that i ∈ S and j ∈ (N \ S), we have f(j, i) = 0.

This implies that the cut (S,N \S) is a saturated cut for flow f in flow graph G. By Lemma

13, f is a maximum flow. �

This theorem leads to one of the most well known results in graph theory. Denote by

FG, the set of all feasible flows of a flow graph G = (N,E, c). Denote by SG, the set

{S ⊆ N : (S,N \ S) is an (s, t)-cut of G}.

Theorem 20 For every flow graph G = (N,E, c) with a source vertex s and a terminal

vertex t

max
f∈FG

ν(f) = min
S∈SG

κ(S).

Proof : Suppose f is a maximum flow. It is immediate that ν(f) ≤ κ(S) for any S ∈ SG

(by Lemma 13). By Theorem 19, there is no path from s to t in the residual digraph Gf .

Let S be the set of nodes for which there is some path from s in Gf . So, (S,N \ S) is an

(s, t)-cut in G. Since there is no path from s to t in Gf , (S,N \S) is a saturated cut for flow

f in G. Hence, ν(f) = κ(S) (by Lemma 13). This implies that ν(f) = minS∈SG κ(S). �

1.13.4 Ford-Fulkerson Algorithm

The following algorithm, known as the Ford-Fulkerson algorithm, finds the maximum flow

of a flow graph if the capacities are rational.

We are given a flow graph G = (N,E, c) with a source vertex s and a terminal vertex t.

Assume that there is at least one path from s to t. Then, the algorithm goes as follows.

S0 Start with zero flow, i.e. f(i, j) = 0 for all (i, j) ∈ E.

70

S1 Construct the residual digraph Gf .

S2 Check if the residual digraph Gf has a path from s to t.

S2.1 If not, stop - f is the maximum flow.

S2.2 If yes, increase flow along an augmenting path (i.e., a path in Gf from s to t) by

the minimum residual capacity on that path as shown in Theorem 19 (feasibility

is maintained). Iterate from Step S1.

If the algorithm terminates, then from Theorem 19 it must find a maximum flow. If

the flows are integral, then the algorithm must terminate since capacities are finite integers

and in every iteration the flow increases by at least one. Note that if all capacities are

integral, then the algorithm outputs an integral flow. So, if all capacities are integral, then

the maximum flow is also an integral flow. As an exercise, find the maximum flow of the

digraph in Figure 1.49. You can verify that the maximum flow amount is 7.

s

1

2

3

4

t

4

5

5

2

3
2

3

2

Figure 1.49: Maximum flow

We show some of the steps. Let us start from a feasible flow as shown in Figure 1.50.

Then, Figure 1.51 shows the residual digraph for this flow. We see that there is a path from

s to t in this graph: (s, 2, 3, t). We can augment flow along this path by 3 units. The new

flow is shown in Figure 1.52. This is a maximum flow since if the cut ({s, 1, 2}, {3, 4, t}) has
a capacity of 7, and this flow value is also 7.

We now formally prove how the Ford-Fulkerson algorithm finds a maximum flow if the

capacities are rational numbers.

Theorem 21 If all capacities are rational, then the Ford-Fulkerson algorithm terminates

finitely with a maximum flow.

71

s

1

2

3

4

t

4/2

2/2

5/2

5/2

2/2

3/2

3/0
2/0

Figure 1.50: A feasible flow

s

1

2

3

4

t

2

2 2

2

2

2

3

3

1

2

3

2

Figure 1.51: Residual digraph for flow in Figure 1.50

s

1

2

3

4

t

4/2

2/2

2/2

3/2

2/0

5/5

3/3

5/5

Figure 1.52: Maximum flow for the flow graph in Figure 1.49

Proof : If all capacities are rational then there exists a natural number K such that Kc(i, j)

is an integer for all (i, j) ∈ E. Then, in every iteration, the flow is augmented by at least
1
K
. Since the flow value is bounded (by the minimum cut capacity), the algorithm must

72

terminate finitely. �

However, the algorithm may not terminate in general for irrational capacities. You are

encouraged to think of an example with irrational capacities. If all capacities are integers,

then the Ford-Fulkerson algorithm generates integral flows in every iteration and hence,

terminates with an integral maximum flow. This leads to the following lemma.

Lemma 14 If all capacities are integers, then the maximum flow is an integral flow.

1.14 Disjoint Paths

We now study another graph problem, and a max-min relation on this. In this problem, we

are given a digraph and two vertices in it, and we are asked to find the maximum number

of disjoint paths in such a digraph. This has applications in communication networks. For

instance, if we know there are two disjoint paths, we know that if one of the edges on one

path fails, there is another “back-up” path.

The premise of this problem is a directed graph G = (N,E) (not weighted) and two

special vertices s and t. We are interested in finding the number of edge-disjoint paths from

s to t, where two paths are edge disjoint if they do not share an edge. Two disjoint paths

(in dark black and blue) for a digraph are shown in Figure 1.53.

s

1

2

3

4

t

Figure 1.53: Two disjoint paths

The dual problem to this is the following network connectivity problem. Suppose there

is digraph G with source vertex s and terminal vertex t. We want to find out what is the

minimum number of edges from G that must be removed to disconnect t from s, i.e., no path

from s to t. The following theorem, and the ensuing corollary, show that the two problems

are related.

73

Theorem 22 (Menger’s Theorem) A digraph G = (N,E) with source vertex s and ter-

minal vertex t has at least k disjoint paths from s to t if and only if there is a path from s

to t after deleting any (k − 1) edges from G.

Proof : Suppose there are at least k disjoint paths from s to t. Then deleting (k − 1) edges

from G will not delete one edge from at least one of the paths from s to t. Hence, there will

remain at least one path from s to t.

Suppose there is a path from s to t after deleting any (k − 1) edges from G. We convert

G into a flow graph, where the capacity function is defined as follows: c(i, j) = 1 for all

(i, j) ∈ E. Note that since capacities of every edge is an integer, the capacity of every

cut is an integer, and by the max-flow min-cut Theorem (Theorem 20), the maximum flow

of this digraph is an integer. Further, since there is at least one path from s to t after

deleting any (k − 1) edges from G, the capacity of any (s, t)-cut in G must be at least k.

Hence, the maximum flow in G must be at least k and an integer. Further, if we apply the

Ford-Fulkerson algorithm, it must terminate with integral flows (Lemma 14).

Now, by the flow decomposition theorem (Theorem 18) any feasible flow in G can be

decomposed into flows on (a) a set of paths from s to t and flows along (b) cycles. Consider

an integral maximum flow. If the flow decomposition of such a flow assigns flows along any

cycle, we can reduce the flows along the cycles to zero without reducing the maximum flow.

Hence, without loss of generality, the flow decomposition of the maximum flow assigns flows

to s− t paths only.
Since the capacity of every edge is just 1 and flows are integral, one edge can carry flow

of only one path from s to t. Hence, each unit of flow from s to t corresponds to a unique

path from s to t. So, there are at least k disjoint paths from s to t to carry k units of flow.

�

An immediate corollary to this result is the following.

Corollary 2 Suppose G = (N,E) is a digraph with source vertex s and terminal vertex

t. The number of disjoint paths from s to t in G equals the minimum number of edges that

need to be removed from G such that there are no paths from s to t.

Proof : Suppose there are k disjoint paths from s to t. Let the minimum number of edges

that need to be removed from G such that there are no paths from s to t be ℓ. This means

by deleting any ℓ− 1 edges from G, there is still a path from s to t. By Theorem 22, k ≥ ℓ.

Suppose k > ℓ. Then, again by Theorem 22, by removing any k − 1 edges there is still a

74

path from s to t. This contradicts the fact that by removing ℓ edges there is no path from s

to t. �

A small comment about disjoint paths. Suppose we have k disjoint paths. Let the first

edges of these paths be: (s, i1), (s, i2), . . . , (s, ik). This obviously means there are at least

k edges from s to the rest of the graph. However, it does not mean that by deleting

(s, i1), (s, i2), . . . , (s, ik), there is no path from s to t. The example in Figure 1.54 illustrates

that. There are three disjoint paths from s to t in the graph in Figure 1.54. Take for example

the disjoint paths (s, 1, 2, t), (s, 4, t), and (s, 3, t). If we remove two edges (s, 1), (s, 4), (s, 3),

there are still paths from s to t - the path (s, 2, t) still remains. The question of finding

the correct minimal set of edges that need to be removed boils down to identifying the min

capacity cut of the underlying flow network.

s t

1
2

3 4

Figure 1.54: Two disjoint paths

1.15 Application: Reduced form auctions

We consider an application in single object auction. A single object is being auctioned.

There are n bidders (buyers or agents). Each agent i ∈ N has a valuation vi for the object,

which is his private information. However, it is common knowledge that valuation of bidder

i is drawn from a finite set Vi using a distribution function Fi, where Fi(vi) denotes the

probability with which bidder i has valuation vi. We will assume independence of these

distributions, i.e., each bidder draws his valuation indepedently.

An auction consists of two functions: (1) an allocation rule Qi : V1× . . .× Vn → [0, 1] and

(2) a payment rule Pi : V1 × . . .× Vn → R for each agent i ∈ N . The feasibility requirement

75

for an allocation rule is that for each valuation profile v ≡ (v1, . . . , vn), we must have
∑

i∈N

Qi(v) ≤ 1.

Every auction uses a collection of feasible allocation rules.

Often, analysis of auctions boil down to working in the space of interim allocation

probabilties and payments. Formally, the interim allocation rule of bidder i is a map

qi : Vi → [0, 1]. If bidder i has valuation vi, then qi(vi) reflects her expected probability

of winning the object. Given an auction, {Qj , Pj}j∈N , the interim allocation probability of

bidder i with valuation vi is:

qi(vi) :=
∑

v−i

Qi(vi, v−i)F−i(v−i),

where F−i(v−i) =
∏

j 6=i Fj(vj). Hence, every collection of feasible allocation rule generates

interim allocation rules for each bidder. We are interested in the converse question. Given a

collection of interim feasible allocation rules {qj}j∈N , when can we construct a collection of

allocation rules {Qj}j∈N which generates it.

Why is this question useful? To understand that, let us also define the interim payment

rule generated by an auction. For every bidder i with valuation vi, her interim payment is

pi(vi) :=
∑

v−i

Pi(vi)F−i(v−i).

We say that an auction {Qj , Pj}j∈N is Bayesian incentive compatible (BIC) if for every

bidder i with valuation vi, her interim payoff is maximized by announcing vi:

viqi(vi)− pi(vi) ≥ viqi(v
′
i)− pi(v′i) ∀ vi, v′i ∈ Vi.

Notice that the BIC constraints are completely in interim space. Often, we design auctions

under these BIC constraints. These designs are achieved by maximizing an objective func-

tion, which can again be written in the interim variables. For instance, a seller may be

interested in maximizing expected revenue. Then, the objective function becomes

max
{qj ,pj}j∈N

∑

i∈N

∑

vi∈Vi

pi(vi)Fi(vi).

This is a constrained optimization problem (subject to BIC constraints) in the interim vari-

able space. Hence, an optimal solution may violate feasibility. If we can come up with a

necessary and sufficient condition for feasibility in terms of interim variables, this can be put

as a constraint in this optimization program.

76

Let us look at some simple examples to get an idea. Suppose there are two bidders and

V1 = V2 = {1, 2} and distributions are uniform. Consider the following interim allocation

rules.

q1(1) =
1

2
, q1(2) =

7

8

q2(1) =
1

8
, q2(2) =

1

2

We are interested in finding Qi(1, 1), Qi(1, 2), Qi(2, 1), Qi(2, 2) for each i ∈ {1, 2} such

that the following feasibility conditions hold:

1

2

[

Q1(1, 1) +Q1(1, 2)
]

= q1(1) =
1

2
1

2

[

Q1(2, 1) +Q1(2, 2)
]

= q1(2) =
7

8
1

2

[

Q2(1, 1) +Q2(2, 1)
]

= q2(1) =
1

8
1

2

[

Q2(1, 2) +Q2(2, 2)
]

= q2(2) =
1

2

Q1(1, 1) +Q2(1, 1) ≤ 1

Q1(1, 2) +Q2(1, 2) ≤ 1

Q1(2, 1) +Q2(2, 1) ≤ 1

Q1(2, 2) +Q2(2, 2) ≤ 1.

In this case, it is possible to find such solutions: Q1(1, 1) = 1, Q1(1, 2) = 0, Q1(2, 1) =
3
4
, Q1(2, 2) = 1 and Q2(v1, v2) = 1−Q1(v1, v2) for all (v1, v2).

Now, suppose we consider another interim allocation rules.

q1(1) =
1

4
, q1(2) =

7

8

q2(1) =
1

8
, q2(2) =

3

4

We claim that no feasible allocation rule exists which can generate these interim allocation

probabilities. To see this, suppose such Q1, Q2 exist. Then, Q1(2, 1) + Q1(2, 2) =
7
4
implies

that Q1(2, 2) ≥ 3
4
. Similarly, Q2(1, 2) +Q2(2, 2) =

3
2
implies that Q2(2, 2) ≥ 1

2
, which means

Q1(2, 2) +Q2(2, 2) > 1, a contradiction.

Border provides a necessary and sufficient condition for this problem. We say a collection

of interim allocation rules {qj}j∈N is feasible if there is a collection of feasible allocation

rule that generates it.

77

Theorem 23 (Boder’s theorem) A collection of interim allocation rules {qj}j∈N is fea-

sible if and only if for every S1 ⊆ V1, . . . , Sn ⊆ Vn, we have

∑

i∈N

∑

vi∈Si

qi(vi)Fi(vi) ≤ 1−
∏

i∈N

[

1−
∑

vi∈Si

Fi(vi)
]

Proof : While giving the proof, we will explain the ideas using a simple example. The

example will have N = {1, 2} with V1 = {s1, s2, s3} and V 2 = {t1, t2, t3}.

The proof constructs a flow graph G with a source node s, a terminal node t and two

layers of nodes. In the first layer, there is a node for each valuation of all the agents: ∪i∈NVi.
For the example, it means that the first layer has a node for each valuation in V1 and each

valuation in V2. In the second layer, there is a node for each valuation profile, i.e., the set

of nodes is ×i∈NVi. For the example, the set of nodes in the second layer is V1 × V2. This

completes the description of set of nodes in G. There is a directed edge from source to every

node in the first layer and there is a directed edge from every node in the second layer to

terminal node. For every node corresponding agent i and valuation vi in first layer, there

is a directed edge from vi to every valuation profile (vi, v−i) in the second layer, i.e., to all

nodes in which vi is present. This completes the description of all the edges of G.

The directed graph for the example is shown in Figure 1.55. To complete the description

of the flow graph, we define capacities. The capacities on edges between the two layers of

nodes is very high (infinite). The capacity of an edge from source to a node corresponding

to vi ∈ Vi in the first layer is qi(vi)Fi(vi). The capacity of an edge from a node corresponding

to v ≡ (v1, . . . , vn) in the second layer to the terminal node is
∏

j∈N Fj(vj). This completes

the description of the flow graph G. Let U denote the set of all vertices of this graph G. The

proof is now completed in two steps.

Step 1. The first step is to show that {qj}j∈N is feasible if and only if the s − t cut

({s}, U \ {s}) is a saturated cut for the maximum flow in G. Suppose {qj}j∈N is feasible,

and it is generated by allocation rules {Qj}j∈N . Then, define flow f for this graph as follows.

The flow f is such that the for every vi, the flow on edge from s to node in first layer

corresponding to vi is equal to its capacity (i.e., the cut ({s}, U \ {s}) is saturated). The

flow on edge from a node in first layer vi to a node in second layer (vi, v−i) is equal to

Qi(vi, v−i)Fi(vi)
∏

j 6=i

Fj(vj).

78

s1

s2

s3

t1

t2

t3

(s1; t1)

(s1; t2)

(s1; t3)

(s2; t1)

(s2; t2)

(s2; t3)

(s3; t1)

(s3; t2)

(s3; t3)

infinite (high) capacity edges

s

t

capacity = q1(s
1)F1(s

1)
capacity = F1(s

1)F2(t
1)

Figure 1.55: Flow graph for the example

Since the capacity of these edges are very high, this does not violate feasibility. The flow

from a node v ≡ (v1, . . . , vn) in the second layer to t is such that flow balancing holds, and

hence, equals to
∑

i∈N

Qi(vi, vi)
∏

j∈N

Fj(vj).

We now check for feasibility of this flow. For this, we just need to check flow balancing

of first layer of nodes and capacity constraints of edges from second layer of nodes to the

terminal node.

To check flow balancing in the first layer of nodes, pick vi. There is exactly one incoming

edge with flow equal to qi(vi)Fi(vi). The set of outgoing edges from vi correspond to all

valuation profiles where vi is present, i.e., all v−i ∈ ×j 6=iVj . The capacity of each edge from

vi to (vi, v−i) is Qi(vi, v−i)Fi(vi)
∏

j 6=i Fj(vj). So, flow balancing requires the following to

hold:

qi(vi)Fi(vi) =
∑

v−i

Qi(vi, v−i)Fi(vi)
∏

j 6=i

Fj(vj).

⇔ qi(vi) =
∑

v−i

Qi(vi, v−i)
∏

j 6=i

Fj(vj).

79

This holds because {qj}j∈N is generated by {Qj}j∈N .

To check capacity constraint of an edge from (v1, . . . , vn) to t, we note that the flow on

this edge is equal to

∑

i∈N

Qi(vi, vi)
∏

j∈N

Fj(vj) =
∏

j∈N

Fj(vj)
∑

i∈N

Qi(vi, vi) ≤
∏

j∈N

Fj(vj).

But the RHS is the capacity of this edge. Hence, the capacity constraint holds. So, f is a

feasible flow with the cut ({s}, U \ {s}) saturated. Hence, it must be the maximum flow -

no other flow can send more than this along this cut.

For the converse, suppose f is a maximum flow and ({s}, U \ {s}) is a saturated cut for

this flow. Let f(vi; vi, v−i) be the flow from the node vi in first layer to the node (vi, v−i) in

the second layer. Then, define Q from f as follows: for every i ∈ N , for every vi and for

every v−i, let

Qi(vi, v−i) :=
f(vi; vi, v−i)
∏

j∈N Fj(vj)
.

To check feasibility, we note the capacity constraint on the edge (v1, . . . , vn) to t:

∑

i∈N

f(vi; vi, v−i) ≤
∏

j∈N

Fj(vj),

where the left hand side is the flow on that edge due to flow balancing constraint. But

∑

i∈N

f(vi; vi, v−i) =
∏

j∈N

∑

i∈N

Qi(vi, v−i).

Hence,
∑

i∈N Qi(vi, v−i) ≤ 1 for all (vi, v−i). Finally, we show that q can be generated from

Q. To see this, we look at the flow balancing constraint of a first layer node vi. As before,

the flow balancing constraint is

qi(vi)Fi(vi) =
∑

vi

fi(vi; (vi, v−i) =
∑

v−i

Qi(vi, v−i)Fi(vi)
∏

j 6=i

Fj(vj).

⇔ qi(vi) =
∑

v−i

Qi(vi, v−i)
∏

j 6=i

Fj(vj).

This completes Step 1.

Step 2. In this we show that s− t cut is saturated for maximum flow if and only if Border’s

conditions hold. Note that s − t cut being saturated for maximum flow is equivalent to

80

requiring that the cut ({s}, U \{s}) is the minimum capacity cut of the graph. The capacity

of this cut is
∑

i∈N

∑

vi∈Vi

qi(vi)Fi(vi).

Capacity of an arbitrary s − t cut (S, U \ S) is computed as follows. Capacity of such a

cut is infinity if it contains any of the infinite capacity edges crossing from S to U \ S. So,

we only need to consider cuts of the following form: pick Si ⊆ Vi for each i ∈ N and let

S1 := ∪i∈NSi. So, S1 is the set of nodes from first layer. Let S2 be the set of nodes in second

layer for which there is some edge from a node in ∪i∈NSi. These are all valuation profiles v

such that vi ∈ Si for some i ∈ N . The cut is (S1 ∪ S2 ∪ {s}, U \ (S1 ∪ S2 ∪ {s})). It is not

difficult to see that every finite capacity cut, which is a candidate for the minimum capacity

cut can be represented in this form - an s− t cut can have more than S2 nodes in the second

layer but that just increases the capacity of the cut and cannot be a minimum capacity cut.

As an example, consider the cut with S1 := {s1, s2, t1} and S2 = V1×V2 \{(s3, t2), (s3, t3)}
shown in Figure 1.55. The capacity of this cut is (shown in pink edges):

q1(s
3)F1(s

3) + q2(t
2)F2(t

2) + q2(t
3)F2(t

3) +
(

1− F1(s3)F2(t
2)− F1(s

3)F2(t
3)
)

.

The capacity of the cut ({s}, U \ {s}) is

q1(s
1)F1(s

1) + q1(s
2)F1(s

2) + q1(s
3)F1(s

3) + q2(t
1)F2(t

1) + q2(s
2)F2(t

2) + q2(t
3)F2(t

3).

Hence, this is minimum capacity cut if and only if

q1(s
1)F1(s

1) + q1(s
2)F1(s

2) + q2(t
1)F2(t

1) ≤
(

1− F1(s3)F2(t
2)− F1(s

3)F2(t
3)
)

.

This can be rewritten as

q1(s
1)F1(s

1) + q1(s
2)F1(s

2) + q2(t
1)F2(t

1) ≤
(

1− (1− F1(s
1)− F1(s

2))(1− F2(t
1))

)

,

which is the required condition. We now derive this formally.

Now, the capacity of such a cut equals:

∑

i∈N

∑

vi∈Vi\Si

qi(vi)Fi(vi) +
∑

(v1,...,vn):∃ i∈N,vi∈Si

∏

j∈N

Fj(vj)

=
∑

i∈N

∑

vi∈Vi\Si

qi(vi)Fi(vi) + 1−
∑

(v1,...,vn)∈×j∈NVj\Sj

∏

j∈N

Fj(vj)

81

Hence, the minimum capacity condition for (S1 ∪ S2 ∪ {s}, U \ (S1 ∪ S2 ∪ {s})) is:
∑

i∈N

∑

vi∈Vi

qi(vi)Fi(vi) ≤
∑

i∈N

∑

vi∈Vi\Si

qi(vi)Fi(vi) + 1−
∑

(v1,...,vn)∈×j∈NVj\Sj

∏

j∈N

Fj(vj)

⇔
∑

i∈N

∑

vi∈Si

qi(vi)Fi(vi) ≤ 1−
∑

(v1,...,vn)∈×j∈NVj\Sj

∏

j∈N

Fj(vj)

⇔
∑

i∈N

∑

vi∈Si

qi(vi)Fi(vi) ≤ 1−
∏

i∈N

∑

vi∈Vi\Si

Fi(vi)

⇔
∑

i∈N

∑

vi∈Si

qi(vi)Fi(vi) ≤ 1−
∏

i∈N

(

1−
∑

vi∈Si

Fi(vi)
)

This is the desired inequality. �

82

Chapter 2

Introduction to Convex Sets

2.1 Convex Sets

A set C ⊆ Rn is called convex if for all x, y ∈ C, we have λx+(1−λ)y ∈ C for all λ ∈ [0, 1].

The definition says that for any two points in set C, all points on the segment joining these

two points must lie in C for C to be convex. Figure 2.1 shows two sets which are convex

and two sets which are not convex.

Figure 2.1: Sets on left are convex, but sets on right are not

Examples of convex sets:

• C = {(x1, x2, x3) ∈ R3 : x1 + 2x2 − x3 = 4}. This is the equation of a plane in R3.

In general, a hyperplane is defined as C = {x ∈ Rn : p · x = α}, where α ∈ R and

p ∈ Rn, called the normal to the hyperplane. Notation: As before p · x means dot

83

product of p and x, i.e.,
∑n

i=1 pixi. For simplicity, we will sometimes write this as px.

We will often denote a hyperplane as (p, α).

A hyperplane is a convex set. Take any x, y ∈ C. Then for any λ ∈ [0, 1] define

z = λx+ (1− λ)y. Now, pz = λpx+ (1− λ)py = λα + (1− λ)α = α. Hence z ∈ C.

• C = {(x1, x2, x3) ∈ R3 : x1 + 2x2 − x3 ≤ 4}. These are points on one side of the

hyperplane. In general, a half-space is defined as C = {x ∈ Rn : p · x ≤ α}, where
α ∈ R and p ∈ Rn. As in the case of a hyperplane, every half-space is a convex set.

• C = {(x1, x2) ∈ R2 : x21+x
2
2 ≤ 4}. The set C is a circle of radius two with center (0, 0).

• C = {(x1, x2, x3) ∈ R3 : x1 + x2 − x3 ≤ 2, x1 + 2x2 − x3 ≤ 4}. Set C is the intersection

of two half-spaces. In general, intersection of a finite number of half-spaces is called a

polyhedral set, and is written as C = {x : Ax ≤ b}, where A ∈ Rm×n and b ∈ Rm.

Here, C is the intersection of m half-spaces. A polyhedral set is convex, because

intersection of convex sets is a convex set, which we prove next.

Lemma 15 If C1 and C2 are two convex sets, then so is C1 ∩ C2.

Proof : Suppose x, y ∈ C1∩C2. Define z = λx+(1−λ)y for some λ ∈ [0, 1]. Since x, y ∈ C1

and C1 is convex, z ∈ C1. Similarly, z ∈ C2. Hence, z ∈ C1 ∩ C2. �

Weighted averages of the form
∑k

i=1 λix
i with

∑k
i=1 λi = 1 and λi ≥ 0 for all i is called

convex combination of points (x1, . . . , xk).

2.2 Hyperplanes and Separations

In this section, we prove an important result in convexity. It deals with separating a point

outside a convex set from the convex set itself by using a hyperplane.

Definition 17 Let S1 and S2 be two non-empty sets in Rn. A hyperplane H = {x : p · x =

α} is said to separate S1 and S2 if p · x ≥ α for each x ∈ S1 and p · x ≤ α for each x ∈ S2.

The hyperplane H is said to strictly separate S1 and S2 if p · x > α for all x ∈ S1 and

p · x < α for all x ∈ S2.

The idea of separation is illustrated in Figure 2.2. Not every pair of sets can be separated.

For example, if the interior of two sets intersect, then they cannot be separated. Figure 2.3

shows two pairs of sets, one of which can be (strictly) separated but the other pair cannot.

So, what kind of sets can be separated. There are various results, all some form of separation

theorems, regarding this. We will study a particular result.

84

Strict Separation but not strong Separation but not strict separation Strong separation

Figure 2.2: Different types of separation

Figure 2.3: Possibility of separation

Theorem 24 Let C be a closed convex set in Rn and z ∈ Rn be a point such that z /∈ C.
Then, there exists a hyperplane which strictly separates z and C.

Before we prove the theorem, it is instructive to look at Figure 2.4, which gives a geometric

interpretation of the proof. We take a point z /∈ C. Take the closest point to z in C, say y.

Then take the hyperplane passing through the mid-point between z and y and perpendicular

to the vector z − y. The proof involves showing that this hyperplane separates z and C.

Proof : The proof is trivial if C = ∅. Suppose C 6= ∅. Then, consider z /∈ C. Since z /∈ C
and C is closed and convex, there exists a point y ∈ C such that ‖z− y‖ (i.e., the Euclidean
distance between z and y) is minimized. (This claim is trivial geometrically - take any ball

B(z, r), which is centered at z and has a radius r, and grow it till it intersects C. Since

C 6= ∅, it will intersect B(z, r) for some r. Also, since C is closed and convex, B(z, r) ∩ C
is closed and convex. Since B(z, r) is bounded, B(z, r) ∩ C is compact. So, we need to

minimize the continuous function ‖z − y‖ over a compact set B(z, r) ∩ C. By Weierstrass’

Theorem, a minimum exists of such a function.)

85

Choice of hyperplane

Cy

z

Figure 2.4: Geometric illustration of separating hyperplane theorem

Now set p = z − y and α = 1
2

[

∑n
i=1(z

2
i − y2i)

]

. We show that p · z > α and p · x < α for

all x ∈ C.
Now,

p · z − α =

n
∑

i=1

(zi − yi)zi −
1

2

[

n
∑

i=1

(z2i − y2i)
]

=
1

2

n
∑

i=1

(z2i + y2i − 2yizi)

=
1

2

n
∑

i=1

(zi − yi)2

≥ 0.

Note that

p · y < p · y + 1

2
‖p‖2

=
∑

i=1

(zi − yi)yi +
1

2

n
∑

i=1

(zi − yi)2

=
1

2

n
∑

i=1

(z2i − y2i)

= α

86

Assume for contradiction, there exists x ∈ C such that p · x ≥ α > p · y. Hence,

p · (x− y) > 0. Define

δ =
2p · (x− y)
‖(x− y)‖2 > 0. (2.1)

Now, choose 1 ≥ λ > 0 and λ < δ. Such a λ exists because of inequality 2.1. Notice that

since λ < δ, we get using definition of δ and p,

λ
[

n
∑

i=1

(xi − yi)2
]

< 2

n
∑

i=1

(zi − yi)(xi − yi) (2.2)

Define w = λx+ (1− λ)y. Since C is convex, w belongs to C. Now,

‖(z − w)‖2 = ‖(z − y) + λ(y − x)‖2

= ‖p− λ(x− y)‖2

=
n

∑

i=1

[

(zi − yi)− λ(xi − yi)
]2

=

n
∑

i=1

[

(zi − yi)2 + λ2(xi − yi)2 − 2λ(zi − yi)(xi − yi)
]

=
n

∑

i=1

(zi − yi)2 + λ
n

∑

i=1

[

λ(xi − yi)2 − 2(zi − yi)(xi − yi)
]

<

n
∑

i=1

(zi − yi)2,

where the last inequality follows from Inequality (2.2). Hence, w nearer to z than y. This is

a contradiction. Hence, for all x ∈ C we should have p · x < α. �

There are other generalizations of this theorem, which we will not cover here. For ex-

ample, if you drop the requirement that the convex set be closed, then we will get weak

separation. The separation theorems have a wide variety of applications.

2.3 Farkas Lemma

We will now state the most important result of this section. The result is called Farkas

Lemma or Theorem of Alternatives.

Suppose A ∈ Rm×n. Let (a1, . . . , an) be the columns of A. We will denote the entry in

i-th row and j-th column of A as aij . The set of all non-negative linear combinations of

87

columns of A is called the cone of A. Formally,

cone(A) = {b ∈ Rm :

n
∑

j=1

aijxj = bi ∀ i ∈ {1, . . . , m}, for some x ∈ Rn
+}

Usually, what we define as cone is often termed as a finitely generated cones.

As an example, consider the following 2× 3 matrix,

A =

[

2 0 1

1 −2 −2

]

If we take x = (2, 3, 1), then we get the following b ∈ cone(A).

b =

[

4 + 0 + 1 = 5

2 + (−6) + (−2) = −6

]

The cone(A) is depicted in Figure 2.5. As can be seen from the figure, cone(A) is a

convex and closed set.

(0,0)

(2,1)

(0,−2) (1,−2)

Figure 2.5: Illustration of cone in R2

Lemma 16 Suppose A ∈ Rm×n. Then cone(A) is a convex set.

Proof : Let b1, b2 ∈ cone(A). Define b = λb1 + (1 − λ)b2 for some λ ∈ (0, 1). Let b1 = Ax1

and b2 = Ax2 for x1, x2 ∈ Rn
+. Then b = λAx1 + (1 − λ)Ax2 = A

[

λx1 + (1 − λ)x2
]

. Since

Rn
+ is convex x = λx1 + (1− λ)x2 ∈ Rn

+. So, b ∈ cone(A), and hence, cone(A) is convex. �

We state the following result without a proof.

88

Lemma 17 Suppose A ∈ Rm×n. Then cone(A) is a closed set.

Theorem 25 Let A ∈ Rm×n and b ∈ Rm. Consider the following two sets.

F = {x ∈ Rn
+ :

n
∑

j=1

aijxj = bi ∀ i ∈ {1, . . . , m}}

G = {y ∈ Rm :
m
∑

i=1

aijyi ≥ 0 ∀ j ∈ {1, . . . , n},
m
∑

i=1

yibi < 0}

Then, F 6= ∅ if and only if G = ∅.

The system of inequalities in G is called the Farkas alternative. Let us apply Farkas

Lemma to some examples. Does the following system have a non-negative solution?

[

4 1 −5
1 0 2

]







x1

x2

x3






=

[

1

1

]

The Farkas alternative for this system is:

y1 + y2 < 0

4y1 + y2 ≥ 0

y1 ≥ 0

−5y1 + 2y2 ≥ 0.

The last three inequalities can be written in matrix form as follows.







4 1

1 0

−5 2







[

y1

y2

]

≥







0

0

0







Since y1 ≥ 0, from the first inequality, we get y2 < 0. This contradicts the last inequality.

Hence, Farkas alternative have no solution, implying that the original system of equations

have a solution.

Proof of Farkas Lemma.

89

Proof : Suppose F 6= ∅. Let x ∈ F . Then, for every i ∈ {1, . . . , m}, we have bi =
∑n

j=1 aijxj .

Choose y ∈ Rm such that
∑m

i=1 aijyi ≥ 0. Then,

m
∑

i=1

yibi =
m
∑

i=1

yi

n
∑

j=1

aijxj

=

n
∑

j=1

xj

m
∑

i=1

aijyi

≥ 0.

Hence, G = ∅.

Suppose G = ∅, and assume for contradiction F = ∅. This means {x ∈ Rn
+ :

∑n
j=1 aijxj =

bi ∀ i ∈ {1, . . . , m}} = ∅, i.e., b /∈ cone(A). Since cone(A) is closed and convex, we can

separate it from b by a hyperplane (y, α) such that
∑m

i=1 yibi < α and
∑m

i=1 yizi > α for all

z ∈ cone(A). Notice that 0 ∈ cone(A). Hence, α < 0. So, we get
∑m

i=1 yibi < 0.

Consider any λ > 0. By definition λaj ∈ cone(A) for every j ∈ {1, . . . , n}. Hence,

λ
∑m

i=1 yiaij > α for every j ∈ {1, . . . , n}. Assume for contradiction
∑m

i=1 yiaij < 0 for some

j ∈ {1, . . . , n}. Since λ > 0 can be chosen arbitrarily large, we can choose it such that

λ
∑m

i=1 yiaij < α. This is a contradiction. Hence,
∑m

i=1 yiaij ≥ 0 for all j ∈ {1, . . . , n}.
Hence, y ∈ G, contradicting the fact that G = ∅. �

Does the following system have a non-negative solution?











1 1 0

0 1 1

1 0 1

1 1 1

















x1

x2

x3






=











2

2

2

1











The farkas alternative is:







1 0 1 1

1 1 0 1

0 1 1 1

















y1

y2

y3

y4











≥







0

0

0







2y1 + 2y2 + 2y3 + y4 < 0.

90

One possible solution to the Farkas alternative is y1 = y2 = y3 = −1
2

and y4 = 1. Hence,

the original system has no non-negative solution. Intuitively, it says if we multiply −1
2

to the

first three equations in the original system and multiply 1 to the last equation, and add all

of them up, we will get a contradiction: 0 = −2.
Often we come across systems of equations and inequalities, with variables that are free

(no non-negative constraints) and variables that are constrained to be non-negative. Farkas

Lemma can be easily generalized to such systems.

Theorem 26 Let A ∈ Rm×n, B ∈ Rm×t, b ∈ Rm, C ∈ Rk×n, D ∈ Rk×t, and d ∈ Rk.

Suppose F = {x ∈ Rn
+, x

′ ∈ Rt : Ax + Bx′ = b, Cx+Dx′ ≤ d} and G = {y ∈ Rm, y′ ∈ Rk
+ :

yA+ y′C ≥ 0, yB + y′D = 0, yb+ y′d < 0}. Then, F 6= ∅ if and only if G = ∅.

Proof : Consider the system of inequalities Cx + Dx′ ≤ d. This can be converted to

a system of equations by introducing slack variables for every inequality. In particular,

consider variables s ∈ Rk
+ such that Cx+Dx′ + s = d.

Now, the vectors x′ ∈ Rt can be written as x′ = x+ − x−, where x+, x− ∈ Rt
+. This is

because every real number can be written as difference of two non-negative real numbers. So,

the set F can be rewritten as F = {x ∈ Rn
+, x

+, x− ∈ Rt
+, s ∈ Rk

+ : Ax+Bx+−Bx− +0.s =

b, Cx+Dx+ −Dx− + Is = d}, where I is the identity matrix. In matrix form, this looks as

follows:

[

A B −B 0

C D −D I

]











x

x+

x−

s











=

[

b

d

]

The Farkas alternative for this system of equations has two sets of variables y ∈ Rm and

y′ ∈ Rk. One inequality is by+dy′ < 0. The other inequalities are Ay+Cy ≥ 0, By+Dy′ ≥ 0,

−By−Dy′ ≥ 0, and y′ ≥ 0. This simplifies to Ay+Cy′ ≥ 0 and By+Dy′ = 0 with y′ ∈ Rk
+.

From Farkas Lemma (Theorem 25), the result now follows. �

Here is an example of how to write Farkas alternative for general system of constraints.

Consider the following set of constraints.

91

x1 − 3x2 + x3 ≤ −3
x1 + x2 − x3 ≥ 2

x1 + 2x2 + 3x3 = 5

x1 − x2 = 2

x1, x2 ≥ 0

Here, x3 is a free variable (without the non-negativity constraint). The first step is to

conver the set of constraints into the form in Theorem 26. For this, we need to convert the

second constraint into ≤ form.

x1 − 3x2 + x3 ≤ −3
−x1 − x2 + x3 ≤ −2
x1 + 2x2 + 3x3 = 5

x1 − x2 = 2

x1, x2 ≥ 0

For writing the Farkas alternative, we first associate a variable with every constraint: y =

(y1, y2, y3, y4) for four constraints. Out of this, first and second constraints are inequalities,

so corresponding variables (y1, y2) are non-negative, while variables (y3, y4) corresponding to

equations are free.

Now, the strict inequality in the Farkas alternative is easy to write: −3y1−2y2+5y3+2y4 <

0. There will be four constraints in the Farkas alternative, each corresponding to the variables

in the original system. The constraints corresponding to non-negative variables are weak

inequalities, while the constraints corresponding to free variables are equations. For example,

the inequality corresponding to variable x1 is y1− y2 + y3 + y4 ≥ 0. Similarly, the inequality

corresponding to x2 is −3y1 − y2 + 2y3− y4 ≥ 0. Since the variable x3 is free, the constraint

corresponding to it is an equation: y1 + y2 + 3y3 = 0. Hence, the Farkas alternative is:

−3y1 − 2y2 + 5y3 + 2y4 < 0

y1 − y2 + y3 + y4 ≥ 0

−3y1 − y2 + 2y3 − y4 ≥ 0

y1 + y2 + 3y3 = 0

y1, y2 ≥ 0.

92

2.4 Application: Core of Cooperative Games

A cooperative game (with transferrable utility) is defined by a set of n players N and a

value function v : 2N → R which represents the value or worth of a coalition (subset) of

players. For every coalition S ⊆ N , a value v(S) is attached. The exact method of finding

the value function depends on the problems. The tuple (N, v) defines a cooperative game.

We had already defined cooperative games using cost function. Here is an example with

value function.

Sale of an item. Consider the sharing of an item between two buyers and a seller (who

owns the item). The set of players can be denoted as N = {1, 2, s}, where s is the seller. The
valuation of the item to buyers (i.e., the utility a buyer gets by getting the item) are: 5 and

10. The seller has no value for the item. The cooperative game can be defined as follows:

v(∅) = v({s}) = 0; v({1}) = v({2}) = v({1, 2}) = 0; v({1, s}) = 5, v({2, s}) = v({1, 2, s}) =
10 (by assigning the item to the highest valued buyer).

The definition of a cooperative game says nothing about how the value of a game should

be divided between players. The cooperative game literature deals with such issues in details.

A vector x ∈ Rn is called an imputation if
∑

i∈N xi = v(N) and xi ≥ v({i}). One can

think of an imputation as a division of v(N) that gives every player at least as much as he

will get himself. When we generalize this to every coalition of agents, we get the notion of

core.

Definition 18 The core of a game (N, v) is the set C(N, v) =
{

x ∈ Rn :
∑

i∈N xi =

v(N),
∑

i∈S xi ≥ v(S) ∀ S (N
}

.

The core constraints are stability condition. It stipulates that every coalition of agents

must get at least as they will get if they form their own coalition. Otherwise, such a coalition

may break from the grand coalition.

In the example above, the set of inequalities for core are

x1 + x2 + xs = 10

x1 + x2 ≥ 0

x1 + xs ≥ 5

x2 + xs ≥ 10

xi ≥ 0 ∀ i ∈ {1, 2, s}

Simple substitutions give, x2 ≤ 5 and x1 ≤ 0. x1 ≥ 0 gives x1 = 0, and thus xs ≥ 5. So,

x1 = 0, 0 ≤ x2 ≤ 5, and 5 ≤ xs ≤ 10 with x2 + xs = 10 constitutes the core of this game.

93

But not all games have a core. For example, consider a game with two agents {1, 2} with
v({1}) = 1 = v({2}) but v({1, 2}) = 3. This game has an empty core since no (x1, x2) can

satisfy x1 ≤ 1, x2 ≤ 1, and x1 + x2 = 3.

A necessary and sufficient condition can be found by using Farkas Lemma.

Let B(N) be the set of feasible solutions to the following system:
∑

S(N :i∈S

yS = 1, ∀ i ∈ N,

yS ≥ 0, ∀ S (N.

yS can be thought as the weight given to coalition S. These weights are the same for all the

agents. In particular, these weights are distributed such that each agent divides his total

“share” of 1 among all coalitions (except the grand coalition) she is present. It is easy to

verify that B(N) 6= ∅. For example, by setting yS = 1 for all S with |S| = 1 and setting

yS = 0 otherwise gives a feasible y ∈ B(N).

Theorem 27 (Bondareva-Shapley) C(N, v) 6= ∅ if and only if

v(N) ≥
∑

S(N

v(S)yS, ∀ y ∈ B(N).

(If a game satisfies this condition then it is called a balanced game, i.e., the core of a game

is non-empty if and only if it is balanced).

Proof : Consider the following system of constraints corresponding to core of a game:
∑

i∈N

xi = v(N) (CORE)

∑

i∈S

xi ≥ v(S) ∀ S (N

xi free ∀ i ∈ N.

The Farkas alternative for (CORE) is

v(N)yN −
∑

S(N

v(S)yS < 0 (BAL)

yN −
∑

S(N :i∈S

yS = 0 ∀ i ∈ N

yS ≥ 0 ∀ S (N

yN free.

94

Now, suppose C(N, v) 6= ∅. Then (CORE) has a solution, and Farkas alternative (BAL)

has no solution. Now, consider any y ∈ B(N). For any y ∈ B(N), we let yN = 1 and the

final two constraints of (BAL) are satisfied. Since (BAL) has no solution, we must have

v(N)−∑

S(N v(S)yS ≥ 0. This implies that the game is balanced.

Now, suppose the game is balanced. Then for all y ∈ B(N), we have v(N) ≥∑

S(N v(S)yS.

We will show that (BAL) has no solution, and hence, (CORE) has a solution and C(N, v) 6=
∅. Assume for contradiction, (BAL) has a solution y. Note that since yS ≥ 0 for all S (N ,

yN =
∑

S(N :i∈S yS ≥ 0 for all i ∈ N . Hence, yN ≥ 0. Further yN > 0 since if yN = 0, then

yS = 0 for all S (N , and this will contradict the first inequality in (BAL).

Now, define, y′S = yS
yN

for all S ⊆ N . Since y is a solution to (BAL), we get

v(N) <
∑

S(N

v(S)y′S

∑

S(N :i∈S

y′S = 1 ∀ i ∈ N

y′S ≥ 0 ∀ S (N.

Hence, y′ ∈ B(N). But the first inequality contradicts the fact that the game is balanced.

�

Let us verify that the game in our earlier example (of sale of an item) is balanced. Notice

that in that game the only coalitions, besides the grand coalition, having positive values are

{1, s} and {2, s}. So, we need to show for every y ∈ B(N), we have

v({1, 2, s}) = 10 ≥ v({1, s})y{1,s} + v({2, s})y{2,s} = 5y{1,s} + 10y{2,s}.

But y ∈ B(N) implies that y{1,s} + y{2,s} ≤ 1. Since y{2,s} ≤ 1, we get the desired balanced

game.

Indeed, it is easy to state a result for general cooperative “market game”. A market game

is defined by a seller s and a set of buyers B. So, the set of players is N = B ∪ {s}. The

key feature of the market game is the special type of value function. In particular, for every

S ⊆ N we define v(S) to be the value of the market with player set (coalition) S. The

restriction we put is v(S) = 0 if s /∈ S. Now, call a market game monotonic if v(S) ≤ v(T)

for all S ⊆ T ⊆ N .

Theorem 28 Every monotonic market game is balanced.

95

Proof : Pick any y ∈ B(N). Now,

∑

S(N

v(S)yS =
∑

S(N :s∈S

v(S)yS

≤ v(N)
∑

S(N :s∈S

yS,

where the inequality uses the fact that market game is monotonic. But since y ∈ B(N),

we get that
∑

S(N :s∈S yS = 1. This shows that
∑

S(N v(S)yS ≤ v(N). So, the monotonic

market game is balanced. �

Indeed, a trivial element in the core of a monotonic market game is xs = v(N) and xi = 0

if i 6= s.

Note on cost games. If the cooperative game is defined by a cost function c instead of a

value function v, then the core constraints change in the following manner:

∑

i∈N

xi = c(N)

∑

i∈S

xi ≤ c(S) ∀ S (N

xi free ∀ i ∈ N.

It is easy to verify that the corresponding Farkas alternative gives the following balancedness

condition.

∑

S(N

c(S)yS ≥ c(N) ∀ y ∈ B(N).

2.5 Application: Full surplus extraction in auctions

We study the single object auction problem again. But this time the focus is not on feasibility

(as in Border’s theorem) but on incentive compatibility and on the price a seller has to pay

for incentive compatibility. The model is the same. There are n buyers and one seller with

an object. The seller has zero value for the object. Value of each buyer i is a random

variable vi ∈ Vi, where Vi is a finite set. Let V := V1 × . . . × Vn and for each i ∈ N let

V−i := ×j 6=iVj . The joint distribution of value of buyers is given by a probability distribution

function π, where we denote the probability that valuation profile (v1, . . . , vn) being realized

as π(v1, . . . , vn). Each buyer i observes his valuation vi but not the valuations of others.

Hence, a conditional probability distributions are relevant in this context. We will denote

96

by π(v−i|vi) := π(vi,v−i)∑
v′
−i

∈V−i
π(vi,v′−i)

the conditional probability of valuation profile v−i appearing

when buyer i has value v−i. An information structure is (V, π). Throughout, we will

assume that the information structure satisfies πi(v−i|vi) > 0 for all v−i and for all vi, for all

i ∈ N .

We are interested in dominant strategy incentive compatible auction. An auction is spec-

ified by two rules: (a) allocation rule, Qi : V → [0, 1] for each i, where Qi(v) is the

probability of getting object for buyer i at valuation profile v - feasibility is assumed, i.e.,
∑

i∈N Qi(v) ≤ 1 for all v ∈ V ; (b) payment rule, Pi : V → R for each i.

Definition 19 An auction ({Qi, Pi}i∈N) is dominant strategy incentive compatible

(DSIC) if for every i ∈ N , every v−i ∈ V−i, and every vi, v
′
i ∈ Vi, we have

viQi(vi, v−i)− Pi(vi, v−i) ≥ viQi(v
′
i, v−i)− Pi(v

′
i, v−i).

The payoff to the seller in an auction is her expected revenue. We are interested in

designing a DSIC mechanism that can extract entire surplus from the buyers.

Definition 20 An information structure (V, π) guarantees full surplus extraction in

DSIC if there exists a DSIC auction ({Qi, Pi}i∈N) such that
∑

v∈V

π(v)
∑

i∈N

Pi(v) =
∑

v∈V

π(v)max
i∈N

vi.

The interest in full surplus extraction is natural. If the seller knew the valuations of all

the agents, then it can go the highest valued agent and offer her the good at the value,

and hence, extracting full surplus in that case is always possible. On the other hand, if full

surplus can be extracted from the agents, when they have their value information private is

truely remarkable. This means that agents need not be assigned any information rent. The

following theorem characterizes information structures that allow full surplus extraction.

Theorem 29 An information structure (V, π) guarantees full surplus extraction in DSIC if

for all i ∈ N , there exists no ρi : Vi → R with ρi(vi) 6= 0 for some vi ∈ Vi such that
∑

vi∈Vi

ρi(vi)π(v−i|vi) = 0 ∀ v−i ∈ V−i.

Proof : Consider the Vickrey auction - a DSIC auction. Let ({Q∗
i , P

∗
i }i∈N) be the allocation

and payment rules in the Vickrey auction. For every i ∈ N and for every vi ∈ Vi, denote the
net utility of agent i with value vi in the Vickrey auction as

U∗
i (vi) :=

∑

v−i

[

Q∗
i (vi, v−i)vi − P ∗

i (vi, v−i)
]

π(v−i|vi).

97

Denoting π(vi) =
∑

v′
−i
π(v′−i|vi), we rewrite the above as

∑

vi∈Vi

U∗
i (vi)π(vi) =

∑

v∈V

[

Q∗
i (v)vi − P ∗

i (v)
]

π(v). (2.3)

By definition of the Vickrey auction for every i ∈ N , we have U∗
i (vi) ≥ 0 for all vi ∈ Vi with

strict inequaltiy holding for some vi. Further, since Q∗
i (vi, v−i) = 0 if vi < maxj∈N vj and

Q∗
i (vi, v−i) = 1 for some i ∈ argmaxj∈N vj, we can write

∑

v∈V

π(v)max
i∈N

vi =
∑

v∈V

π(v)
∑

i∈N

Q∗
i (vi, v−i)vi

=
∑

vi∈Vi

U∗
i (vi)π(vi) +

∑

v∈V

P ∗
i (v)π(v).

Hence, full surplus extraction is possible if and only if there exists a DSIC auction

({Qi, Pi}i∈N) such that
∑

v∈V

π(v)
∑

i∈N

Pi(v) =
∑

i∈N

[

∑

vi∈Vi

U∗
i (vi)π(vi) +

∑

v∈V

P ∗
i (v)π(v)

]

.

Now, we construct a function ci : V−i → R for every agent i such that
∑

v−i

ci(v−i)π(v−i|vi) = U∗
i (vi) ∀ vi ∈ Vi. (2.4)

Notice that if such a function can be constructed for every i, then Equation 2.4 guarantees
∑

v∈V

ci(v−i)π(v) =
∑

vi∈Vi

U∗
i (vi)π(vi).

Thus, existence of ci for each i ∈ N satisfying Equation 2.4 guarantees another mechanism

({Q∗
i , Pi}i∈), where for every i ∈ N and every v, we have Pi(v) := ci(v−i) + P ∗

i (v) such that
∑

v∈V

π(v)
∑

i∈N

Pi(v) =
∑

v∈V

π(v)
∑

i∈N

[

ci(v−i) + P ∗
i (v)]

=
∑

i∈N

[

∑

vi∈Vi

U∗
i (vi)π(vi) +

∑

v∈V

P ∗
i (v)π(v)

]

,

This along with the fact that ({Q∗
i , Pi}i∈N) is DSIC (this is because we just added payment

terms to a DSIC mechanism Vickrey that does not depend on every agent’s valuation) ensures

full surplus extraction is possible. We show that Equation 2.4 has a solution if the condition

in the theorem holds. To see this, construct the Farkas alternative for each i ∈ N :
∑

vi∈Vi

ρi(vi)U
∗
i (vi) < 0 (2.5)

∑

vi∈Vi

ρi(vi)π(v−i|vi) = 0 ∀ v−i ∈ V−i. (2.6)

98

By the condition in the theorem, the only solution to Equation 2.6 is ρi(vi) = 0 for all

vi ∈ Vi. But this ensures that Inequality (2.5) is not satisfied. Hence, Farkas alternative has

no solution and Equation 2.4 has a solution. �

2.6 Carathéodory Theorem

This section is devoted to an improtant result in the theory of convex sets. The result says

that if we choose any point in the convex hull of an arbitrary set S ⊆ Rn, it can be expressed

as convex combination of at most n + 1 points in S. To prove this result, we start with

reviewing some basic definitions in linear algebra.

For any set of points x1, . . . , xk ∈ Rn and λ1, . . . , λk ∈ R the point
∑k

i=1 λixi is called

• a linear combination of x1, . . . , xk,

• an affine combination of x1, . . . , xk if
∑k

i=1 λi = 1,

• a convex combination of x1, . . . , xk if
∑k

i=1 λi = 1 and λ1, . . . , λk ≥ 0.

Note that if x ∈ Rn is a convex combination of points x1, . . . , xk ∈ Rn then it is also an

affine combination and linear combination of these points. Similarly, if x ∈ Rn is an affine

combination of x1, . . . , xk ∈ Rn then it is also a linear combination of these points.

A set of points x1, . . . , xk ∈ Rn are linearly independent if none of them can be

expressed as a linear combination of others. In other words, if x1, . . . , xk are linearly inde-

pendent then
∑k

i=1 λixi = 0 implies that λi = 0 for all i ∈ {1, . . . , k}. If x1, . . . , xk are not

linearly independent then they called linearly dependent.

Here are some examples of linearly independent vectors.

(4,−90)
(1, 0, 5), (2, 5, 2)

(1, 4), (3,−3).

Here are some examples of linearly dependent vectors.

(1,−2), (−2, 4)
(0, 1, 0), (2,−3, 5), (2,−2, 5).

Similarly, we can define the notion of affine independence. A set of points x1, . . . , xk ∈ Rn

are affinely independent if none of them can be expressed as affine combination of others.

99

A set of points x1, . . . , xk ∈ Rn are affinely dependent if they are not affinely independent.

The alternate definition of affine independence is here.

Lemma 18 A set of point x1, . . . , xk ∈ Rn are affinely independent if and only if x2−x1, x3−
x1, . . . , xk − x1 are linearly independent.

Proof : Suppose x1, . . . , xk are affinely independent. Assume for contradiction x2−x1, x3−
x1, . . . , xk − x1 are linearly dependent. Then, there exists λ2, . . . , λk, not all of them zero,

and xj − x1 such that such that

k
∑

i=2,i 6=j

λi(xi − x1) = xj − x1.

This implies that

k
∑

i=2,i 6=j

λixi + [1−
k

∑

i=1,i 6=j

λi]x1 = xj.

This shows that x1, . . . , xk are affinely dependent. This is a contradiction.

Now, suppose x2 − x1, x3 − x1, . . . , xk − x1 are linearly independent. Assume for con-

tradiction x1, . . . , xk are affinely dependent. Then, some point, say xj , can be expressed as

affine combination of others. Hence, for some λs with
∑k

i=1,i 6=j λi = 1

xj =
k

∑

i=1,i 6=j

λixi

⇒ xj − x1 =
k

∑

i=1,i 6=j

λixi −
k

∑

i=1,i 6=j

λix1 =
k

∑

i=2,i 6=j

λi[xi − x1].

This is a contradiction to the fact that x2 − x1, . . . , xk − x1 are linearly independent. �

This shows that if x1, . . . , xk are affinely dependent then x2 − x1, . . . , xk − x1 must be

linearly dependent. The maximum number of linearly independent points in Rn is n. We

state this as a lemma.

Lemma 19 The maximum number of linearly independent points in Rn is n.

Proof : The proof is left as an exercise. �

The idea in the previous lemma is extended to any arbitrary set to define the dimension

of a set. Consider any set S. The maximum number of linearly independent points in S is

called the dimension of S. In that sense, the dimension of Rn is n. The following theorem

extends this lemma to convex combinations.

100

Definition 21 The convex hull of a set C ⊆ Rn, denoted as H(C), is collection of all

convex combinations of C, i.e., x ∈ H(C) if and only if x can be represented as x =
∑k

i=1 λix
i

with
∑k

i=1 λi = 1 and λi ≥ 0 for all i and x1, . . . , xk ∈ C for some integer k.

Figure 2.6 shows some sets and their convex hulls.

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

Figure 2.6: Convex Hulls

The convex hull of a set is a convex set. Take x, y ∈ H(C). Define z = λx + (1 − λ)y
for any λ ∈ [0, 1]. This is a convex combination of x and y, which in turn is a convex

combination of points in C. Hence, z can be written as convex combination of points in C.

The theorem below shows that we need at most n + 1 points from C to write z as convex

combination of points from C (where n is the dimension of C).

Theorem 30 (Carathéodory Theorem) Let S ⊆ Rn be an arbitrary set. If x ∈ H(S),

then there exists x1, . . . , xn+1 ∈ S such that x ∈ H({x1, . . . , xn+1}).

Proof : Pick x ∈ H(S). Let x =
∑k

i=1 λixi with λi > 0 for all i ∈ {1, . . . , k} and∑k
i=1 λi = 1.

If k ≤ n + 1, then we are done. Suppose k > n + 1. Then, x2 − x1, . . . , xk − x1 are more

than n points in Rn. Hence, they are linearly dependent. Hence, there exists µ2, . . . , µk,

not all of them equal to zero, such that
∑k

i=2 µi(xi − x1) = 0. Let µ1 = −∑k
i=2 µi. Thus,

∑k
i=1 µixi = 0 with

∑k
i=1 µi = 0 and at least one µi positive. Thus for any α > 0 we have

x =
k

∑

i=1

λixi =
k

∑

i=1

λixi − α
k

∑

i=1

µixi =
k

∑

i=1

(λi − αµi)xi.

Choose α as follows:

α = min
1≤i≤k

{λi
µi

: µi > 0} = λj
µj

.

Note that α > 0 since λj > 0. Further, for any i ∈ {1, . . . , k}, λi − αµi > 0 if µi < 0 and

if µi > 0, then λi − αµi = λi − λj µi

µj
≥ 0. Also, note that

∑k
i=1(λi − αµi) = 1. Hence, x

101

is a convex combination of x1, . . . , xk but with λj − αµj = 0. Hence, x can be expressed as

convex combination of k − 1 points in S. The process can be repeated till we have n + 1

points. �

A consequences of Carathéodory Theorem is the following result.

Lemma 20 The convex hull of a compact set is a compact set.

Proof : Let S be a compact set. Since S is bounded, H(S) is also bounded. Now, take a

sequence {xk} in H(S). By Carathéodory theorem, each xk can be represented as convex

combination of n + 1 points in S. Hence, for each k, we have xk =
∑n+1

i=1 λ
ikxik, where

∑n
i=1 λ

ik = 1 and λik ≥ 0 for all i. Hence, we have two sequences:

{λk ∈ [0, 1]n+1}, {x1k, . . . , xn+1,k} ∈ Sn+1.

Both the sequences are bounded and hence, have a limit point:

λ, (x1, . . . , xn+1).

Since S is closed, x1, . . . , xn+1 ∈ S and since the (n)-dimensional simplex is closed
∑n+1

i=1 λ
i =

1. Hence,
∑n+1

i=1 x
iλi belongs to H(S). �

Notice that to prove H(S) is closed, we used the boundedness of S. Indeed, convex hull

of a closed set need not be closed.

2.7 Polyhedra and Polytopes

Polyhedra are special classes of closed convex sets. We have already shown (in assignments)

that a closed convex set is characterized by intersection of (possibly infinite) half-spaces. If

it is the intersection of a finite number of half-spaces, then it is called a polyhedron.

Definition 22 A set P ⊆ Rn is called a polyhedron if there exists a m×n matrix A and

a vector b ∈ Rm such that P = {x ∈ Rn :
∑n

j=1 aijxj ≤ bi ∀ i ∈ {1, . . . , m}}.

A polytope is the convex hull of a finite set of points.

Definition 23 A set P ⊂ Rn is called a polytope if there exists finite number of vectors

x1, . . . , xt ∈ Rn such that P = H(x1, . . . , xt).

102

Definition 24 Let P be a convex set. A point z ∈ P is called an extreme point of P if

P cannot be expressed as a convex combination of two other points in P , i.e., there do not

exist x, y ∈ P \ {z} and 0 < λ < 1 such that z = λx+ (1− λ)y.

Figure 2.7 shows two polyhedra, out of which the one on the right is a polytope. It also

shows some extreme points of these polyhedra.

Extreme Points

Figure 2.7: A polyhedron, a polytope, and extreme points

We prove a fundamental result characterizing the extreme points of a polyhedron. For

this, we use the following notation. Let P = {x ∈ Rn :
∑n

j=1 aijxj ≤ bi ∀ i ∈ {1, . . . , m}}
be a polyhedron and z ∈ P . Then, Az denotes the submatrix of A for which

∑n
j=1 aijzj = bi

for every row i of Az.

As an example consider P = {(x1, x2) : x1 + 2x2 ≤ 2,−x1 ≤ 0,−x2 ≤ 0}. If we let

z = (0, 1), then Az corresponds to a matrix with rows (1, 2) and (−1, 0).
Now, we remind ourselves of some basic definitions of linear algebra.

Definition 25 The rank of a finite set S of vectors, denoted as r(S), is the cardinality of

the largest subset of linearly independent vectors in S.

If S = {(1, 2), (−2, 4)}, then r(S) = 1. If S = {(0, 1, 0), (−2, 2, 0), (−2, 3, 0)}, then
r(S) = 2.

Let A be a m × n matrix. Then the rank of row vectors of A and the rank of column

vectors of A are same. So, for a matrix, we can talk about rank of that matrix. We denote

rank of matrix A as r(A).

Theorem 31 Let P = {x ∈ Rn :
∑n

j=1 aijxj ≤ bi ∀ i ∈ {1, . . . , m}} be a polyhedron and

z ∈ P . Then z is an extreme point of P if and only if r(Az) = n.

103

Proof : Suppose z is an extreme point of P . Assume for contradiction r(Az) < n. This

means there exists a vector x ∈ Rn and x 6= 0 such that
∑n

j=1 aijxj = 0 for each row i in

Az. By definition, for all rows i not in Az we have
∑n

j=1 aijzj < bi. This means there exists

a δ > 0 such that for every i not in Az we have

n
∑

j=1

aij(zj + δxj) ≤ bi and
n

∑

j=1

aij(zj − δxj) ≤ bi.

To see why this is true, consider the a row i not in Az. Suppose
∑n

j=1 aijxj ≤ 0. Then

δ
∑n

j=1 aijxj ≤ 0. This means,
∑n

j=1 aij(zj + δxj) < bi since
∑n

j=1 aijzj < bi. Also, since

δ can be chosen arbitrarily small,
∑n

j=1 aij(zj − δxj) < bi. Analogously, if
∑n

j=1 aijxj ≥ 0,

we will have
∑n

j=1 aij(zj + δxj) ≤ bi and
∑n

j=1 aij(zj − δxj) < bi. For all rows i in Az,
∑n

j=1 aij(zj + δxj) = bi and
∑n

j=1 aij(zj − δxj) = bi.

So, we get for all rows i, we have
∑n

j=1 aij(zj + δxj) ≤ bi and
∑n

j=1 aij(zj − δxj) ≤ bi.

Hence, z + δx and z − δx belong to P . Since z is a convex combination of these two points,

z cannot be an extreme point. This is a contradiction.

Suppose r(Az) = n. Assume for contradiction z is not an extreme point of P . Then there

exists x, y ∈ P with z 6= x 6= y and 0 < λ < 1 such that z = λx+(1−λ)y. Then for every row i

in Az we can write
∑n

j=1 aijxj ≤ bi =
∑n

j=1 aijzj =
∑n

j=1 aij(λxj+(1−λ)yj). Rearranging, we
get

∑n
j=1 aij(xj−yj) ≤ 0. Similarly,

∑n
j=1 aijyj ≤ bi =

∑n
j=1 aijzj =

∑n
j=1 aij(λxj+(1−λ)yj).

This gives us
∑n

j=1 aij(xj − yj) ≥ 0. Hence,
∑n

j=1 aij(xj − yj) = 0. This implies that

Az(x− y) = 0. But x 6= y implies that r(Az) 6= n, which is a contradiction. �

Remark: This theorem implies that a polyhedron has only a finite number of extreme

points. This follows from the fact that there can be only finite number of subrows of A.

Remark: Also, if the number of linearly independent rows (constraints) of A is less than

n, then rank of every submatrix of A will be less than n. In that case, the polyhedron has

no extreme points - in two dimension, if the constraints are all parallel lines then the rank

of any submatrix is one, and clearly we cannot have any extreme point. Hence, if z is an

extreme point of P , then we should have more constraints than variables. This is ensured

in the standard formulation of the linear program by having n non-negativity constraints,

whose row vectors are linearly independent.

Remark: Suppose z and z′ are two distinct extreme points of a polyhedron. Then Az and

Az′ are distinct. Else, we will have Az(z− z′) = 0, and z− z′ 6= 0 will imply that r(Az) < n.

The result can be used to prove the following theorem, which we state without proving.

104

Theorem 32 Let P be a bounded polyhedron with extreme points (x1, . . . , xt). Then P =

H(x1, . . . , xt), i.e., every bounded polyhedron is a polytope. Moreover, every polytope is a

bounded polyhedron.

105

106

Chapter 3

Linear Programming

3.1 Introduction

Optimization of a function f over a set S involves finding the maximum (minimum) value of

f (objective function) in the set S (feasible set). Properties of f and S define various types

of optimization. Primarily, optimization can be classified into three categories.

1. Linear Programming: If f is a linear function (e.g., f(x1, x2) = x1+2x2) and the set

S is defined by a finite collection of linear inequalities and equalities, then it is called

a linear program. As an example, consider the following linear program.

max
x1,x2

f(x1, x2) = max
x1,x2

[x1 + 2x2]

s.t.

x1 + x2 ≤ 6

x1 ≥ 2

x2 ≥ 0

2. Integer Programming: An integer program is a linear program with further restric-

tion that the solution be integers. In the previous example, if we impose that x1 and

x2 can only admit integer values, then it becomes an integer program.

3. Nonlinear Programming: If f is a non-linear function and the feasible set S is

defined by a finite collection of non-linear equations, then it is called a non-linear

program. There are further classifications (and extensions) of non-linear programs

107

depending on the specific nature of the problem. Typically, f is assumed to be contin-

uous and differentiable. An example is the following non-linear program.

max
x1,x2

f(x1, x2) = max
x1,x2

[−2x21 − 3x22]

s.t.

x1 + x2 = 1.

In general, an optimization problem written in mathematical form is referred to as a

mathematical program. In this course, we will learn about linear and integer pro-

gramming problems, their solution methods.

To understand a little more about linear and integer programs, consider the above exam-

ple. The feasible set/region can be drawn on a plane. Figure 3.1 shows the feasible regions

for the linear program (dashed region), and the integer points inside that feasible region is

the feasible region of the integer program. Notice that the optimal solution of this linear

program has to lie on the boundary of the feasible region. Moreover, an extreme point is an

optimal solution (x1 = 2, x2 = 4). This is no accident, as we will show. If we impose the

integer constraints on x1 and x2, then the feasible region has a finite set of points. Again,

the optimal solution is x1 = 2, x2 = 4 (this is obvious since this is an integral solution, and

is an optimal solution of the linear program).

3.2 Steps in Solving an Optimization Problem

There are some logical steps to solve an optimization problem.

• Modeling: It involves reading the problem carefully to decipher the variables of the

problem. Then, one needs to write down the objective and the constraints of the prob-

lem in terms of the variables. This defines the objective function and the feasible set,

and hence the mathematical program. This process of writing down the mathemati-

cal program from a verbal description of the problem is called modeling. Modeling,

though it does not give the solution, is an important aspect of optimization. A good

modeling helps in getting solutions faster.

• Solving: Once the problem is modeled, the solution is sought. There are algorithms

(techniques) to solve mathematical programs. Commercial software companies have

come up with solvers that have built packages using these algorithms.

108

❞ ❞ ❞ ❞ ❞

❞ ❞ ❞ ❞

❞❞❞

❞ ❞

❞

✻

❄

❅
❅
❅
❅
❅
❅
❅
❅
❅
❅
❅
❅
❅
❅
❅
❅
❅
❅
❅
❅
❅
❅

✛ ✲

❍❍
❍❍

❍❍
❍❍

❍❍
❍❍

❍❍
❍❍

❍❍

....
....
....
....
....
....
....
....
....
....
..

✕

....
....
....
....
....
....
....
....
....
....
....

✕

x1 + 2x2 = 0

x1 = 2

x1 + x2 = 6

Figure 3.1: Feasible set and objective function of linear and integer programs

3.3 Linear Programming

3.3.1 An Example

Example 1 There is 100 units of water to be distributed among three villages. The water

requirement of the villages are 30, 50, and 40 respectively. The water shortage costs of the

three villages are 4, 3, and 5 respectively. Water supply to no two villages should exceed 70.

Find a water distribution that minimizes the total water shortage cost.

Modeling: Let xi (i ∈ {1, 2, 3}) denote the amount of water supplied to village i. Since

the total amount of water is 100, we immediately have

x1 + x2 + x3 = 100.

Further, water supply of no two villages should exceed 70. This gives us,

x1 + x2 ≤ 70

x2 + x3 ≤ 70

x1 + x3 ≤ 70.

109

The water requirement of every village puts an upper bound on the supply. So, we

can put x1 ≤ 30, x2 ≤ 50, x3 ≤ 40. Of course, the water supply should all be non-

negative, i.e., x1, x2, x3 ≥ 0. Finally, the total water shortage costs of the three villages are

4(30 − x1) + 3(50 − x2) + 5(40 − x3) = 470 − 4x1 − 3x2 − 5x3. If we want to minimize the

total water shortage cost, then it is equivalent to just maximizing 4x1 + 3x2 + 5x3. So, the

problem can be formulated as:

Z = max
x1,x2,x3

4x1 + 3x2 + 5x3

s.t. (P1)

3
∑

i=1

xi = 100

xi + xj ≤ 70 ∀ i, j ∈ {1, 2, 3}, i 6= j

x1 ≤ 30

x2 ≤ 50

x3 ≤ 40

xi ≥ 0 i ∈ {1, 2, 3}

Problems of this type are called linear programming formulations.

3.3.2 Standard Form

In general, if c1, . . . , cn are real numbers, then the function f of real variables x1, . . . , xn

(x = (x1, . . . , xn)) defined by

f(x) = c1x1 + . . .+ cnxn =

n
∑

j=1

cjxj

is called a linear function. If g is a linear function and b is a real number then

g(x) = b

is called a linear equation, whereas

g(x) ≤ (≥)b

110

is called a linear inequality. A linear constraint is one that is either a linear equation or

a linear inequality. A linear programming (LP) problem is one which maximizes (min-

imizes) a linear function subject to (s.t.) a finite collection of linear constraints. Formally,

any LP can be written in the following form:

Z = max
x

n
∑

j=1

cjxj

s.t. (LP)
n

∑

j=1

aijxj ≤ bi ∀ i ∈ {1, . . . , m}

xj ≥ 0 ∀ j ∈ {1, . . . , n}.

In matrix notation, this can be written as maxx cx subject to Ax ≤ b and x ≥ 0. Problems

in the form (LP) will be referred to as the problems in standard form. As we have seen

any LP problem can be converted to a problem in standard form. The key difference between

any LP problem not in standard form and a problem in standard form is that the constraints

in standard form are all inequalities (written in a particular way). Also, the last collection of

constraints say that variable have to be non-negative. This type of inequalities are special,

and referred to as non-negativity constraints. The linear function that is to be maximized

or minimized is called the objective function. In the standard form, the objective function

will always be maximized (this is only our notation).

If (x∗1, . . . , x
∗
n) satisfy all the constraints of (LP), then it is called a feasible solution of

(LP). For example, in the problem (P1), a feasible solution is (x1, x2, x3) = (30, 35, 35). A

feasible solution that gives the maximum value to the objective function amongst all feasible

solutions is called an optimal solution, and the corresponding value of the objective func-

tion is called the optimal value. The optimal solution of (LP) is (x1, x2, x3) = (30, 30, 40),

and the optimal value is 410 (hence the minimum total water shortage cost is 60).

Not every LP problem has an optimal solution. As we will show later, every LP problem

can be put in one of the following three categories.

1. Optimal solution exists: This is the class of LP problems whose optimal solution

exists. An example is (P1).

2. Infeasible: This is the class of LP problems for which no feasible solution exists. An

111

example is the following:

Z = max
x1,x2

x1 + 5x2

s.t. (INF-LP)

x1 + x2 ≤ 3

−3x1 − 3x2 ≤ −11
x1, x2 ≥ 0

3. Unbounded: This is the class of LP problems for which feasible solutions exist, but

for every number M , there exists a feasible solution that gives the objective function

a value more than M . So, none of the feasible solutions is optimal. An example is the

following:

Z = max
x1,x2

x1 − x2

s.t. (UNBD-LP)

−2x1 + x2 ≤ −1
−x1 − 2x2 ≤ −2

x1, x2 ≥ 0

To understand why (UNBD-LP) is unbounded, it is useful to look at its feasible

region and objective function in a figure. Figure 3.2 shows how the objective function

can increase indefinitely.

3.4 History of Linear Programming

The second world war brought about many new things to the world. This included the use

and rapid growth of the field of linear programming. In 1947, George B. Dantzig, regarded

by many as the founder of the discipline, designed the simplex method to solve linear

programming problems for the U.S. Air Force. After that, the field showed rapid growth

in terms of research. Production management and economics were the primary areas which

applied linear programming in a variety of problems. Tremendous application potential of

this field led to increase in theoretical research in the field, and thus, a new branch of applied

mathematics was born.

In 1947, T.C. Koopmans pointed out several applications of linear programming in eco-

nomic theory. Till today, a significant portion of economic theory is still governed by the

fundamentals of linear programming (as we will discuss).

112

✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁✁

❍❍❍❍❍❍❍❍

❍❍❍❍❍❍❍❍

✛ ✲

✻

❄
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

❅❅❘

❅❅❘

x1 − x2 = 1

−x1 − 2x2 = −2

−2x1 + x2 = −1

Figure 3.2: Unbounded LP

The fundamentals of linear programming has its roots as early as 1820s, when Fourier in-

vestigated techniques to solve systems of linear equations. L.V. Kantorovich pointed out the

significance of linear programming and its applications in 1939. Unfortunately, his work was

not noticed for a long time (since he carried out most of his research in U.S.S.R.). In 1975,

Kantorovich and Koopmans were awarded the Nobel prize in economics “for their contribu-

tions to the theory of optimum allocation of resources”. Another event in 1970s attracted

a lot of media attention. Ever since the invention of simplex method, mathematicians were

working for a theoretically satisfactory algorithm to solve linear programs. In 1979, L.G.

Khachian published the description of such an algorithm - though its performance has been

extremely unsatisfactory in practice. On the other hand, simplex method, whose theortical

performance is not good, does a very good job in practice.

3.5 Simplex Preview

One of the first discovered, and immensely effective linear programming (LP) algorithms is

the simplex method. The objective of this section is to give examples to illustrate the

method.

113

3.5.1 First Example

Consider the following example.

Z = max 5x1 + 4x2 + 3x3

s.t. (EX-1)

2x1 + 3x2 + x3 ≤ 5 (3.1)

4x1 + x2 + 2x3 ≤ 11 (3.2)

3x1 + 4x2 + 2x3 ≤ 8 (3.3)

x1, x2, x3 ≥ 0.

The first step in the method consists of introducing slack variables for every constraint.

For example, in Equation 3.1, the slack between 5 and 2x1 + 3x2 + x3 is assigned a slack

variable x4, i.e., x4 = 5 − 2x1 − 3x2 − x3. Notice that x4 ≥ 0. Thus, the equations in

formulation (EX-1) can be rewritten using slack variables as

x4 = 5− 2x1 − 3x2 − x3
x5 = 11− 4x1 − x2 − 2x3

x6 = 8− 3x1 − 4x2 − 2x3

x1, x2, x3, x4, x5, x6 ≥ 0.

The new variables x4, x5, x6 are called slack variables, and the old variables x1, x2, x3

are called decision variables. Hence our new LP is to

max z s.t. x1, x2, x3, x4, x5, x6 ≥ 0, (3.4)

where z = 5x1+4x2+3x3 and x4, x5, and x6 are determined by the equations above. This new

LP is equivalent (same set of feasible solutions in terms of decision variables) to (EX-1),

given the equations determining the slack variables. The simplex method is an iterative

procedure in which having found a feasible solution x1, . . . , x6 of (3.4), we look for another

feasible solution x̄1, . . . , x̄6 of (3.4) such that

5x̄1 + 4x̄2 + 3x̄3 > 5x1 + 4x2 + 3x3.

If an optimal solution exists, we can repeat this finite number of iterations till there is

no improvement in the objective function value, at which point we stop. The first step is

114

to find a feasible solution, which is easy in our example: x1 = x2 = x3 = 0, which gives

x4 = 5, x5 = 11, x6 = 8. This gives z = 0.

We now need to look for a solution that gives a higher value to z. For this, we look to

increase values of any one of the variables x1, x2, x3. We choose x1. Keeping x2 and x3 at

zero, we notice that we can increase x1 to min(5
2
, 11

4
, 8
3
) = 5

2
to maintain x4, x5, x6 ≥ 0. As a

result of this, the new solution is

x1 =
5

2
, x2 = 0, x3 = 0, x4 = 0, x5 = 1, x6 =

1

2
, z =

25

2
.

Notice that by increasing the value of x1, a variable whose value was positive (x4) got a

value of zero. Now, we have to create system of equation similar to previous iteration. For

that we will write the value of z and variables having non-zero values (x1, x5, x6) in terms of

variables having zero values (x4, x2, x3).

x1 =
5

2
− 3

2
x2 −

1

2
x3 −

1

2
x4.

x5 = 1 + 5x2 + 2x4.

x6 =
1

2
+

1

2
x2 −

1

2
x3 +

3

2
x4.

z =
25

2
− 7

2
x2 +

1

2
x3 −

5

2
x4.

Of x2, x3, x4, the value of z decreases by increasing the values of x2 and x4. So, the only

candidate for increasing value in this iteration is x3. The amount we can increase the value of

x3 can again be obtained from the feasibility conditions of x1, x5, x6 ≥ 0, which is equivalent

to (given x2 = x4 = 0) 5
2
− 1

2
x3 ≥ 0 and 1

2
− 1

2
x3 ≥ 0. This gives that the maximum possible

value of x3 in this iteration can be min(5, 1) = 1. By setting x3 = 1, we get a new solution

as

x1 = 2, x2 = 0, x3 = 1, x4 = 0, x5 = 1, x6 = 0, z = 13. (3.5)

Two things should be noticed here: (a) this solution is also a solution of the previous

system of equations and (b) the earlier solution is also a solution of this system of equations.

This is precisely because we are just rewriting the system of equations using a different set of

decision and slack variables in every iteration, and that is the central theme of the simplex

method.

115

So, the new variable that takes zero value is x6. We now write the system of equations

in terms of x2, x4, x6.

x3 = 1 + x2 + 3x4 − 2x6

x1 = 2− 2x2 − 2x4 + x6

x5 = 1 + 5x2 + 2x4

z = 13− 3x2 − x4 − x6.

Now, the value of z will decrease by increasing the values of any of the variables x2, x4, x6.

So, we have reached a dead-end. In fact, we have reached an optimal solution. This is clear

from the fact that any solution requires x2, x4, x6 ≥ 0, and by assigning any value not equal

to zero to these variables, we will decrease the value of z. Hence, z = 13 is an optimal

solution. The corresponding values of x1, x3, x5 are 2, 1, 1 respectively.

3.5.2 Dictionaries

Consider a general LP in standard form:

Z = max

n
∑

j=1

cjxj

s.t. (LP)
n

∑

j=1

aijxj ≤ bi ∀ i ∈ {1, . . . , m}

xj ≥ 0 ∀ j ∈ {1, . . . , n}

The first step in the simplex method is to introduce slack variables, xn+1, . . . , xn+m ≥ 0

corresponding to m constraints, and denote the objective function as z. So,

xn+i = bi −
n

∑

j=1

aijxj ∀ i ∈ {1, . . . , m} (3.6)

z =
n

∑

j=1

cjxj . (3.7)

xj ≥ 0 ∀ j ∈ {1, . . . , n, n+ 1, . . . , n+m} (3.8)

116

In simplex method, we search for a feasible solution x̄1, . . . , x̄m+n given a feasible solution

x1, . . . , xm+n so that the objective function is better, i.e.,

n
∑

j=1

cj x̄j >
n

∑

j=1

cjxj .

As we have seen in the example, a feasible solution is represented with a system of linear

equations consisting of dependent variables. These system of equations corresponding to a

feasible solution is called a dictionary. A dictionary will have the following features:

1. Every solution of the system of equations of the dictionary must be a solution of system

of equations (3.6), (3.7), and (3.8), and vice versa.

2. The equations of every dictionary must express m of the variables x1, . . . , xm+n and

the objective function z (dependent variables) in terms of the remaining n variables

(independent variables).

Consider the following starting dictionary.

x3 = 5− x2 + x1

x4 = 3− x2 − 2x1

z = x1 + 3x2

x1, x2, x3, x4 ≥ 0.

In this dictionary, we can set x1 = x2 = 0 to get a feasible solution. Rewriting the first

equation in terms of x2, we get the following dictionary.

x2 = 5 + x1 − x3
x4 = −2− 3x1 + x3

z = 15 + 4x1 − 3x3

x1, x2, x3, x4 ≥ 0.

Unlike the first dictionary, we cannot put the value of independent variables to zero to get

a feasible solution: putting x1 = x3 = 0 gives us x2 = 5 but x4 = −2 < 0. This is an

undesirable feature. To get over this feature, we need the following notion.

In the dictionary, the dependent variables are kept on the left hand side (LHS), and

they are expressed in terms of the independent variables on the right hand side (RHS). An

additional feature of a dictionary is

117

• setting the RHS variables at zero and evaluating the LHS variables, we arrive at a

feasible solution.

A dictionary with this additional property is called a feasible dictionary. Hence, every

feasible dictionary describes a feasible solution. The second dictionary above is not feasible

but the first one is.

A feasible solution that can be described in terms of a feasible dictionary is called a

basic solution. The characteristics feature of the simplex method is that it works with

basic solutions only.

3.5.3 Second Example

We conclude the discussion by giving another example.

Z = max 5x1 + 5x2 + 3x3

s.t.

x1 + 3x2 + x3 ≤ 3

−x1 + 3x3 ≤ 2

2x1 − x2 + 2x3 ≤ 4

2x1 + 3x2 − x3 ≤ 2

x1, x2, x3 ≥ 0.

In this case, the initial feasible dictionary has all the slack variables as dependent vari-

ables, and it looks as follows:

x4 = 3− x1 − 3x2 − x3
x5 = 2 + x1 − 3x3

x6 = 4− 2x1 + x2 − 2x3

x7 = 2− 2x1 − 3x2 + x3

z = 5x1 + 5x2 + 3x3.

The feasible dictionary describes the following solution:

x1 = x2 = x3 = 0, x4 = 3, x5 = 2, x6 = 4, x7 = 2.

118

As before, we try to increase the value of z by increasing the value of one of the indepen-

dent variables as much as we can. Right now, since x1, x2, x3 have all positive coefficients in

the z equation, we randomly choose x1. From feasibility of x4, . . . , x7 ≥ 0, we get x1 ≤ 1

to be the most stringent constraint. So, we make x1 = 1, which in turn makes x7 = 0. We

now write the new dictionary with x1 leaving the independent variables and x7 entering the

independent variables. First, substitute,

x1 = 1− 3

2
x2 +

1

2
x3 −

1

2
x7.

Substituting for x1 in terms of new set of independent variables in the previous dictionary,

we get

x1 = 1− 3

2
x2 +

1

2
x3 −

1

2
x7

x4 = 2− 3

2
x2 −

3

2
x3 +

1

2
x7

x5 = 3− 3

2
x2 −

5

2
x3 −

1

2
x7

x6 = 2 + 4x2 − 3x3 + x7

z = 5− 5

2
x2 +

11

2
x3 −

5

2
x7.

Some comments about terminology are in order:

1. Dependent variables, which appear on the LHS of any dictionary, are called basic

variables. Independent variables are called non-basic variables. In the previous

dictionary, x1, x4, x5, x6 are basic variables, and x2, x3, x7 are non-basic variables.

2. Set of basic and non-basic variables change from iteration to iteration.

3. Choice of entering basic variable is motivated by the fact that we want to increase

the value of z, and we choose one that does that, and increase its value the maximum

possible.

4. Choice of leaving basic variable is motivated by the need to maintain feasibility. This

is done by identifying the basic variable that poses the most stringent bound on the

entering basic variable.

119

5. The formula for the entering basic variable appears in the pivot row, and the process

of constructing a new dictionary is called pivoting. In the previous dictionary, x3 is

the next entering basic variable, and x6 is the leaving basic variable. So, the formula

for x3 appears in

x3 =
2

3
+

4

3
x2 −

1

3
x6 +

1

3
x7,

which is the pivot row.

Continuing with our example, the clear choice of entering basic variable is x3. Calculations

give that x6 imposes the most stringent bound on x3, and should be the leaving basic variable.

So, we arrive at the new dictionary.

x3 =
2

3
+

4

3
x2 +

1

3
x7 −

1

3
x6

x1 =
4

3
− 5

6
x2 −

1

3
x7 −

1

6
x6

x4 = 1− 7

2
x2 +

1

2
x6

x5 =
4

3
− 29

6
x2 −

4

3
x7 +

5

6
x6

z =
26

3
+

29

6
x2 −

2

3
x7 −

11

6
x6.

Now, the entering basic variable is x2, and the leaving basic variable is x5. Pivoting yields

the following dictionary:

x2 =
8

29
− 8

29
x7 +

5

29
x6 +

6

29
x5

x3 =
30

29
+

1

29
x7 −

3

29
x6 −

8

29
x5

x1 =
32

29
− 3

29
x7 −

9

29
x6 +

5

29
x5

x4 =
1

29
+

28

29
x7 −

3

29
x6 +

21

29
x5

z = 10− 2x7 − x6 − x5.

120

At this point, no more pivoting is possible, and we arrive at the optimal solution described

by the last dictionary as:

x1 =
32

29
, x2 =

8

29
, x3 =

30

29
,

and this yields an optimal value of z = 10.

3.6 Pitfalls and How to Avoid Them

Three kind of pitfalls can occur in simplex method:

1. Initialization: We may not be able to start. We may not have a feasible dictionary

to start.

2. Iteration: We may get stuck in some iteration. Can we always choose a new entering

and leaving variable?

3. Termination: We may not be able to finish. Can the simplex method construct an

endless sequence of dictionaries without reaching an optimal solution?

Before starting, we formally state what it means to say that the simplex method termi-

nates. We say that the simplex method terminates if either there is an iteration where we

conclude that the linear program is unbounded or there is an iteration where we conclude

that the feasible dictionary corresponds to an optimal solution.

We look at each of these three pitfalls. Before proceeding, let us review the general form

of a dictionary. There is a set of basic variables B with #B = m, and the linear program is

written in the following form in this dictionary.

xi = b̄i −
∑

j /∈B

āijxj ∀ i ∈ B

z = v̄ +
∑

j /∈B

c̄jxj

Here, for each i ∈ B, b̄i ≥ 0 if the dictionary is a feasible dictionary. The feasible solution

corresponding to a feasible dictionary is called a basic feasible solution. Hence, we can

summarize a feasible dictionary as follows.

• x is a feasible solution to the linear program if and only if it is a feasible solution to

the feasible dictionary - this is because a feasible dictionary is just a rewriting of the

constraints of the linear program,

121

• setting all non-basic variables to zero and reading the values of basic variables from

that gives a basic (feasible) solution of the feasible dictionary, i.e., xi = 0 for all i /∈ B
and xi = b̄i for all i ∈ B is a basic (feasible) solution of the feasible dictionary. An

equivalent way to state this is that b̄i ≥ 0 for all i ∈ N .

We can be formal about the pivoting method too. Given a feasible dictionary with B as

the set of basic variable:

xi = b̄i −
∑

j /∈B

āijxj ∀ i ∈ B

z = v̄ +
∑

j /∈B

c̄jxj

the set of candidate entering variables are

E := {j /∈ B : c̄j > 0}.

Let j∗ ∈ E be an entering basic variable. Then, consider the following subset of basic

variables, called the candidate leaving variables.

Lj∗ := {i∗ ∈ B : ai∗j∗ > 0,
b̄i∗

ai∗j∗
= min

i∈B:aij∗>0

b̄i
aij∗
}.

Let i∗ ∈ Lj∗ be a leaving basic variable. Then, the pivoting row is i∗ with the following

pivoting operation:

xj∗ =
1

ai∗j∗

[

b̄i∗ + xi∗ −
∑

j /∈(B∪{j∗})

āijxj

]

.

With this we replace the other rows in B\{i∗}. Since this is just a rewriting of the constraints
of the earlier dictionary, we preserve the two properties of the feasible dictionary. Hence, the

new dictionary is also a feasible dictionary.

3.6.1 Iteration

3.6.1.1 Choosing an Entering Variable

The entering variable is a non-basic variable with a positive coefficient c̄j in the last row of

the current dictionary: E := {j /∈ B : c̄j > 0}. This rule is ambiguous in the sense that E

may contain more than one element or it may be empty.

The latter alternative implies that the current dictionary has an optimal solution. This

is because any solution which is not the current solution will involve some current non-basic

122

variable taking on positive value. Since all the c̄js are negative, this will imply objective

function value decreasing from the current value. This leads to the following lemma.

Lemma 21 Suppose there is a feasible dictionary such that coefficient of every non-basic

variable is negative or zero in the objective function. Then, such a basic feasible solution is

an optimal solution.

Proof : Take any feasible solution x. If xi = 0 for each i which is non-basic in the feasible

dictionary, then it corresponds to the solution in the current feasible dictionary. Else, xi > 0

for some i which is non-basic in the feasible dictionary. Since every feasible solution of the

linear program is a feasible solution of a feasible dictionary, we see that the objective function

value from such a feasible solution in the feasible dictionary is lower than the basic solution

of the dictionary. Hence, the basic feasible solution is optimal. �

If E 6= ∅, then any i ∈ E is a candidate for entering the basic variable. We will be more

precise about how to choose one of them later.

3.6.1.2 Finding a Leaving Variable

The leaving variable is that basic variable whose non-negativity imposes the most stringent

upper bound on the increase of the entering variable. As before if j∗ is an entering basic

variable, then consider the following subset of basic variables, called the candidate leaving

variables.

Lj∗ := {i∗ ∈ B : ai∗j∗ > 0,
b̄i∗

ai∗j∗
= min

i∈B:aij∗>0

b̄i
aij∗
}.

Again, Lj∗ may be empty or may have more than one element. If there are more than

one candidate, then we may choose any one of them. If there are no candidate at all, then

an interesting conclusion can be drawn. Recall that a linear program is unbounded if for

every real number M there exists a feasible solution of the linear program such that the

objective function value is larger than M .

Here is an example of a dictionary:

x2 = 5 + 2x3 − x4 − 3x1

x5 = 7− 3x4 − 4x1

z = 5 + x3 − x4 − x1.

123

The entering variable is x3. However, neither of the two basic variables x2 and x5 put

an upper bound on x3. Hence, we can increase x3 as much as we want without violating

feasibility. Set x3 = t for any positive number t, and we get the solution x1 = 0, x2 =

5 + 2t, x3 = t, x4 = 0, x5 = 7, and z = 5 + t. Since t can be made arbitrarily large, so can

be z, and we conclude that the problem is unbounded. The same conclusion can be reached

in general: if there is no candidate for leaving the basis, then we can make the value of the

entering variable, and hence the value of the objective function, as large as we wish. In that

case, the problem is unbounded.

Lemma 22 Suppose j∗ is any entering basic variable of a feasible dictionary and Lj∗ is

empty. Then, the linear program is unbounded.

Proof : If Lj∗ is empty, then for all i ∈ B, we have aij∗ ≤ 0. In that case, let x be the

current basic feasible solution. Consider the following new solution x′, where x′i = xi if i 6= j∗

but i /∈ B and x′j∗ = t for some t > 0. For all i ∈ B, x′i = b̄i − aij∗t. Since aij∗ ≤ 0 for

all i ∈ B, this defines a feasible solution of the dictionary, which is also a feasible solution

of the linear program. Since t can be arbitrarily large and c̄j∗ > 0, we have that the linear

program is unbounded. �

3.6.1.3 Degeneracy

The presence of more than one candidate for leaving the basis has interesting consequences.

For example, consider the dictionary

x4 = 1− 2x3

x5 = 3− 2x1 + 4x2 − 6x3

x6 = 2 + x1 − 3x2 − 4x3

z = 2x1 − x2 + 8x3.

Having chosen x3 as the entering variable, we see that x4, x5, and x6 are all candidates

for leaving variable. Choosing x4, and pivoting, we get the new dictionary as

124

x3 = 0.5− 0.5x4

x5 = −2x1 + 4x2 + 3x4

x6 = x1 − 3x2 + 2x4

z = 4 + 2x1 − x2 − 4x4.

This dictionary is different from others in one important aspect: along with the non-basic

variables, two of the basic variables, x5 and x6 have value of zero. Basic solutions with one

or more basic variables at zero are called degenerate.

Although harmless, degeneracy has annoying side effects. In the next iteration, we have

x1 as the entering variable, and x5 as the leaving variable. But the value of x1 can be

increased by a maximum of zero. Hence, the objective function value does not change.

Pivoting changes the dictionary to:

x1 = 2x2 + 1.5x4 − 0.5x5

x3 = 0.5− 0.5x4

x6 = −x2 + 3.5x4 − 0.5x5

z = 4 + 3x2 − x4 − x5.

but the solution remains the same. Simplex iterations that do not change the basic

solution are called degenerate. One can verify that the next iteration is also degenerate,

but the one after that is not - in fact, it is the optimal solution.

Degeneracy is an accident. Many practical problems face degeneracy, and when it happens

the simplex goes through few (many a times quite a few) degenerate iterations before coming

up with a non-degenerate solution. But there are occasions when this may not happen.

125

3.6.2 Cycling

Sometimes, a sequence of dictionary can appear again and again. This phenomenon is called

cycling. To understand cycling let us look at a series of dictionaries.

x5 = −0.5x1 + 5.5x2 + 2.5x3 − 9x4

x6 = −0.5x1 + 1.5x2 + 0.5x3 − x4
x7 = 1− x1

z = 10x1 − 57x2 − 9x3 − 24x4.

The following rule for selecting the entering and leaving variable is the following:

• The entering variable will always be the nonbasic variable that the largest coefficient

in the z-row of the dictionary.

• If two or more basic variables compete for leaving the basis, then the candidate with

the smallest subscript will be made to leave.

Now, the sequence of dictionaries constructed in the first six iterations goes as follows.

After the first iteration:

x1 = 11x2 + 5x3 − 18x4 − 2x5

x6 = −4x2 − 2x3 + 8x4 + x5

x7 = 1− 11x2 − 5x3 + 18x4 + 2x5

z = 53x2 + 41x3 − 20x4 − 20x5.

After the second iteration:

x2 = −0.5x3 + 2x4 + 0.25x5 − 0.25x6

x1 = −0.5x3 + 4x4 + 0.75x5 − 2.75x6

x7 = 1 + 0.5x3 − 4x4 − 0.75x5 − 13.25x6

z = 14.5x3 − 98x4 − 6.75x5 − 13.25x6.

126

After the third iteration:

x3 = 8x4 + 1.5x5 − 5.5x6 − 2x1

x2 = −2x4 − 0.5x5 + 2.5x6 + x1

x7 = 1− x1

z = 18x4 + 15x5 − 93x6 − 29x1.

After the fourth iteration:

x4 = −0.25x5 + 1.25x6 + 0.5x1 − 0.5x2

x3 = −0.5x5 + 4.5x6 + 2x1 − 4x2

x7 = 1− x1

z = 10.5x5 − 70.5x6 − 20x1 − 9x2.

After the fifth iteration:

x5 = 9x6 + 4x1 − 8x2 − 2x3

x4 = −x6 − 0.5x1 + 1.5x2 + 0.5x3

x7 = 1− x1

z = 24x6 + 22x1 − 93x2 − 21x3.

After the sixth iteration:

x5 = −0.5x1 + 5.5x2 + 2.5x3 − 9x4

x6 = −0.5x1 + 1.5x2 + 0.5x3 − x4
x7 = 1− x1

z = 10x1 − 57x2 − 9x3 − 24x4.

Since the dictionary after the sixth iteration is identical with the initial dictionary, the

simplex method will go through the same set of dictionaries again and again without ever

finding the optimal solution (which is z = 1 in this example).

127

Notice that cycling means, we have a series of degenerate solutions, else we will have

increase in objective function, and cannot have the same dictionaries repeating. It is impor-

tant to note that cycling implies that we get the same solution in every iteration,

even though the set of basic variables change. It is not possible that we are chang-

ing the value of some variable without changing the objective function value (because we

always choose an entering variable that changes the objective function value when its value

is changed).

Lemma 23 If the simplex method fails to terminate, then it must cycle.

Proof : There are a total of m+n variables. Since in every iteration of the simplex method

we choose m basic variables, there are finite number of ways to choose them. Hence, if the

simplex method does not terminate, then there will be two dictionaries with the same set of

basic variables. Represent the two dictionaries as:

xi = bi −
∑

j /∈B

aijxj ∀ i ∈ B

z = v +
∑

j /∈B

cjxj .

and

xi = b∗i −
∑

j /∈B

a∗ijxj ∀ i ∈ B

z = v∗ +
∑

j /∈B

c∗jxj .

with the same set of basic variables xi(i ∈ B).

But there is a unique way of representing a (basic) variable in terms of a set of non-basic

variable. Hence the two dictionaries must be exactly equal. �

Cycling is a rare phenomena, but sometimes they do occur in practice. In fact, construct-

ing an LP problem on which the simplex method may cycle is difficult. It is known that

if the simplex method cycles off-optimum on a problem that has an optimal solution, then

the dictionaries must involve at least six variables and at least three equations. In practice,

cycling occurs very rarely.

128

Two popular rules for avoiding cycling are: (a) perturbation method and lexicographic

ordering (b) smallest subscript rule. We describe the smallest subscript rule here. The

former requires extra computation to choose the entering and leaving variables while the

latter leaves no choice in the hands of users to choose entering variables, which we can get

in the former one.

To avoid cycling, we introduce a rule called (Bland’s) smallest subscript rule. This

refers to breaking ties in the choice of the entering and leaving variables by always choos-

ing the candidate xk (i.e., the non-basic variable with positive coefficient in the objective

function) that has the smallest subscript k.

Lemma 24 The simplex method terminates as long as the entering and leaving variables are

selected by the smallest subscript rule (SSR) in each iteration.

Proof : By virtue of previous theorem, we need to show that cycling is impossible when

the SSR is used. Assume for contradiction that the simplex method with SSR generates a

sequence of dictionaries D0, D1, . . . , Dk such that Dk = D0.

Call a variable fickle if it is nonbasic in some iteration and basic in some other. Among

all fickle variables, let xt have the largest subscript. Due to cycling, there is a dictionary D

in the sequence D0, . . . , Dk with xt leaving (basic in D but nonbasic in the next dictionary),

and some other fickle variable xs entering (nonbasic in D but basic in the next iteration).

Further along in the sequence D0, D1, . . . , Dk, D1, . . . , Dk, there is a dictionary D∗ with xt

entering. Let us record D as

xi = bi −
∑

j /∈B

aijxj ∀ i ∈ B

z = v +
∑

j /∈B

cjxj .

Since all iterations leading from D to D∗ are degenerate, the objective function z must have

the same value v in both D and D∗. Thus, the last row of D∗ may be recorded as

z = v +
m+n
∑

j=1

c∗jxj ,

where c∗j = 0 wherever xj is basic in D∗. Since this equation has been obtained from D

by algebraic manipulations, it must satisfy every solution of D. In particular, it must be

129

satisfied by

xs = y, xj = 0 (j /∈ B, j 6= s), xi = bi − aisy (i ∈ B), z = v + csy ∀ y.

Thus, we have

v + csy = v + c∗sy +
∑

i∈B

c∗i (bi − aisy).

and, after simplification,

(

cs − c∗s +
∑

i∈B

c∗iais

)

y =
∑

i∈B

c∗i bi

for every choice of y. Since the RHS of the previous equation is a constant independent of

y, we have

cs − c∗s +
∑

i∈B

c∗iais = 0.

But xs is entering in D, implying cs > 0. Since xs is not entering in D∗ and yet s < t, we

have c∗s ≤ 0. Hence for some r ∈ B, c∗rars < 0. Note two points now:

• Since r ∈ B, the variable xr is basic in D; since c∗r 6= 0, the same variable is nonbasic

in D∗. Hence, xr is fickle, and we have r ≤ t.

• r 6= t: since xt is leaving in D, we have ats > 0 and so c∗tats > 0 (since c∗t > 0 with xt

entering in D∗).

This shows that r < t and yet xr is not entering in D∗. Thus, c∗r ≤ 0, and ars > 0. Since

all iterations from D to D∗ are degenerate, the two dictionaries describe the same solution.

Since xr is non-basic in D∗, its value is zero in both D and D∗, meaning br = 0. Hence, xr

was a candidate for leaving the basis of D - yet we picked xt, even though r < t. This is a

contradiction. �

3.6.3 Initialization

The only remaining point that needs to be explained is getting hold of the initial feasible

dictionary in a problem

130

max
n

∑

j=1

cjxj

s.t.
n

∑

j=1

aijxj ≤ bi ∀ i ∈ {1, . . . , m}

xj ≥ 0 ∀ j ∈ {1, . . . , n}.

with an infeasible origin. The problem with infeasible origin is that we may not know

whether a feasible solution exists at all, and even we know what a feasible dictionary will be

for that solution. One way of getting around these two problems is by the so called auxiliary

problem:

min x0

s.t.
n

∑

j=1

aijxj − x0 ≤ bi ∀ i ∈ {1, . . . , m}

xj ≥ 0 ∀ j ∈ {0, 1, . . . , n}.

A feasible solution of the auxiliary problem is readily available: set xj = 0 for j 6= 0 and

make the value of x0 sufficiently large. Further, the auxiliary problem is not unbounded

since x0 ≥ 0 and the objective function is min x0.

Theorem 33 The original LP problem has a feasible solution if and only if the optimal

value of the associated auxiliary problem is zero.

Proof : If the original problem has a feasible solution than the auxiliary problem has the

same feasible solution with x0 = 0. This is clearly the optimal value. Further if the auxiliary

problem has a feasible (optimal) solution with x0 = 0, then the original problem has the

same feasible solution. �

Hence, our objective is to solve the auxiliary problem. Consider the following example.

131

maxx1 − x2 + x3

s.t.

2x1 − x2 + 2x3 ≤ 4

2x1 − 3x2 + x3 ≤ −5
−x1 + x2 − 2x3 ≤ −1

x1, x2, x3 ≥ 0.

To avoid unnecessary confusion, we write the auxiliary problem in its maximization form,

and construct the dictionary as

x4 = 4− 2x1 + x2 − 2x3 + x0

x5 = −5 − 2x1 + 3x2 − x3 + x0

x6 = −1 + x1 − x2 + 2x3 + x0

w = −x0,

which is an infeasible dictionary. But it can be made feasible by pivoting on the most

negative bi row, i.e., x5 in this case, and choosing x0 as the entering variable. The new

(feasible) dictionary is:

x0 = 5 + 2x1 − 3x2 + x3 + x5

x4 = 9− 2x2 − x3 + x5

x6 = 4 + 3x1 − 4x2 + 3x3 + x5

z = −5 − 2x1 + 3x2 − x3 − x5.

In general, the dictionary corresponding to the auxiliary problem is:

xn+i = bi −
n

∑

j=1

aijxj + x0 ∀ i ∈ {1, . . . , m}

w = −x0.

132

which is infeasible. However, this can be transformed into a feasible dictionary. This is done

by a single pivot in which x0 enters and the “most infeasible”xn+i leaves. More precisely, the

leaving variable is that xn+k whose bk has the smallest (negative) value among all negative

bis. After pivoting, x0 assumes the positive value −bk, and each basic xn+i assumes the

non-negative value bi− bk. Now, we can continue with our simplex method. In our example,

two more iterations yield the following dictionary:

x3 = 1.6− 0.2x1 + 0.2x5 + 0.6x6 − 0.8x0

x2 = 2.2 + 0.6x1 + 0.4x5 + 0.2x6 − 0.6x0

x4 = 3− x1 − x6 + 2x0

w = −x0.

This dictionary is an optimal solution of the auxiliary problem with x0 = 0. Further, this

points to a feasible dictionary of the original problem.

x3 = 1.6− 0.2x1 + 0.2x5 + 0.6x6

x2 = 2.2 + 0.6x1 + 0.4x5 + 0.2x6

x4 = 3− x1 − x6

z = −0.6 + 0.2x1 − 0.2x5 + 0.4x6.

So, we learned how to construct the auxiliary problem, and its first feasible dictionary.

In the process of solving the auxiliary problem, it may be possible that x0 may be

a candidate for the leaving variable in which case we pick x0. Immediately, after

pivoting we get

• x0 as a non-basic variable, in which case w = 0.

Clearly, this is an optimal solution. However, we may also reach an optimal dictionary of

auxiliary problem with x0 basic. If value of w is non-zero in that, then we simply conclude

that the original problem is infeasible. Else, x0 is basic and the optimal value of w is zero.

We argue that this is not possible. Since the dictionary preceding the final dictionary was

not optimal, the value of w = −x0 must have changed from some negative value to zero

133

in the final iteration. To put it differently, the value of x0 must have changed from some

positive level to zero in this iteration. This means, x0 was also a candidate for leaving the

basis, and we should have picked it according to our policy. This is a contradiction.

Hence, we either construct an optimal solution of the auxiliary problem where x0 is a

non-basic variable, and we proceed to the original problem by constructing a new feasible

dictionary, or we conclude that the original problem is infeasible.

This strategy of solving an LP is known as the two phase simplex method. In the

first phase, we set up and solve the auxiliary problem; if we find an optimal solution of the

auxiliary problem, then we proceed to the second phase, solving the original problem. For

the second phase, we take the final dictionary of the first-phase and ignore x0. We take the

same feasible dictionary ignoring x0 and writing the objective function value in terms of the

non-basic variables (except x0).

Theorem 34 (Fundamental Theorem of Linear Programming) Every LP problem in

the standard form has the following three properties:

1. If it has no optimal solution, then it is either unbounded or infeasible.

2. If it has a feasible solution, then it has a basic feasible solution.

3. If it has an optimal solution, then it has a basic optimal solution.

Proof : The first phase of the two phase simplex method either discovers that the problem

is infeasible or else it delivers a basic feasible solution. The second phase either discovers

that the problem is unbounded or gives a basic optimal solution - due to Lemma 24, Lemma

22, and Lemma 21. �

Note that if the problem is not in standard form then the theorem does not hold, e.g.,

max x s.t. x < 0 has no optimal solution even though it is neither infeasible nor unbounded.

134

x1

x2

(0,0) (4,0)

(0,2)

(2.2)

x1+x2=1

x2=2

x1+2x2

Figure 3.3: Illustrating the Simplex Method

3.6.4 An Example Illustrating Geometry of the Simplex Method

We give an example to illustrate how the simplex method works. Consider the following

linear program.

max
x1,x2

x1 + 2x2

s.t.

x1 + x2 ≤ 4

x2 ≤ 2

x1, x2 ≥ 0.

The feasible region for this LP is shown in Figure 3.3. Clearly, no first phase is required

here since the origin is a feasible solution. Hence, the first dictionary looks as follows (x3

and x4 are the slack variables).

x3 = 4− x1 − x2
x4 = 2− x2

z = x1 + 2x2.

Note that the feasible dictionary gives the solution x3 = 4 and x4 = 2. It shows the amount

of slack in the two constraints. The two constraints x1 ≥ 0 and x2 ≥ 0 are tight. This

describes the point (0, 0).

135

Let us choose x2 as the entering variable. In that case, the binding constraint is x4 =

2− x2. So, x4 is the leaving variable. Hence, x4 = 0. This means the constraint x2 ≤ 2 will

now be tight (along with x1 ≥ 0). This describes the point (0, 2).

Finally, x1 is the entering variable, in which case the constraint corresponding to x3

became tight (along with the constraint corresponding to x4). This describes the point

(2, 2), which is the optimal solution according to the simplex method.

Hence, we go from one corner point to the other in the simplex method as shown in

Figure 3.3.

3.7 Extreme Points and Simplex Method

We will discuss a fundamental property of a simplex dictionary. Below we describe the

constraints of a linear program as Ax ≤ b, where we fold the non-negativity constraints into

them.

Theorem 35 A feasible solution described by a feasible dictionary (i.e., a basic feasible

solution) of a linear program max cx subject to x ∈ {x ∈ Rn : Ax ≤ b} is an extreme point

of {x ∈ Rn : Ax ≤ b}.

Proof : Let z be a feasible solution of max cx s.t. Ax ≤ b (x ≥ 0 is folded into the

constraints) described by a feasible dictionary. An implication of this is n non-basic variables

have value zero in the dictionary. This implies that the constraints (either non-negativity or

the original constraints) corresponding to these non-basic variables are binding, and hence,

belong to Az.

Suppose r(Az) < n. Then, we know that (from earlier proof) that there exists δ > 0

and z′ 6= 0 with Azz
′ = 0 such that z + δz′ is a solution to the linear program. The set of

constraints in Az are also binding for (z + δz′). Hence, the values of non-basic variables in

the dictionary corresponding to z are also zero in (z + δz′).

But setting, a set of non-basic variables to zero, describes a unique feasible solution to

the linear program. This implies that z′ = 0, a contradiction. Hence, r(Az) = n. From our

characterization of extreme points of polyhedron, z is an extreme point of the polyhedron

Ax ≤ b. �

136

3.8 Duality

Duality is probably the most used concept of linear programming in both theory and practice.

The central motivation to look for a dual is the following: How do we find bounds on

the objective function of a linear program without solving it completely? To

understand further, let us look at the following example.

Z = max 4x1 + x2 + 5x3 + 3x4

s.t.

x1 − x2 − x3 + 3x4 ≤ 1

5x1 + x2 + 3x3 + 8x4 ≤ 55

−x1 + 2x2 + 3x3 − 5x4 ≤ 3

x1, x2, x3, x4 ≥ 0.

Rather than solving this LP, let us try to find bounds on the optimal value z∗ of this

LP. For example, (0, 0, 0, 0) is a feasible solution. Hence, z∗ ≥ 0. Another feasible solution

is (0, 0, 1, 0) which gives z∗ ≥ 5. Another feasible solution is (3, 0, 2, 0) which gives z∗ ≥ 22.

But there is no systematic way in which we were looking for the estimate - it was purely

guess work. Duality provides one systematic way of getting this estimate.

Let us multiply the second constraint by 5
3
, which gives us

25

3
x1 +

5

3
x2 + 5x3 + 40x4 ≤

275

3
.

But notice that

4x1 + x2 + 5x3 + 3x4 ≤
25

3
x1 +

5

3
x2 + 5x3 + 40x4 ≤

275

3
.

Hence z∗ ≤ 275
3
. With a little thinking, we can improve this bound further. In particular,

add the second and third constraints to get

4x1 + 3x2 + 6x3 + 3x4 ≤ 58.

Using the same logic as before, we get z∗ ≤ 58. Here, we are constructing a series of upper

bounds for the objective function value, while earlier we were constructing a series of lower

bounds.

137

Formally, we construct linear combinations of the inequalities. We multiply jth constraint

by yj, and add them all up. The resulting inequality reads

(y1 + 5y2 − y3)x1 + (−y1 + y2 + 2y3)x2 + (−y1 + 3y2 + 3y3)x3 + (3y1 + 8y2 − 5y3)x4

≤ y1 + 55y2 + 3y3. (3.9)

Of course, each of these multipliers must be non-negative. Next, we want to use the LHS

of Equation (3.9) as an upper bound on 4x1 + x2 + 5x3 + 3x4. This can be justified only

if in (3.9), the coefficient of each xi is at least as big as the corresponding coefficient in the

objective function. More explicitly, we want

y1 + 5y2 − y3 ≥ 4

−y1 + y2 + 2y3 ≥ 1

−y1 + 3y2 + 3y3 ≥ 5

3y1 + 8y2 − 5y3 ≥ 3.

If the multipliers are non-negative (note here that if the constraints are equalities, then we

do not need the multipliers to be non-negative - they can be free) and if they satisfy these

inequalities, then we can get an upper bound on the objective function, i.e., for every feasible

solution (x1, x2, x3, x4) of the original problem and every feasible solution (y1, y2, y3) of the

previous set of inequalities, we have

4x1 + x2 + 5x3 + 3x4 ≤ y1 + 55y2 + 3y3.

Further optimal solution z∗ of the original LP satisfies

z∗ ≤ y1 + 55y2 + 3y3.

Of course we want this bound to be as close to optimal as possible. This can be done by

minimizing y1 + 55y2 + 3y3. So, we are led to another LP problem that gives us an upper

bound of the original problem.

min y1 + 55y2 + 3y3

s.t.

y1 + 5y2 − y3 ≥ 4

−y1 + y2 + 2y3 ≥ 1

−y1 + 3y2 + 3y3 ≥ 5

3y1 + 8y2 − 5y3 ≥ 3

y1, y2, y3 ≥ 0.

138

3.8.1 Writing Down the Dual

From our discussion of the example, it is clear how to write the dual of an original problem.

In general, the dual problem of

max
n

∑

j=1

cjxj

s.t. (P)
n

∑

j=1

aijxj ≤ bi ∀ i ∈ {1, . . . , m}

xj ≥ 0 ∀ j ∈ {1, . . . , n}.

is defined as the problem

min
m
∑

i=1

biyi

s.t. (D)
m
∑

i=1

aijyi ≥ cj ∀ j ∈ {1, . . . , n}

yi ≥ 0 ∀ i ∈ {1, . . . , m}.

Notice the following things in the dual (D):

1. For every constraint of (P), we have a variable in (D).

2. Further, for every variable of (P), we have a constraint in (D).

3. The coefficient in the objective function of (P) appears on the RHS of constraints in

(D) and the RHS of constraints in (P) appear as coefficients of objective function in

(D).

As an exercise, verify that dual of (D) is (P).

Lemma 25 (Weak Duality) Let (x1, . . . , xn) be a feasible solution of (P) and (y1, . . . , ym)

be a feasible solution of (D). Then

n
∑

j=1

cjxj ≤
m
∑

i=1

biyi.

139

Proof :

n
∑

j=1

cjxj ≤
n

∑

j=1

(
m
∑

i=1

aijyi)xj

=

m
∑

i=1

(

n
∑

j=1

aijxj)yi

≤
m
∑

i=1

biyi.

�

Lemma 25 is useful since if we find feasible solutions of (P) and (D) at which their

objective functions are equal, then we can conclude that they are optimal solutions. Indeed,

Lemma 25 implies that if (x∗1, . . . , x
∗
n) is an optimal solution of (P) and (y∗1, . . . , y

∗
m) is an

optimal solution of (D) such that
∑n

j=1 cjx
∗
j =

∑m
i=1 biy

∗
i , then for every feasible solution

(x1, . . . , xn) of (P) and for every feasible solution (y1, . . . , yn), we can write

n
∑

j=1

cjxj ≤
m
∑

i=1

biy
∗
i =

n
∑

j=1

cjx
∗
j ≤

m
∑

i=1

biyi.

3.9 The Duality Theorem

The explicit version of the theorem is due to Gale, but it is supposed to have originated from

conversations between Dantzig and von Neumann in the fall of 1947.

Theorem 36 (The Duality Theorem - Strong Duality) Let (x∗1, . . . , x
∗
n) be a feasible

solution of (P) and (y∗1, . . . , y
∗
m) be a feasible solution of (D). (x∗1, . . . , x

∗
n) is an optimal

solution of (P) and (y∗1, . . . , y
∗
m) is an optimal solution of (D) if and only if

n
∑

j=1

cjx
∗
j =

m
∑

i=1

biy
∗
i . (SD)

Before presenting the proof, let us illustrate the crucial point of the theorem: the optimal

solution of (D) can be read off the z-row of the final dictionary for (P). For the example,

140

the final dictionary of (P) is

x2 = 14− 2x1 − 4x3 − 5x5 − 3x7

x4 = 5− x1 − x3 − 2x5 − x7
x6 = 1 + 5x1 + 9x3 + 21x5 + 11x7

z = 29− x1 − 2x3 − 11x5 − 6x7.

Note that the slack variables x5, x6, x7 can be matched with the dual variables y1, y2, y3 in

a natural way. In the z-row of the dictionary, the coefficients of these slack variables are

(−11, 0,−6). As it turns out the optimal dual solution is obtained by reversing the signs of

these coefficients, i.e., (11, 0, 6). The proof of the duality theorem works on this logic.

Proof : Suppose Equation (SD) holds. Assume for contradiction that (x′1, . . . , x
′
n) 6=

(x∗1, . . . , x
∗
n) is a feasible solution of (P) such that

∑n
j=1 cjx

′
j >

∑n
j=1 cjx

∗
j =

∑m
i=1 biy

∗
i .

By Lemma 25, this is a contradiction. Hence, (x∗1, . . . , x
∗
n) is an optimal solution of (P). A

similar argument shows that (y∗1, . . . , y
∗
m) is an optimal solution of (D).

For the other side of the proof, we assume that (x∗1, . . . , x
∗
n) is an optimal solution of (P),

and find a feasible solution (y∗1, . . . , y
∗
m) that satisfies the claim in the theorem, and such a

solution will be optimal by the first part of the proof. In order to find that feasible solution,

we solve (P) using the simplex method using slack variables

xn+i = bi −
n

∑

j=1

aijxj ∀ i ∈ {1, . . . , m}.

Since an optimal solution exists, the simplex method finds it, and the final row of the final

dictionary reads

z = z∗ +
m+n
∑

k=1

c̄kxk,

where c̄k = 0 whenever xk is a basic variable and c̄k ≤ 0 otherwise. In addition, z∗ is the

optimal value of (P), hence

z∗ =

n
∑

j=1

cjx
∗
j .

We claim that

y∗i = −c̄n+i ∀ i ∈ {1, . . . , m}

141

is a feasible solution of (D) satisfying the claim of our theorem. Substituting z =
∑n

j=1 cjxj

and substituting for slack variables, we get

n
∑

j=1

cjxj = z∗ +

n
∑

j=1

c̄jxj −
m
∑

i=1

y∗i

(

bi −
n

∑

j=1

aijxj

)

,

which may be rewritten as

n
∑

j=1

cjxj =
(

z∗ −
m
∑

i=1

biy
∗
i

)

+
n

∑

j=1

(

c̄j +
m
∑

i=1

aijy
∗
i

)

xj .

This equation is obtained from algebraic manipulations of the definitions of slack variables

and objective function, and must hold for all values of x1, . . . , xn. Hence, we have

z∗ =

m
∑

i=1

biy
∗
i ; cj = c̄j +

m
∑

i=1

aijy
∗
i ∀ j ∈ {1, . . . , n}.

Since c̄k ≤ 0 for every k ∈ {1, . . . , m+ n} we get

m
∑

i=1

aijy
∗
i ≥ cj ∀ j ∈ {1, . . . , n}

y∗i ≥ 0 ∀ i ∈ {1, . . . , m}.

This shows that (y∗1, . . . , y
∗
m) is a feasible solution of (D). Finally, z∗ =

∑n
j=1 cjx

∗
j =

∑m
i=1 biy

∗
i . �

3.9.1 Relating the Primal and Dual Problems

First, notice that dual of a dual problem is the original primal problem, i.e., dual of (D)

is (P). A nice corollary to this observation is that a linear program has an optimal

solution if and only if its dual has an optimal solution.

By Lemma 25, if the primal problem is unbounded, then the dual problem is infeasible.

To see this, assume for contradiction that the dual is feasible when the primal is unbounded.

This means, the feasible dual solution provides an upper bound on the optimal value of the

primal problem. This is a contradiction since the primal problem is unbounded. By the

same argument, if the dual is unbounded, then the primal is infeasible.

This also shows that if the primal and dual are both feasible, then they both have optimal

solutions, i.e., none of them is unbounded. However, both the primal and the dual can be

142

Dual

Optimal Infeasible Unbounded

Optimal
√ × ×

Primal Infeasible × √ √

Unbounded × √ ×

Table 3.1: Primal-dual combinations possibilities

infeasible. For example,

max 2x1 − x2
s.t.

x1 − x2 ≤ 1

−x1 + x2 ≤ −2
x1, x2 ≥ 0

and its dual are infeasible. We summarize these observations in the Table 3.1.

Duality has important practical applications. In certain cases, it may be better to solve

the dual problem than the primal problem, and then read the primal solution from the last

row of the final dictionary. For example, a primal problem with 100 constraints and two

variables will have two constraints in the dual. Typically, the number of simplex method

iterations are insensitive to the number of variables and proportional to the number of

rows/constraints. Hence, we may be better off solving the dual in this case.

3.9.2 Farkas Lemma and Duality Theory

Here, we prove the Farkas Lemma using duality theory.

Theorem 37 Let A be a m × n matrix and b be a m × 1 matrix. Suppose F = {x ∈ Rn
+ :

Ax = b} and G = {y ∈ Rm : yb < 0, yA ≥ 0}. The set F is non-empty if and only if the set

G is empty.

Proof : Consider the linear program maxx∈Rn 0 · x subject to x ∈ F . Denote this linear

program as (P). The dual of this linear program is miny∈Rm yb subject to yA ≥ 0. Denote

this linear program as (D).

Now, suppose F is non-empty. Then, (P) has an optimal value, equal to zero. By strong

duality, the optimal value of (D) is zero. Hence, for any feasible solution y of (D), we have

yb ≥ 0. This implies that G is empty.

143

Suppose G is empty. Hence, for every feasible solution y of (D), yb ≥ 0. This implies that

(D) is not unbounded. Since, y = 0 is a feasible solution of (D), it is an optimal solution.

This implies that (P) has an optimal solution. Hence, F is non-empty. �

3.9.3 Complementary Slackness

The question we ask in this section is given a feasible solution of the primal problem (P) and

a feasible solution of the dual problem (D), are there conditions under which these solutions

are optimal. The following theorem answers this question.

Theorem 38 (Complementary Slackness) Let (x∗1, . . . , x
∗
n) and (y∗1, . . . , y

∗
m) be feasi-

ble solutions of (P) and (D) respectively. (x∗1, . . . , x
∗
n) is an optimal solution of (P) and

(y∗1, . . . , y
∗
m) is an optimal solution of (D) if and only if

[

m
∑

i=1

aijy
∗
i − cj

]

x∗j = 0 ∀ j ∈ {1, . . . , n} (CS-1)

[

bi −
n

∑

j=1

aijx
∗
j

]

y∗i = 0 ∀ i ∈ {1, . . . , m}. (CS-2)

Proof : Denote y∗ := (y∗1, . . . , y
∗
m) and x

∗ := (x∗1, . . . , x
∗
n). Since x∗ and y∗ are feasible, we

immediately get

[

m
∑

i=1

aijy
∗
i − cj

]

x∗j ≥ 0 ∀ j ∈ {1, . . . , n}

[

bi −
n

∑

j=1

aijx
∗
j

]

y∗i ≥ 0 ∀ i ∈ {1, . . . , m}.

Now suppose that x∗ and y∗ are optimal. Assume for contradiction that one of the inequalities

in the first set of constraints is not tight. In that case, adding up all the constraints in the

first set will give us

0 <
n

∑

j=1

m
∑

i=1

aijy
∗
i x

∗
j −

n
∑

j=1

cjx
∗
j

≤
m
∑

i=1

biy
∗
i −

n
∑

j=1

cjx
∗
j Because x∗ is feasible to (P)

= 0 Because x∗ and y∗ are optimal solutions and Theorem 36

144

This gives us a contradiction. A similar proof shows (4.12) holds.

Now suppose (4.11) and (4.12) holds. Then, add all the equations in (4.11) to get

n
∑

j=1

m
∑

i=1

aijx
∗
jy

∗
i =

n
∑

j=1

cjx
∗
j .

Similarly, add all the equations in (4.12) to get

m
∑

i=1

n
∑

j=1

aijx
∗
jy

∗
i =

m
∑

i=1

biy
∗
i .

This gives us
∑n

j=1 cjx
∗
j =

∑m
i=1 biy

∗
i . By Theorem 36, x∗ is an optimal solution of (P) and

y∗ is an optimal solution of (D). �

Theorem 38 gives us a certificate of proving optimality. The idea is clear from our earlier

interpretation of optimal dual variable values as negative of coefficients of slack variables in

the objective function row of the final simplex dictionary. If a dual variable has positive

optimal value, this implies that coefficient of slack variable is negative. This further implies

that the slack variable is non-basic in the final simplex dictionary. Hence, its value is zero in

the primal optimal solution. This implies that the corresponding constraint is binding in the

optimal solution. Similarly, if some constraint is non-binding, then the corresponding slack

variable has positive value in the optimal solution. This implies that the slack variable is

basic in the final simplex dictionary, which further implies that its coefficient is zero in the

objective function row. Hence, the corresponding dual solution has zero value.

Consider the following example.

maxx1 + x2

s.t.

x1 ≤ 1

2x1 + 3x2 ≤ 6

x1, x2 ≥ 0.

Consider an optimal solution (x∗1, x
∗
2) of this LP, and assume that x∗1 < 1. Now, let (y∗1, y

∗
2) be

a dual optimal solution. This should provide a bound to x∗1 + x∗2 ≤ (y∗1 + 2y∗2)x
∗
1 + (3y∗2)x

∗
2 <

y∗1 + 6y∗2 (since x∗1 < 1). By strong duality, this is not possible unless we set y∗1 = 0. This is

exactly the idea behind complementary slackness.

145

3.9.4 Interpreting the Dual

In optimization, the dual variables are often called Lagrange multipliers. In economics, the

dual variables are interpreted as prices of resources, where resources are constraints. Consider

the following example.

Suppose there are n products that a firm can manufacture. Each product requires the use

ofm resources. To manufacture product j, the firm needs aij amount of resource i (naturally,

it makes sense to assume aij ≥ 0 here, but one need not). The amount of resource i available

is bi. The market price of product j is cj (again, both bi and cj can be assumed to be non-

negative in this story). The firm needs to decide how much to manufacture of each product

to maximize his revenue subject to resource constraints. The problem can be formulated as

a linear program - formulation (PE).

max

n
∑

j=1

cjxj

s.t. (PE)
n

∑

j=1

aijxj ≤ bi ∀ i ∈ {1, . . . , m}

xj ≥ 0 ∀ j ∈ {1, . . . , n}.

Now, suppose an investor wants to buy this firm’s resources. He proposes a price for

every resource. In particular, he proposes a price of yi for resource i. Moreover, the investor

promises that he will set his prices high enough such that the firm gets at least as much

selling the resources as he would turning the resources into products and then selling them

at price vector c. Hence, the following constraints must hold

m
∑

i=1

aijyi ≥ cj ∀ j ∈ {1, . . . , n}.

Another way to think of these constraints is that if the constraint for product j does not

hold, then the firm will not sell resources required to produce product j since by selling them

in the market he gets a per unit price of cj which will be higher than
∑m

i=1 aijyi - the per

unit profit from selling.

Of course, all prices offered by the investor must be non-negative. The investor must now

try to minimize the price he needs to pay to buy the resources. Hence, he should

min

m
∑

i=1

biyi.

146

In particular, the investor will solve the following linear programming problem (DE).

min

m
∑

i=1

biyi

s.t. (DE)
m
∑

i=1

aijyi ≥ cj ∀ j ∈ {1, . . . , n}

yi ≥ 0 ∀ i ∈ {1, . . . , m}.

Strong duality theorem says that the optimal value of investor’s cost equals the optimal

value of firm’s profit. The dual variables are thus prices for the resources in the primal

problem.

Now, let us interpret the complementarity slackness conditions here. Suppose the firm

has an optimal production plan in place. In this plan, he does not use resource, say, i

completely, i.e., the constraint corresponding to i is not binding. In that case, he can sell the

resources at unit price of zero. But if the price offered is strictly positive for resource i, then

the production plan must be using all the resources. Intuitively, the demand for the input i

is high, leading to positive prices.

147

148

Chapter 4

Integer Programming and

Submodular Optimization

4.1 Integer Programming

Suppose that we have a linear program

max

n
∑

j=1

cjxj (P)

subject to
n

∑

j=1

aijxj ≤ bi for all i ∈ {1, . . . , m}

xj ≥ 0 ∀ j ∈ {1, . . . , n}.

Now, we add in the restriction that some of the variables in (P) must take integer values.

If some but not all variables are integer, we have a Mixed Integer Program (MIP),

written as

max
n

∑

j=1

cjxj +

q
∑

j=1

hjyj (MIP)

subject to
n

∑

j=1

aijxj +

q
∑

j=1

gijyj ≤ bi for all i ∈ {1, . . . , m}

xj ≥ 0 ∀ j ∈ {1, . . . , n}.yj ∈ Set of non-negative integers ∀ j ∈ {1, . . . , q}..

149

where A is again m× n matrix, G is m× p, h is a p row vector, and y is a p column vector

of integer variables.

If all variables are integer, then we have an Integer Program (IP), written as

max

n
∑

j=1

cjxj (IP)

subject to
n

∑

j=1

aijxj ≤ bi for all i ∈ {1, . . . , m}

xj ∈ Set of non-negative integers ∀ j ∈ {1, . . . , n}.

If the variables in an IP is restricted to take values in {0, 1} then the IP is called a Binary

Integer Program (BIP).

4.1.1 Common Integer Programming Problems

We discuss some examples of integer programming problems.

Assignment problem. As the name suggests, it is about finding an optimal way of

assigning a fixe set of objects to a set of agents, where each agent can be assigned at most

one object and each object can be assigned to at most one agent. Formally, there is a

set of indivisible goods G = {1, . . . , n}. The goods need to be assigned to a set of buyers

B = {1, . . . , m}. Each buyer can be assigned at most one good from G. If good j ∈ G

is assigned to buyer i ∈ B, then it generates a value of vij . The objective is to find an

assignment that maximizes the total value generated.

Define variables xij to denote if buyer i is assigned good j, i.e., xij = 1 if i is assigned

j, and zero otherwise. So, it is a binary variable. The constraints should ensure that no

good is assigned to more than one buyer and no buyer is assigned more than one good. The

150

objective function is to maximize
∑

i∈B

∑

j∈G vijxij . Hence, the formulation is as follows:

max
∑

i∈B

∑

j∈G

vijxij

s.t. (AP)
∑

i∈B

xij ≤ 1 ∀ j ∈ G
∑

j∈G

xij ≤ 1 ∀ i ∈ B

xij ∈ {0, 1} ∀ i ∈ B, ∀ j ∈ G.

Knapsack problem. The knapsack problem is about filling a fixed size knapsack with

various sized objects so as to maximize the value of objects in the knapsack. There is a

budget b available for investment in n projects. Let aj be the required investment of project

j and πj is the expected profit from project j. The goal is to choose a set of projects to

maximize expected profit, given that the total investment should not exceed the budget b.

Define variables xj to denote if investment is done in project j or not. The problem can

be formulated as an IP as follows:

max
n

∑

j=1

πjxj

s.t. (KNS)
n

∑

j=1

ajxj ≤ b

xj ∈ {0, 1} ∀ j ∈ {1, . . . , n}.

Tha Knapsack problem belongs to one of the hardest classes of optimization problems - a

fast algorithm to solve such classes of problems is not known. Consider a knapsack problem

with three projects having investment requirement of 1, 3, and 2 respectively and expected

profit of 5, 4, and 3 respectively. Suppose the budget is 5. A greedy way of trying to solve for

this problem is to find for every project the profit per unit of investment, which are 5, 4
3
, and

3
2
. Then choose the set of projects with the highest profit per unit of investment given the

budget constraint. In this case, it is projects 1 and 3. However, the optimal project choice

is projects 1 and 2. Thus, the greedy algorithm does not work in the knapsack problem.

Set covering problem. This is about covering various locations (elements of a set) at

minimum cost. There is a set ofM streets and a set of N potential centers. We are interested

151

in setting up public facilities (e.g., fire stations, police stations etc.) at the centers to cover

the streets. Every center j ∈ N can cover a subset Sj ⊆ M of streets. To open a center j,

there is a cost of cj. The objective is to cover the streets with minimum possible cost.

First, we process the input data to build an incidence matrix a, where for every i ∈ M
and j ∈ N , aij = 1 if i ∈ Sj and zero otherwise. Then let the variable xj = 1 if center j ∈ N
is opened and zero otherwise. This leads to the following formulation:

min
∑

j∈N

cjxj

s.t. (SC)
∑

j∈N

aijxj ≥ 1 ∀ i ∈M

xj ∈ {0, 1} ∀ j ∈ N.

4.2 Relaxation of Integer Programs

Unlike linear programs, integer programs are hard to solve. We look at some ways to get

bounds on the objective function of an integer program without solving it explicitly.

Consider an IP in the form of (IP). Denote the feasible region of (IP) as X ⊆ Zn, where

Z is the set of integers. We can write (IP) simply as max cx subject to x ∈ X .

Definition 26 A relaxed problem (RP) defined as max f(x) subject to x ∈ T ⊆ Rn is

a relaxation of (IP) if

• X ⊆ T ,

• f(x) ≥ cx for all x ∈ X.

Notice that the relaxation does not impose integrality constraint on x. Also, the feasible

space of the relaxation contains the feasible space of (IP). Lastly, the objective function

value of the relaxation is not less than the objective function value of (IP) over the feasible

set X (but not necessarily the entire T).

152

An example:

max 4x1 − x2
s.t.

7x1 − 2x2 ≤ 14

x2 ≤ 3

2x1 − 2x2 ≤ 3

x1, x2 ≥ 0 and integers.

A relaxation of this IP can be the following linear program.

max 4x1

s.t.

7x1 − 2x2 ≤ 14

x2 ≤ 3

2x1 − 2x2 ≤ 3

To see why this is a relaxation, notice that the feasible region of this LP contains all the

integer points constituting the feasible region of the IP. Also 4x1 ≥ 4x1−x2 for all x1, x2 ≥ 0.

Lemma 26 Let the objective function value at the optimal solution of (IP) and its relaxation

(RP) be z and zr respectively (if they exist). Then zr ≥ z.

Proof : Let x∗ be an optimal solution of (IP). z = cx∗. By definition of the relaxation

f(x∗) ≥ cx∗ = z. Also, since x∗ ∈ X ⊆ T , zr ≥ f(x∗). Hence zr ≥ z. �

Not all relaxations are interesting - in the sense that they may give arbitrarily bad bounds.

But an interesting relaxation is the following.

Definition 27 A linear programming relaxation of (IP) is the following linear pro-

gram:

max cx

s.t.

Ax ≤ b

x ≥ 0.

153

So, a linear programming relaxation of an IP is defined exactly the same as the IP itself

except that the integrality constraints are not there.

The linear programming relaxation for the example above has an optimal solution with

x1 =
20
7
and x2 = 3, with the objective function value zlp = 59

7
. Hence the objective function

value of IP at the optimal solution cannot be more than 59
7
. We can say more. Since the

optimal solution is integral this bound can be set to 8.

Lemma 27 1. If a relaxation RP is infeasible, then the original IP is infeasible.

2. Let x∗ be an optimal solution of RP. If x∗ ∈ X and f(x∗) = cx∗, then x∗ is an optimal

solution of IP.

Proof : (1) As RP is infeasible, T = ∅, and thus X = ∅. (2) As x∗ ∈ X , optimal objective

function value of IP z ≥ cx∗ = f(x∗) = zr, where zr is the optimal objective function value

of RP. But we know that z ≤ zr. Hence z = zr. �

Notice that an LP relaxation of an IP has the same objective function. Hence, if LP

relaxation gives integer solution, then we can immediately conclude that it is indeed the

optimal solution of the IP. As an example, consider the following integer program:

max 7x1 + 4x2 + 5x3 + 2x4

s.t.

3x1 + 3x2 + 4x3 + 2x4 ≤ 6

x1, x2, x3, x4 ≥ 0 and integers.

The LP relaxation of this IP gives an optimal solution of (2, 0, 0, 0). This is an integer

solution. Hence it is an optimal solution of the integer program.

If a relaxation of an IP is unbounded, then we cannot draw any conclusion. First, the IP

is a relaxation of itself (by setting T = X and f(x) = cx). Hence, if a relaxation of an IP is

unbounded, then the IP can be unbounded. Second, consider the following IP.

max−x
s.t.

x ≥ 2

x integer.

This IP has an optimal solution of x = 2. But if we remove the integrality constraint and

x ≥ 2 constraint, then the feasible set is R, and the relaxed problem is unbounded. Finally,

154

if a relaxation of an IP is unbounded, then the IP can be infeasible. Consider the following

IP.

max x1

s.t.

x2 ≤ 1.2

x2 ≥ 1.1

x1, x2 ≥ 0 and integer.

This IP has no feasible solution. However, the LP relaxation is unbounded.

For binary programs, the LP relaxation should add ≤ 1 constraints for all the binary

variables. For example, if we impose that x1, . . . , x4 are binary variables, then the LP

relaxation will impose the constraints x1 ≤ 1, x2 ≤ 1, x3 ≤ 1, x4 ≤ 1. This LP relaxation

gives an optimal solution of (1, 1, 0, 0), which is also an optimal solution of the (binary)

integer program.

Notice that a feasible (integral) solution to an integer program provides a lower bound

(of a maximization problem). This is called a primal bound. But a relaxation gives an

upper bound for the problem. This is called a dual bound.

4.3 Integer Programs with Totally Unimodular Matrices

Definition 28 A matrix A is totally unimodular (TU) if every square submatrix of A

has determinant +1, −1, or 0.

A1 =







1 1 0

−1 1 0

0 0 1







Matrix A1 has a determinant of 2. Hence, it is not TU.

A2 =











1 −1 −1 0

−1 0 0 1

0 1 0 −1
0 0 1 0











However, matrix A2 is TU. Notice some important properties of TU matrices:

1. If A is a TU matrix, then every element of A is either 1, −1, or 0.

155

2. By the definition of determinant, the transpose of a TU matrix is also TU. Since

transpose of the transpose of a matrix is the same matrix, we can conclude that if the

transpose of a matrix is TU, then so is the original matrix.

3. Also note that if a m× n matrix A is TU and I is a m×m identity matrix, then the

matrix [A|I] is also TU.

4. If A is a TU matrix, then multiplying a particular row or column of A by −1 gives a

TU matrix.

Theorem 39 Consider an IP of the following form: max cx subject to Ax ≤ b,x ≥ 0 and

x integer. Suppose b is an integer matrix. If A is totally unimodular, then the optimal

solution of the LP relaxation, if it exists, is also the optimal solution of IP.

Proof : First if A is TU, by adding slack variables, we get a new matrix which is of the

form [A|I], where I is the identity matrix. So, this matrix is also a TU matrix. If the

optimal solution of LP relaxation exists, then let B be the set of basic variables in the final

dictionary of the simplex method. We can then write the optimal solution in matrix form

as xB = A−1

B
b and the remaining (non-basic) variables take value zero. Since [A|I] is TU,

determinant of AB, which is a square submatrix of [A|I] is 1 or -1 (it cannot be zero since

AB is non-singular). So, A−1

B
b is integral. By Lemma (27), (xB, 0) is an optimal solution

of IP. �

Note that in many problems, we have the constraints in the form Ax = b instead of

Ax ≤ b. But Ax = b can be written as Ax ≤ b and −Ax ≤ −b. Now, note that the matrix

(AT ,−AT) is totally unimodular if A is totally unimodular (to prove this, add to A a row of

−A successively, and perform the elementary matrix operation of substituting the new row

with the sum of itself and its negative row to get a row of zeros). This will show that the

new constraint matrix is totally unimodular.

Theorem 39 inspires us to look for sufficient conditions under which a matrix can be TU.

Here is a simple sufficient condition.

Theorem 40 A matrix A is TU if

1. every element of A is 1,−1, or 0,

2. every column contains at most two non-zero elements,

156

3. there exists a partition (M1,M2) of set of rows M of A such that each column j con-

taining two non-zero elements satisfies
∑

i∈M1
aij =

∑

i∈M2
aij (Note: Here, M1 or M2

can be empty also. If M1 = ∅ then
∑

i∈M1
aij = 0.).

Proof : Suppose A is not TU. Consider the smallest square submatrix of A whose determi-

nant is /∈ {1,−1, 0}. Let this submatrix be B. Let B contain the set of rows L. By the first

condition |L| > 1. B cannot contain a column with a single non-zero entry, as othewise the

minor corresponding to that entry will also have a determinant /∈ {1,−1, 0}, and B will not

be minimal. So, B contains two non-zero entries in each column.

Now, note that L ∩M1 and L ∩M2 is a partition of rows in L. Using the last condition

and the fact that all non-zero entries of a column are either in L ∩M1 or in L ∩M2, we get

that
∑

i∈L∩M1

aij =
∑

i∈L∩M2

aij .

Adding the rows of L ∩M1 and subtracting from the rows in L ∩M2 gives the zero vector,

and so determinant of B is zero (this follows from the fact that determinant of a matrix

remains the same after an elementary matrix operation - the elementary matrix operation

here is to replace the first row entries by sum of entries of rows in L ∩M1 minus the sum of

entries of rows of L∩M2, and this generates a zero row vector), which is a contradiction. �

A simple consequence of Theorem (40) is that the following matrix is TU (usingM1 =M

and M2 = ∅).

1. Each entry is 1,−1, or 0.

2. Each row (column) contains at most two non-zero entries.

3. If a row (column) contains two non-zero entries, then the entries are of opposite sign.

Using this, we can verify that the following matrices are TU.

A3 =











0 1 0

0 −1 −1
0 0 1

−1 0 0











A4 =











1 1 0 0

0 1 1 0

0 0 1 1

1 0 0 1











157

A3 is TU since every entry is ±1 or zero, every column containts at most two non-zero

entries, and if a column contains two non-zero entries, then they are of opposite sign. To

see why A4 is TU, multiply first and third columns by -1. Then we get a matrix desired in

Proposition (40), and this shows that A4 is TU.

4.3.1 Assignment Problem

Let us revisit the constraints of the assignment problem.

∑

i∈B

xij ≤ 1 ∀ j ∈ G
∑

j∈G

xij ≤ 1 ∀ i ∈ B.

Note that the entries in the coefficient matrix are 0 or ±1. Further, for every i ∈ B and

j ∈ G, the variable xij appears in exactly two constraints: once for i ∈ B and once for

j ∈ G. Now multiply the entries corresponding to entries of i ∈ B by −1 (note that the

original constraint matrix is TU if and only if this matrix is TU). Now, every column of

the constraint matrix has exactly two non-zero entries and both have opposite signs. This

implies that the constraint matrix is TU. Since the b matrix is a matrix of 1s, we get that

the LP relaxation of the assignment problem IP gives integral solution.

Here is an example which illustrates why the constraint matrix is TU. Suppose there are

two goods and three buyers. Then, there are five constraints.

x11 + x12 ≤ 1

x21 + x22 ≤ 1

x31 + x32 ≤ 1

x11 + x21 + x31 ≤ 1

x12 + x22 + x32 ≤ 1.

The constraint matrix can be written as follows.

A =

















1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1

1 0 1 0 1 0

0 1 0 1 0 1

















158

Multiplying the last two rows of A by −1, we get A′ as below, and it is clear that it satisfies

the sufficient conditions for being TU.

A′ =

















1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1

−1 0 −1 0 −1 0

0 −1 0 −1 0 −1

















4.3.2 Potential Constraints are TU

Consider the potential constraints of a weighted digraph G = (N,E,w). It says p : N → R

is a potential if

pj − pi ≤ wij ∀ (i, j) ∈ E.

Now, for every constraint corresponding to (i, j) ∈ E, we have exactly two variables: pi and

pj. The coefficients of these two variables are of opposite sign and are 1 or −1. Hence, the

sufficient conditions for the constraint matrix to be TU are met. This implies that if weights

of this digraph are integers, then any linear optimization over these potentials must give an

integer potential as an optimal solution.

4.3.3 Network Flow Problem

The network flow problem is a classical problem in combinatorial optimization. In this

problem, we are given a digraph G = (N,E). Every edge (i, j) has a capacity hij ≥ 0. Every

node i ∈ N has a supply/demand of bi units of a commodity. If bi > 0, then it is a supply

node, if bi < 0, then it is a demand node, else it is a neutral node. The assumption is total

supply equals total demand:
∑

i∈N bi = 0. There is a cost function associated with the edges

of the graph: c : E → R+, where cij denotes the cost of flowing one unit from node i to

node j. The objective is to take the units of commodity from supply node and place it at

the demand nodes with minimum cost.

The decision variable of the problem is xij for all (i, j) ∈ E. The amount xij is called the

flow on edge (i, j). Hence, the objective function is clearly the following.

min
∑

(i,j)∈E

cijxij .

159

For constraints, note that the flow must respect the capacity constraints of edges. Hence,

the following constraint must hold.

0 ≤ xij ≤ hij ∀ (i, j) ∈ E.

Define the nodes on outgoing edges from i as N+(i) = {j ∈ N : (i, j) ∈ E} and the nodes

on incoming edges from i as N−(i) = {j ∈ N : (j, i) ∈ E}. Now, consider the following set

of constraints.

∑

j∈N+(i)

xij −
∑

j∈N−(i)

xji = bi ∀ i ∈ N.

The above constraints are called flow balancing constraints, i.e., the amount of flow out

of a node must equal the flow into a node plus the supply at that node. Note that if we

add all the flow balancing constraints, the left hand side is zero and the right hand side is
∑

i∈N bi. Hence, for the problem to be feasible, it is necessary that
∑

i∈N bi = 0. Hence, the

minimum cost network flow problem can be formulated as follows.

min
∑

(i,j)∈E

cijxij

s.t. (NF)
∑

j∈N+(i)

xij −
∑

j∈N−(i)

xji = bi ∀ i ∈ N.

0 ≤ xij ≤ hij ∀ (i, j) ∈ E.

Note that (NF) is a linear program. Nevertheless, we show that the constraint matrix

of this problem is TU. To see this, note that the capacity constraint matrix is an identity

matrix. Hence, it suffices to show that the flow balancing constraint matrix is TU. To see

this, note that every edge is an incoming edge of a unique node and outgoing edge of a unique

node. Hence, for every (i, j) ∈ E, xij appears exactly in two flow balancing constraints, once

with coefficient 1 and again with coefficient −1. By our earlier result, this matrix is TU. A

consequence of this result is that if the supply (bis) and capacities (hijs) are integral, then

there exists an integral minimum cost network flow.

The following example illustrates the idea of TU in network flow problem. Consider the

digraph in Figure 4.1. We do not show the costs or capacities of the edges. The supply at

each node is indicated near the respective node. The flow balancing constraints are:

160

1

2

3

4

5

6

(0)
(0)

(−5)

(+4)

(−2)

(+3)

Figure 4.1: Network Flow Example

x12 + x14 − x31 − x51 = 3

x23 − x32 − x12 = 0

x31 + x32 + x35 + x36 − x53 − x23 = 0

x45 − x14 = −2
x51 + x53 − x35 − x45 − x65 = 4

x65 − x36 = −5.

One can easily see how every variable appears in two constraints with opposite sign coeffi-

cients.

4.3.4 The Shortest Path Problem

The shortest path problem is a particular type of network flow problem. Here, a digraph

G = (N,E) and a cost function c : E → R+ is given. Also, given are two nodes: a source

node s and a terminal node t. It is assumed that there exists at least one path from s to

every other node (indeed, if some node does not have a path from s, it can be removed from

consideration). Further, there are no incoming edges to the source and no outgoing edges

from the terminal. The objective is to find the shortest path from s to t, i.e., the path with

the minimum length over all paths from s to t.

To model this as a minimum cost network flow problem, let bi = 1 if i = s, bi = −1 if

i = t, and bi = 0 otherwise. Let hij = 1 for all (i, j) ∈ E. A flow of xij = 1 indicates that

161

edge (i, j) is chosen. Hence, the formulation for the shortest path problem is as follows.

min
∑

(i,j)∈E

cijxij

s.t. (SP)
∑

j∈N+(i)

xij = 1 i = s

∑

j∈N+(i)

xij −
∑

j∈N−(i)

xji = 0 i /∈ {s, t}

−
∑

j∈N−(i)

xji = −1 i = t

xij ∈ {0, 1} ∀ (i, j) ∈ E

To convince that there is an optimal solution which gives a path from s to t, note that

by the first constraint, there is only one flow from s. Flow decomposition says that feasible

flows can be broken down into flows along cycles and flows on s− t paths (we cannot have

flows on paths which are not s− t paths since s is the only source). Flows along cycles can

be set to zero to reduce cost. Hence, only s − t paths can have flows in optimal solution.

But there is only one unit of flow from s. So, optimal solution will have flow along exactly

one s− t path.
Since the constraint matrix is TU, we can write the relaxation of the integer constraint

as

0 ≤ xij ≤ 1 ∀ (i, j) ∈ E.

It is without loss of generality to that xij ≤ 1 since there is a supply of 1 unit of flow in

the system. Hence, the following LP relaxation of (SP) gives the shortest path from s to t.

min
∑

(i,j)∈E

cijxij

s.t. (SP-R)

−
∑

j∈N+(i)

xij = −1 i = s

−
∑

j∈N+(i)

xij +
∑

j∈N−(i)

xji = 0 i /∈ {s, t}
∑

j∈N−(i)

xji = 1 i = t

xij ≥ 0 ∀ (i, j) ∈ E

162

We now look at the dual of (SP-R). It is the following formulation.

max pt − ps (4.1)

s.t. (DSP)

pj − pi ≤ cij ∀ (i, j) ∈ E.

Note that the constraints in the dual are the potential constraints. We already know a feasible

solution of this exists since there can be no cycles of negative length (we assume costs are

non-negative here). By strong duality, an optimal solution of (DSP) must give the shortest

path length from s to t. Further, p∗ is an optimal solution, then p̂i := p∗i − p∗s for all i ∈ N is

also a feasible solution and the objective function value is p̂t − p̂s = (p∗t − p∗s)− 0 = p∗t − p∗s.
Hence, p̂ is also an optimal solution. Thus, we conclude that there is a potential function

p̂ where p̂s = 0 and p̂t is the length of the shortest path from s to t. We can further use

complementary slackness conditions. In this problem, every feasible solution of (SP) makes

all the constraints binding. Hence, the complementary slackness conditions will only have

bite for the dual constraints. In particular, it will say that if xij = 1 then pj − pi = cij and if

pj − pi < cij then, xij = 0. So, along the shortest path from s to t, if we take an edge (i, j),

then we get xij = 1 and p∗j − p∗i = cij in the optimal solution p∗ of the dual. Thus if p∗s = 0,

then p∗t corresponds to the length of the shortest path from s to t.

4.4 Application: Efficient Assignment with Unit Demand

Consider an economy where the set of agents is denoted by M = {1, . . . , m} and consisting

of set of indivisible (not necessarily identical) goods denoted by N = {1, . . . , n}. Let vij ≥ 0

be the value of agent i ∈ M to good j ∈ N . Each agent is interested in buying at most one

good.

For clarity of expressions that follow, we add a dummy good 0 to the set of goods. Let

N+ = N ∪ {0}. If an agent is not assigned any good, then it is assumed that he assigned

the dummy good 0. Further, a dummy good can be assigned to more than one agent and

the value of each agent for the dummy good is zero.

A feasible assignment of goods to agents is one where every agent is assigned exactly one

good from N+ and every good in N is assigned to no more than one agent from M . An

efficient assignment is one that maximizes the total valuations of the agents.

To formulate the problem of finding an efficient assignment as an integer program let

xij = 1 if agent i is assigned good j and zero otherwise.

163

V = max
∑

i∈M

∑

j∈N

vijxij

s.t. (IP)
∑

i∈M

xij ≤ 1 ∀ j ∈ N

xi0 +
∑

j∈N

xij = 1 ∀ i ∈M

xij ∈ {0, 1} ∀ i ∈M, ∀ j ∈ N.
xi0 ≥ 0 and integer ∀ i ∈M.

Notice that the first two sets of constraints ensure that xij ≤ 1 for all i ∈ M and for

all j ∈ N . The only difference from the constraint matrix of the assignment problem is

the introduction of xi0 variables, whose coefficients form an identity matrix. Hence, the

constraints matrix of this formulation is also TU. Hence, the LP relaxation of IP gives

integral solution. Note here that the LP relaxation of xij ∈ {0, 1} is 0 ≤ xij ≤ 1, but the

constraints xij ≤ 1 are redundant here. So, we can write formulation (IP) as the following

linear program:

V = max
∑

i∈M

∑

j∈N

vijxij

s.t. (LP)
∑

i∈M

xij ≤ 1 ∀ j ∈ N

xi0 +
∑

j∈N

xij = 1 ∀ i ∈M

xi0, xij ≥ 0 ∀ i ∈M, ∀ j ∈ N.

Now, consider the dual of (LP). For that, we associate with constraint corresponding to agent

i ∈ M a dual variable πi and with constraint corresponding to good j ∈ N a dual variable

pj. The pj variables are non-negative since the corresponding constraints are inequality but

164

πi variables are free.

min
∑

i∈M

πi +
∑

j∈N

pj

s.t. (DP)

πi + pj ≥ vij ∀ i ∈M, ∀ j ∈ N
πi ≥ 0 ∀ i ∈M
pj ≥ 0 ∀ i ∈M, ∀ j ∈ N.

Note here that even though the πi variables are free, when we write the constraint cor-

responding to variable xi0, it turns out that we recover the non-negativity constraints. The

dual has interesting economic interpretation. {pj}j∈M can be thought as a price vector on

goods. Given the price vector p, πi ≥ maxj∈N [vij − pj] for every i ∈ M . If we set p0 = 0,

then vi0 − p0 = 0 implies that πi ≥ 0 can be folded into πi ≥ maxj∈N+ [vij − pj].
Given any price vector p ∈ R|N+|

+ (i.e., on set of goods, including the dummy good), with

p0 = 0, define demand set of buyer i at this price vector p as

Di(p) = {j ∈ N+ : vij − pj ≥ vik − pk ∀ k ∈ N+}.

Definition 29 A tuple (p, x) is a Walrasian equilibrium, where p is a price vector and x

is a feasible allocation (i.e., a feasible solution to LP), if

1. xij = 1 implies that j ∈ Di(p) (every buyer is assigned a good from his demand set)

and

2.
∑

i∈M xij = 0 implies that pj = 0 (unassigned good has zero price).

Given a price vector p (with p0 = 0), we can construct a dual feasible solution from this

p. This is done by setting πi = maxj∈N+[vij − pj]. Clearly, this (p, π) is a feasible solution

of (DP) - to be exact, we consider price vector p without the dummy good component here

since there is no dual variable corresponding to dummy good. This is because πi ≥ vij − pj
for all i ∈ M and for all j ∈ N . Further πi ≥ vi0 − p0 = 0 for all i ∈ M . From now

on, whenever we say that p is a dual feasible solution, we imply that the corresponding π

variables are defined as above.

Theorem 41 Let p be a feasible solution of (DP) and x be a feasible solution of (LP).

(p, x) is a Walrasian equilibrium if and only if p and x are optimal solutions of (DP) and

(LP) respectively.

165

Proof : Suppose (p, x) is a Walrasian equilibrium. Define πi = maxj∈N+[vij − pj] for all

i ∈ M . As argued earlier, (p, π) is a feasible solution of (DP). Now, Walrasian equilibrium

conditions can be written as

[πi − (vij − pj)]xij = 0 ∀ i ∈M, ∀ j ∈ N+

[1−
∑

i∈M

xij]pj = 0 ∀ j ∈ N.

The first condition comes from the fact that if xij = 1 then j ∈ Di(p), which implies that

πi = vij − pj ≥ vik − pk for all k ∈ N+. The second condition comes from the fact that

unassigned goods must have zero price. Now, the CS conditions of the primal and dual

problems are

[πi − (vij − pj)]xij = 0 ∀ i ∈M, ∀ j ∈ N
πixi0 = 0 ∀ i ∈M

[1−
∑

i∈M

xij]pj = 0 ∀ j ∈ N.

We can fold the second CS condition into first since p0 = 0 and vi0 = 0 for all i ∈ M . This

gives the CS conditions as

[πi − (vij − pj)]xij = 0 ∀ i ∈M, ∀ j ∈ N+

[1−
∑

i∈M

xij]pj = 0 ∀ j ∈ N.

Hence, (p, x) satisfies the CS conditions. So, p is an optimal solution of (DP) and x is an

optimal solution of (LP).

The other direction of the proof also follows similarly from the equivalence between the

CS conditions and the Walrasian equilibrium conditions. �

4.5 Application: Efficient Combinatorial Auctions

In this section, we study the combinatorial auctions problem. Let N = {1, . . . , n} be the set
of goods and M = {1, . . . , m} be the set of buyers. Let Ω = {S : S ⊆ N} be the set of all

bundles of goods. The valuation function of buyer i ∈ M is vi : Ω→ R+. For buyer i ∈ M ,

vi(S) denotes the value on bundle S ∈ Ω. We assume vi(∅) = 0 for all buyers i ∈M .

An allocation X = (X1, . . . , Xm) is a partition of N such that Xi ∈ Ω for all i ∈ M ,

Xi ∩ Xj = ∅ for all i 6= j, and ∪i∈MXi ⊆ N . In an allocation X , Xi denotes the bundle of

166

{1} {2} {1, 2}
v1(·) 8 11 12

v2(·) 5 9 15

v3(·) 5 7 16

Table 4.1: An example of combinatorial auction

goods assigned to buyer i ∈ M . So, the two differences from our earlier notation are (a) an

allocation X indicates a partition and an assignment of goods and (b) not all goods need

to be assigned in an allocation. Let X be the set of all allocation. An allocation X ∈ X is

efficient if

∑

i∈M

vi(Xi) ≥
∑

i∈M

vi(Yi) ∀ Y ∈ X.

Consider the example in Table 4.1. The efficient allocation for this example is ({1}, {2}, ∅),
meaning buyer 1 gets good 1, buyer 2 gets good 2, and buyer 3 gets nothing. This gives a

total value of 17, which is higher than the total value obtained in any other allocation.

4.5.1 Formulation as an Integer Program

Our objective is to formulate the problem of finding an efficient allocation. The decision

variable is: xi(S) ∈ {0, 1} for all buyers i ∈M and for all S ∈ Ω. xi(S) should be 1 if buyer

i ∈M is assigned bundle S ∈ Ω, and zero otherwise. We should have two sets of constraints:

(1) to ensure that every buyer gets some bundle of goods (may be the empty set) and (2) to

ensure that every good is assigned to at most one buyer. The objective function maximizes

the total value of buyers.

V (M,N ; v) = max
∑

i∈M

∑

S∈Ω

vi(S)xi(S)

s.t. (CA-IP)
∑

S∈Ω

xi(S) = 1 ∀ i ∈M (4.2)

∑

i∈M

∑

S∈Ω:j∈S

xi(S) ≤ 1 ∀ j ∈ N (4.3)

xi(S) ∈ {0, 1} ∀ i ∈M, ∀ S ∈ Ω. (4.4)

The LP relaxation of formulation (CA-IP) does not always give integral solutions. Consider

the example in Table 4.2. A feasible solution of (CA-LP), which is not integral and gives

167

{1} {2} {1, 2}
v1(·) 8 11 12

v2(·) 5 9 18

Table 4.2: An example where Walrasian equilibrium does not exist

an objective function value higher than the optimal solution of (CA-IP) is: x1({1}) =

x1({2}) = 0.5 and x2({1, 2}) = x2(∅) = 0.5. The value of objective function of (CA-LP)

from this feasible solution is (8 + 11)0.5 + 18(0.5) = 18.5 > 18 = objective function value of

optimal solution of (CA-IP). Hence linear relaxation of (CA-IP) does not give an integral

solution in this example.

However, if we restrict Ω to be only singleton bundles. i.e., buyers can be assigned at

most one good (this is the assignment problem model we studied earlier), then the resulting

constraint matrix becomes totally unimodular, and the LP relaxation always gives integral

solution. Besides the assignment problem setting, there are other general settings where the

LP relaxation of (CA-IP) gives integral solutions. The exact nature of these settings will

not be covered in this course. These settings arise in specific types of valuation functions,

and do not necessarily result in a TU constraint matrix.

We assume that the valuation functions are such that LP relaxation of (CA-IP) gives

an optimal solution of formulation (CA-IP). Then, the efficient allocation problem can be

reformulated as:

V (M,N ; v) = max
∑

i∈M

∑

S∈Ω

vi(S)xi(S)

s.t. (CA-LP)
∑

S∈Ω

xi(S) = 1 ∀ i ∈M (4.5)

∑

i∈M

∑

S∈Ω:j∈S

xi(S) ≤ 1 ∀ j ∈ N (4.6)

xi(S) ≥ 0 ∀ i ∈M, ∀ S ∈ Ω. (4.7)

168

{1} {2} {1, 2}
v1(·) 6 8 13

v2(·) 5 8 12

Table 4.3: An example where Walrasian equilibrium exists

The dual of this formulation is:

V (M,N ; v) = min
∑

i∈M

πi +
∑

j∈N

pj

s.t. (CA-DLP)

πi +
∑

j∈S

pj ≥ vi(S) ∀ i ∈ M, ∀ S ∈ (Ω \ ∅) (4.8)

πi ≥ 0 ∀ i ∈M (4.9)

pj ≥ 0 ∀ j ∈ N. (4.10)

The dual variables have nice economic interpretations. We can think pj to be the price

of good j. Assume that if a buyer i ∈ M gets a bundle of goods S, then he pays
∑

j∈S pj,

and the payoff he gets is πi(S) := vi(S) −
∑

j∈S pj . Define πi(∅) = 0 for all i ∈ M . Hence,

constraint (4.8) can be written as πi ≥ πi(S) for all i ∈ M and for all S ∈ Ω. Now, let us

write the complementary slackness conditions. Let x be a feasible solution of (CA-LP) and

(p, π) be a feasible solution of (CA-DLP). They are optimal if and only if

xi(S)
[

πi − πi(S)
]

= 0 ∀ i ∈M, ∀ S ∈ (Ω \ ∅) (4.11)

xi(∅)πi = 0 ∀ i ∈M (4.12)

pj

[

1−
∑

i∈M

∑

S∈Ω:j∈S

xi(S)
]

= 0 ∀ j ∈ N. (4.13)

Equation (4.12) says that if xi(∅) = 1, then πi = 0 = πi(∅). Also, Equation (4.11) says that

if xi(S) = 1, then πi = πi(S). Due to dual feasibility, we know that πi ≥ πi(S). Hence, at

optimality πi = maxS∈Ω πi(S) for every buyer i ∈ M - this denotes the maximum payoff of

buyer i at a given price vector p. Hence, an optimal solution of (CA-DLP) can be described

by just p ∈ Rn
+.

We will introduce some more notations. Demand set of a buyer i ∈M at a price vector

p ∈ Rn
+ is defined as Di(p) = {S ∈ Ω : πi(S) ≥ πi(T) ∀ T ∈ Ω}.

In the example in Table 4.3 above, consider a price vector p = (4, 4) (i.e., price of good

1 is 4, good 2 is 4, and bundle 1,2 is 4+4=8). At this price vector, D1(p) = {{1, 2}}

169

and D2(p) = {{2}, {1, 2}}. Consider another price vector p′ = (5, 6). At this price vector,

D1(p
′) = {{1}}, D2(p

′) = {{2}}.

Definition 30 A price vector p ∈ Rn
+ and an allocation X is called a Walrasian equilib-

rium if

1. Xi ∈ Di(p) for all i ∈M (every buyer gets a bundle with maximum payoff),

2. pj = 0 for all j ∈ N such that j /∈ ∪i∈MXi (unassigned goods have zero price).

The price vector p′ = (5, 6) along with allocation ({1}, {2}) is a Walrasian equilibrium of the

example in Table 4.3 since {1} ∈ D1(p
′), {2} ∈ D2(p

′).

Theorem 42 (p,X) is a Walrasian equilibrium if and only if X corresponds to an integral

optimal solution of (CA-LP) and p corresponds to an optimal solution of (CA-DLP).

Proof : Suppose (p,X) is a Walrasian equilibrium. Then p generates a feasible solution of

(CA-DLP) - this feasible solution is generated by setting πi = maxS∈Ω[vi(S) −
∑

j∈S pj]

for all i ∈ M , and X corresponds to a feasible integral solution of (CA-LP) - this feasible

solution is generated by setting xi(Xi) = 1 for all i ∈M and setting zero all other x variables.

Now, Xi ∈ Di(p) for all i ∈M implies that πi = πi(Xi) for all i ∈M , and this further implies

that Equations (4.11) and (4.12) is satisfied. Similarly, pj = 0 for all j ∈ N that are not

assigned in X . This means Equation (4.13) is satisfied. Since complementary slackness

conditions are satisfied, these are also optimal integral solutions.

Now, suppose p is an optimal solution of (CA-DLP) and X corresponds to an integral

optimal solution of (CA-LP). Then, the complementary slackness conditions imply that the

conditions for Walrasian equilibrium is satisfied. Hence, (p,X) is a Walrasian equilibrium.

�

Another way to state Theorem 42 is that a Walrasian equilibrium exists if and only if an

optimal solution of (CA-LP) gives an efficient allocation (an optimal solution of (CA-IP).

This is because if a Walrasian equilibrium (p,X) exists, then X is an optimal solution

of (CA-LP) that is integral. Hence it is an optimal solution of (CA-IP) or an efficient

allocation. So, every allocation corresponding to a Walrasian equilibrium is an efficient

allocation.

There are combinatorial auction problems where a Walrasian equilibrium may not exist.

Consider the example in Table 4.2. It can be verified that this example does not have a

Walrasian equilibrium. Suppose there is a Walrasian equilibrium (p,X). By Theorem 42

and the earlier discussion, X is efficient, i.e, X = (∅, {1, 2}). Since X1 = ∅, by definition of

170

Walrasian equilibrium π1(∅) = 0 ≥ π1({1}) = 8 − p1, i.e., p1 ≥ 8. Similarly, p2 ≥ 11. This

means p1 + p2 ≥ 19. But X2 = {1, 2}, and π2({1, 2}) = 18 − (p1 + p2) ≤ −1 < 0 = π2(∅).
Hence {1, 2} /∈ D2(p). This is a contradiction since (p,X) is a Walrasian equilibrium. This

also follows from the fact the LP relaxation of (CA-IP) does not have integral optimal

solution.

4.6 Application: Auction Algorithms for Assignment

Problems

So far, we have just discussed formulation of various resource allocation problems as linear

or integer programs. When it is a linear program, we know that the simplex method can

find an optimal solution. In this section, we will see that more ”natural processes” can find

optimal solutions in case of some linear programs.

We take as the assignment problem as a test case here. We have already learnt a Walrasian

equilibrium price vector can be verified by looking at the demand set information of buyers.

Fix a profile of valuations (v1, . . . , vn) ≡ v of n buyers. Let Di(p) be the demand set of buyer

i at price vector p ∈ Rm+1, where m is the number of objects and the price of dummy object

is zero: p0 = 0. Let M be the set of objects and M+(p) be the set of objects with positive

price at p. For every subset of objects S ⊆ M , define the exclusive demanders of S at p

as O(S, p) := {i ∈ N : Di(p) ⊆ S}. For every subset S ⊆M , define the demanders of S at

p as U(S, p) := {i ∈ N : Di(p) ∩ S 6= ∅}.
A subset of objects S ⊆M is overdemanded at p if

|S| < |O(S, p)|.

A subset of objects S ⊆M is underdemanded at p if

S ⊆M+(p) and |S| > |U(S, p)|.

In Theorem 5, we showed that a price vector p is a Walrasian (competitive) equilibrium

price vector if and only if no subset of objects is overdemanded or underdemanded at p.

This allows us to state a natural algorithm for finding a Walrasian equilibrium (and efficient

allocation).

The algorithm starts at price p such that pj = 0 for all j ∈ M . At every step of the

algorithm a price vector p is maintained and demand set of each buyer is asked for at that

price vector. Based on the demand set information, prices of some subset of objects are

raised. We define this procedure for integer valuations.

171

S0 Initialize p0j = 0 for all j ∈M in iteration 0.

S1 At every iteration, t with price vector pt,

(a) ask for demand set Di(p
t) of each buyer i.

(b) if no subset of objects is overdemanded at pt, stop. Else, let St ⊆ M be some

subset of minimally overdemanded set of objects (minimally means that there

is no smaller subset which is overdemanded).

S2 Set pt+1
j = ptj if j /∈ S and pt+1

j = ptj + 1 if j ∈ St. Set t := t+ 1 and repeat from [S1].

We first illustrate the algorithm with an example of Table 4.4, where the values of 4

buyers on 3 objects are shown. We start at p0 = 0 and see that

D1(p
0) = {c}, D2(p

0) = {b}, D3(p
0) = {b}, D4(p

0) = {b}.

So, {b} is minimally overdemanded. New price vector has p1(b) = 1 and all other prices zero.

Now,

D1(p
1) = {c}, D2(p

1) = {b, c}, D3(p
1) = {b}, D4(p

1) = {b, c}.

Now, {b, c} is minimally overdemanded. So, new price is p2(b) = 2, p2(c) = 1, p2(a) = 0.

Now,

D1(p
2) = {c}, D2(p

2) = {a, b, c}, D3(p
2) = {a, b}, D4(p

2) = {a, b, c}.

Now, {a, b, c} is minimally overdemanded. So, p3(a) = 1, p3(b) = 3, p3(c) = 2. This gives,

D1(p
3) = {c}, D2(p

3) = {a, b, c}, D3(p
3) = {a, b}, D4(p

3) = {a, b, c}.

Finally, we have {a, b, c} minimally overdemanded again. So, p4(a) = 2, p4(b) = 4, p4(c) = 3.

This gives us

D1(p
4) = {0, c}, D2(p

3) = {0, a, b, c}, D3(p
3) = {a, b}, D4(p

3) = {0, a, b, c}.

Now, no subset of objects are overdemanded. We have reached a Walrasian equilibrium

price. The resulting allocation is 1 gets c, 2 gets a, 3 gets b and 4 gets zero.

Theorem 43 If valuations are integers, then the above auction algorithm terminates at a

Walrasian equilibrium price vector.

172

a b c

v1 1 2 3

v2 2 4 3

v3 3 5 2

v4 2 4 3

Table 4.4: Values of buyers

Proof : At iteration 0, p0j = 0 for all j ∈M . Hence, no subset of objects is underdemanded.

We show that at every iteration, no subset of objects is underdemanded. We do this by

induction. We assume that no subset of objects is underdemanded at iteration t. Then, we

show that no subset of objects is underdemanded at iteration (t+1). Let S= ⊆ S be the set

of objects in S whose prices are the same in pt and pt+1. Since S= is not underdemanded in

pt and prices of objects in M \S= increased or remained the same, the demanders of S= will

continue to demand objects in S=. As a result, |U(S=, pt)| ≥ |S=|. Let S+ = S \ S=.

Now, consider two cases.

case 1. If S+ = St (i.e., the set of all objects whose prices were increased), then S+ is

overdemanded at pt. This means |O(S+, pt)| > |S+|. But since price increased by 1 each

buyer i ∈ O(S+, pt) has positive payoff (they are not demanding 0 because they exclusively

demand from S+) and the difference in highest and second highest payoff is at least 1. So,

they will continue to demand objects in S+. Hence, O(S+, pt) ⊆ U(S+, pt+1). As a result,

|U(S+, pt+1)| > |S+|. Now, U(S=, pt) ⊆ U(S=, pt+1) and O(S+, pt) ∩ U(S=, pt) = ∅ implies

|S| = |S=|+ |S+| < |O(S+, pt)|+ |U(S=, pt)| ≤ |U(S, pt+1)|.

Case 2. Suppose S+ (St. Then, St \ S+ is not overdemanded at pt (since St was

minimally overdemanded at pt). Since St is overdemanded, out of O(St, pt), there is enough

demanders for S+. Let T ⊆ O(St, pt) be set of buyers who demand some object from S+.

Hence, O(St, pt) = T ∪ O(St \ S+, pt). But since St \ S+ is not overdemanded and St is

overdemanded, |T | > |S+|. Note that T ∩ U(S=, pt) = ∅. Also, buyers in T continue to

demand objects in S+ in pt+1. Hence, again, we have the same inequality:

|S| = |S=|+ |S+| < |T |+ |U(S=, pt)| ≤ |U(S, pt+1)|.

So, in both cases, we show that S is not underdemanded at pt+1. Since the prices are

going up, at some iteration no subset will be overdemanded. We will stop then and the

resulting price vector is a Walasian equilibrium price vector. �

173

The above algorithm falls in a broad class of algorithms called “Hungarian algorithms”or

primal-dual algorithms. This is because at every iteration, it keeps a dual feasible solution

(prices) and searches for a primal feasible solution. Here, a primal feasible solution is any

allocation that maximizes the number of buyers who can get an object in demand set. If

the CS conditions can be satisfied, it stops. Else, it finds a direction in which dual feasible

solution can be modified. It then iterates.

4.7 Submodular Optimization

In continuous optimization problems, concave maximization plays an important role. Besides

standard tools like differentiation, various methods to find the maximum of a concave func-

tion exist. The main objective of this section is to give a counterpart of concave maximization

in the framework of discrete optimization.

We study a class of optimization problems for which a greedy solution exists. Further,

whenever the primitives of the problems are integral, then the greedy solution is also an

integral solution. This illustrates an important class of problems where the TU property

need not hold, but still we achieve the integrality of extreme points.

We will be talking about set functions. Let N be a finite set and P(N) be the set of all

subsets of N . We will be interested in functions f : P(N) → R, where we will normalize

f(∅) = 0 throughout.

To think of a real like example, think of firm producing a single product. To produce

the first unit, it requires some investment in machines and other fixed costs. To produce

the second unit, the cost is usually lower. As the production becomes large, there is natural

economies of scale, and the extra unit of cost of production goes down. This idea is captured

in the following definition.

Definition 31 A function f : P(N)→ R is submodular if for all A,B ⊆ N , we have

f(A) + f(B) ≥ f(A ∩ B) + f(A ∪B).

A function f : P(N) → R is non-decreasing if for all A,B ⊆ N with A ⊆ B, we have

f(A) ≤ f(B).

If a function f : P(N) → R is both submodular and non-decreasing it is called a poly-

matroid.

Consider an example with N = {a, b, c} and f(a) = f(b) = f(c) = 1, f(a, b) = 3, f(b, c) =

2, f(c, a) = 4, f(a, b, c) = 4. The function f is non-decreasing. However, it is not submodular

since f(a) + f(b) = 2 < 3 = f(a, b).

174

An alternate definition of a submodular function is the following.

Theorem 44 A set function f : P(N) → R is submodular if and only if for all A,B ⊆ N

with A ⊆ B and for all b /∈ B, we have

f(A ∪ {b})− f(A) ≥ f(B ∪ {b})− f(B).

The theorem says that the “marginal” contribution to a smaller subset is larger than to

a bigger subset. This is consistent with the idea that the derivative of a concave function is

non-increasing.

Proof : Suppose f : P(N) → R is a submodular function. Pick A ⊆ B ⊆ N and b /∈ B.

Note that A ∪ B = B and A ∩ B = A. Using submodularity we get, f(A ∪ {b}) + f(B) ≥
f(B ∪ {b}) + f(A), which gives the desired inequality.

For the converse, pick any A,B ⊆ N . Note that if B ⊆ A, then there is nothing to prove.

Hence, suppose B \ A = {b1, . . . , bk}. Now,

f(A ∪B)− f(A) =
[

f(A ∪B)− f((A ∪B) \ {b1})
]

+
[

f((A ∪ B) \ {b1})− f((A ∪ B) \ {b1, b2})
]

+ . . .+
[

f((A ∪ B) \ {b1, . . . , bk−1})− f(A)
]

≤
[

f(B)− f(B \ {b1})
]

+
[

f(B \ {b1})− f(B \ {b1, b2})
]

+ . . .+
[

f((A ∩ B) ∪ {bk})− f(A ∩B)
]

= f(B)− f(A ∩B),

which gives the desired submodular inequality. �

An interesting consequence of submodularity and non-decreasingness is the following.

Lemma 28 If a set function f : P(N)→ R is submodular, then for all A,B ⊆ N , we have

f(A ∪B)− f(B) ≤
∑

a∈A\B

[

f(B ∪ {a})− f(B)
]

.

Further, if f is a polymatroid then

f(A)− f(B) ≤
∑

a∈A\B

[

f(B ∪ {a})− f(B)
]

.

175

Proof : Let A \B = {a1, . . . , ak}. Then,

f(A ∪B)− f(B) =

k
∑

j=1

[

f(B ∪ {a1, . . . , aj})− f(B ∪ {a1, . . . , aj−1})
]

≤
k

∑

j=1

[

f(B ∪ {aj})− f(B)
]

=
∑

a∈A\B

[

f(B ∪ {a})− f(B)
]

The second part follows from the fact that non-decreasing f implies f(A)− f(B) ≤ f(A ∪
B)− f(B). �

Just like submodular functions, we can talk about supermodular functions. A function

f : P(N) → R is supermodular if and only if −f submdoular. In other words, for every

A ⊆ B and b /∈ B,

f(B ∪ {b})− f(B) ≥ f(A ∪ {b})− f(A).
So, for supermodular functions, marginal contributions increase for larger sets. A function

f : P(N)→ R is modular if it is both submodular and supermodular (i.e., the inequalities

in the definitions of submodular and supermodular functions hold with equality). A useful

characterization of modular function essentially says that they are “linear” functions. The

proof is left as an exercise.

Theorem 45 A function f : P(N) → R is modular if and only if there is some vector

v ∈ R|N | such that f(S) =
∑

i∈S vi for all S ⊆ N .

4.7.1 Examples

We now give some examples of submodular functions.

1. Let S be the set of columns of a matrix. Let r(X) denote the rank of the matrix formed

by a set of columns X ⊆ S. Then, r is a submodular function.

2. Let G = (N,E,w) be a weighted undirected graph, where weights are non-negative.

For any S ⊆ N , let (S,N \ S) be a cut of the graph and W (S) denote the sum of

weights of edges crossing this cut. Then, W is a submodular function.

3. Let G = (N,E) be an undirected graph. For any S ⊆ E, let r(S) denote the highest

number of edges in S that do not include a cycle. Then, r becomes a submodular

function.

176

4.7.2 Optimization

We will be interested in the following polyhedron associated with a submodular function f :

P f := {x ∈ Rn
+ :

∑

j∈S

xj ≤ f(S) ∀ S ⊆ N}.

We will attach a linear program with the feasible set being this polyhedron. In particular,

we will consider the following linear program:

max
x∈P f

∑

j∈N

cjxj .

We will denote this linear program as LPf . We show that a greedy algorithm gives an

optimal solution of LPf . The greedy algorithm works as follows. Let N := {1, . . . , n}.

1. Without loss of generality, order the variables c1 ≥ c2 ≥ . . . ≥ cr > 0 ≥ cr+1 ≥ . . . ≥ cn.

2. Set xi := f(Si) − f(Si−1) for all i ∈ {1, . . . , r} and xj = 0 for all j > r, where

Si = {1, . . . , i} for all i ∈ {1, . . . , r} and S0 = ∅.

Theorem 46 The greedy algorithm finds an optimal solution of LPf for any polymatroid

set function f : P(N)→ R.

Proof : As f is non-decreasing, xi = f(Si) − f(Si−1) ≥ 0 for all i ∈ {1, . . . , r}. Also, for

each T ⊆ N , we note that

∑

j∈T

xj =
∑

j∈T∩Sr

xj =
∑

j∈T∩Sr

[

f(Sj)− f(Sj−1)
]

≤
∑

j∈T∩Sr

[

f(Sj ∩ T)− f(Sj−1 ∩ T)
]

≤
∑

j∈Sr

[

f(Sj ∩ T)− f(Sj−1 ∩ T)
]

= f(Sr ∩ T)− f(∅) ≤ f(T),

where the first inequality followed from submodularity and the second and the last one from

non-decreasingness of f . This shows that the greedy solution is a feasible solution. The

objective function value from the greedy solution is

r
∑

i=1

ci
[

f(Si)− f(Si−1)
]

.

177

Now, to prove optimality, we consider the dual of the linear program LPf . The dual of this

linear program is miny

∑

S⊆N f(S)yS subject to the constraints that
∑

S:j∈S yS ≥ cj for all

j ∈ N and yS ≥ 0 for all S ⊆ N .

We first give a solution to the dual. Let ySi = ci− ci+1 for i = 1, . . . , r− 1, ySr = cr, and

yS = 0 for all other S. Note that non-negativity constraint is satisfied. Further, for any j ≤ r,
∑

S:j∈S yS ≥
∑r

i=j ySi
= cr +

∑r−1
i=j [ci− ci+1] = cj. For any j > r,

∑

S:j∈S yS ≥ 0 ≥ cj . Thus,

the {yS}S is a feasible solution. The objective function value of the dual from this feasible

solution is
∑

S⊆N f(S)yS =
∑r−1

i=1 [ci − ci+1]f(S
i) + crf(S

r) =
∑r

i=1 ci
[

f(Si)− f(Si−1)
]

.

Hence, the objective function value of the primal feasible solution and the dual feasible

solution is the same. By strong duality theorem, these are optimal solutions. �

Two interesting observations from the proof of Theorem 46 emerge. First, if f(S∪{a})−
f(S) is integral for all S ⊆ N and a ∈ N \S, then there is a greedy integral feasible solution

that is optimal. Second, if f(S ∪ {a}) − f(S) ∈ {0, 1} for all S ⊆ N and a ∈ N \ S, then
the greedy algorithm gives a {0, 1} feasible solution that is optimal. In this case, f is called

a submodular rank function.

This point further highlights an important point that even though the constraint matrix

is not TU, we have found an interesting class of problems where LP relaxation solves the

integer program.

The proof also highlights another interesting point. It identifies the extreme points of

the polyhedron P f . To see this consider, N = {1, . . . , n}. Choose any r ∈ N and set

xi = f(Si) − f(Si−1) for all i ≤ r and xi = 0 for all i > r. By following the steps in the

proof, it is easy to verify that x is a feasible point in P f . Each of these feasible solutions is

determined by a choice of r and an ordering of elements of N (we ordered it as 1, . . . , n, but

you can choose another order). Since these are optimal solutions of the linear program by

choosing an appropriate set of coefficients {cj}j , they are extreme points. With some effort,

it is easy to show that they are the only extreme points.

We also noticed that in the submodular optimization problem, if the coefficients of the

objective function is integral, then the dual optimal solution is also integral. Such linear

programs whose dual have integral extreme points are called totally dual integral (TDI).

We saw that the linear program associated with P f for a non-decreasing submodular function

f is TDI.

178

4.8 A Short Introduction to Matroids

The idea of polymatroid opitmization comes from the theory of matroids. Matroids are

discrete structures that can be thought of as an extension of independence from linear alge-

bra to arbitrary discrete systems. Since we encounter such systems quite often in discrete

optimization, it is a useful modeling tool.

Let E be any arbitrary set. In matroid theory, E is called a ground set. Let I be a

collection of subsets of E, i.e., every S ∈ I is a subset of E. Members of I are called

independent sets.

Definition 32 The pair (E, I) is called a matroid if

I1 Non-empty. I is non-empty.

I2 Hereditary. If S ∈ I and T ⊂ S, then T ∈ I.

I3 Augmentation. If S, T ∈ I with |T | = |S| + 1, then there is an element x ∈ T \ S
such that S ∪ {x} ∈ I.

If (E, I) satisfies only I1 and I2, then it is called an independence system.

Suppose E = {x, y, z, w}. Take I := {∅, {x}, {y}, {z}, {x, y}}. We see that I satisfies

non-empty and hereditary properties but not augmentation. This is because {x, y} and

{z} are both in I and both {x, z} and {y, z} are not in I. On the other hand, if we take

I := {∅, {x}, {y}, {z}, {x, y}, {x, z}} is a matroid.

An independence system (E, I) satisfies equi-maximality property if for all X ⊆ E, all

maximal members of {S : S ∈ I, S ⊆ X} have the same number of elements. In the example

above, if we take I := {∅, {x}, {y}, {z}, {x, y}}, then we fail equi-maximality for E - it has

two maximal elements {z} and {x, y} having different cardinality.

Theorem 47 An independence system (E, I) is a matroid if and only if it satisfies equi-

maximility property.

Proof : Suppose (E, I) is a matroid. Let X ⊆ E, and define IX = {S : S ∈ I, S ⊆ X}. Let
S, T ∈ IX be two maximal members. Assume for contradiction, |S| < |T |. By hereditary,

there exists K ⊆ T such that |K| = |S|+ 1. By augmentation, there exists x ∈ K \ S such

that S ∪ {x} ∈ I. Clearly, S ∪ {x} ∈ IX . This contradicts that S is maximal in IX .

Suppose (E, I) is an independence system which satisfies equi-maximality property. Let

S, T ∈ I with |T | = |S|+1. Let X = S∪T . Note that since |T | > |S|, due to equi-maximality

179

property S cannot be a maximal member of IX . This means there exists a x ∈ T \ S such

that S ∪ {x} ∈ I. �

We give some examples (types) of matroids.

1. Uniform Matroid. Let E be a set with n-elements and for a fixed integer r with

0 ≤ r ≤ n, let I = {S ⊆ E : |S| ≤ r}. It is easy to verify that (E, I) is a matroid. Such

a matroid is called a uniform matroid.

2. Graphic Matroid. Let G = (N,E) be an undirected graph, where N is the set of ver-

tices andE is the set of edges. Let I = {S : S ⊆ E and S does not contain a cycle ofG}.
Then, (E, I) is a matroid. Such a matroid is called a graphic matroid. Below, we give

a proof that a graphic matroid is indeed a matroid.

3. Linear Matroid. Let E be the set of columns of a matrix. If I consists of all subsets

of E that are independent, then it forms a matroid.

4. Partition Matroid. For partition matroid, we are given a partition E1, . . . , Ek of E

and positive numbers m1, . . . , mk. Now, I = {X ⊆ E : |X∩Ei| ≤ mi ∀ i ∈ {1, . . . , k}}.
This forms a matroid. Verify this.

Theorem 48 A graphic matroid is a matroid.

Proof : Let (E, I) be as defined before: E the set of edges and I is the collection of subsets

of edges that do not form a cycle. It is clear that non-emptyness (each edge is in I) and

hereditary properties hold. For augmentation, pick two sets of edges S and T with |T | =
|S| + 1 such that each of them is acyclic. Partition S into components: S1, . . . , Sk. Note

that each of these components is a tree. For every Si ∈ {S1, . . . , Sk}, let V (Si) be the set of

end-points of edges in Si. Note that |V (Si)| = |Si|+ 1 for each i.

We claim that there exists an edge {a, b} ∈ T such that for each i ∈ {1, . . . , k}, {a, b} *
Si. Suppose not - then, for every {a, b} ∈ T there exists i ∈ {1, . . . , k} such that {a, b} ⊆ Si.

Since for each i ∈ {1, . . . , k}, the vertices V (Si) can have at most |Si| number of edges without

forming a cycle and T does not have cycles, it must be that T has at most
∑k

i=1 |Si| = |S|
number of edges. This is a contradiction since |T | = |S|+ 1.

If we consider the set of edges S ∪ {{a, b}}, we see that {a, b} is in T \S and since a and

b do not belong to the same component of S1, . . . , Sk, it S ∪ {{a, b}} cannot create a cycle.

Hence, S ∪ {{a, b}} belongs to I. �

180

4.8.1 Equivalent ways of Defining a Matroid

We introduce some equivalent ways of defining a matroid. Suppose (E, I) is a matroid. Then,

any S ⊆ E such that S ∈ I is called a independent set. A maximal independent set is

called a basis. By Theorem 47, every basis has the same cardinality, and this is called the

rank of a matroid.

We can define a matroid using its bases. For instance, let E := {x, y, z, w}. Then, define
B := {{x, y, z}, {y, z, w}}. If these two are the maximal independent sets, we can define all in-

dependent sets from this using hereditary property: I := {{x}, {y}, {z}, {w}, {x, y}, {x, z}, {y, z}, {y, w}, {z
It can be verified that (E, I) is a matroid. Not every such choice of B leads to a matroid.

Below, we provide a necessary and sufficient condition.

Theorem 49 Let B be some set of subsets of a finite set E. Then, B is the collection of

bases of a matroid on E if and only if B satisfies the following properties.

B1 The set B is non-empty.

B2 Suppose B1, B2 ∈ B and x ∈ B1 \ B2. Then, there exists y ∈ B2 \ B1 such that

(B1 \ {x}) ∪ {y} ∈ B.

Proof : Suppose (E, I) is a matroid, and let B be the collection of its bases. Since ∅ ∈ I, B

is non-empty. Now, choose B1, B2 ∈ B. By Theorem 47, |B1| = |B2|. Choose x ∈ B1 \ B2,

and let S := B1 \{x}. Clearly, S has at least one element, and S ∈ I. But |B2| = |S|+1. By

augmentation property, there exists y ∈ B2 \S such that S ∪{y} ∈ I. Note that y ∈ B2 \B1.

Also, |S ∪ {y}| is the rank of the matroid. Hence, by Theorem 47, S ∪ {y} is a basis of

matroid (E, I).

Now, consider a set B which satisfies properties B1 and B2. Define the set I as follows:

I := {K ⊆ E : there exists B ∈ B with K ⊆ B}.

Since B is non-empty, ∅ ∈ I. Further if S (T and T ∈ I, then S ∈ I. So, I1 and I2 is

satisfied.

First, we show that for any B1, B2 ∈ B, we have |B1| = |B2|. To see this, suppose

B1 = {x1, . . . , xk}, B2 = {y1, . . . , yk, yk+1, . . . , yk+q}.

Pick x ∈ B1\B2. By property B2, we know that there is y ∈ B2\B1 such that B1\{x}∪{y} ∈
B. Let B′ := B1 \ {x} ∪ {y}. Pick x′ ∈ B′ \ B2. By property B2, we know that there is

y′ ∈ B2 \B′ such that B′ \ {x′} ∪ {y′} ∈ B. We can repeat this procedure till we have found

181

B̄ ∈ B and B̄ ⊆ B2. Since |B2| > |B1|, by definition the procedure must terminate with B̄

such that B̄ (B2. This contradicts property B2 since if we pick x ∈ B2 \ B̄, there is no

y ∈ B̄ \B2 such that B2 \ {x} ∪ {y} belongs to B.

Now, consider S, T ∈ I such that |S| = |T | + 1. Let S ⊆ B1 and T ⊆ B2 for some

B1, B2 ∈ B. Let

S = {x1, . . . , xk}
B1 = {x1, . . . , xk, b1, . . . , bq}
T = {y1, . . . , yk, yk+1}
B2 = {y1, . . . , yk, yk+1, c1, . . . , cq−1}.

Consider X = B1 \ {bq}. By property B2, there exists z ∈ B2 \ B1 such that X ∪ {z} ∈ B.

Hence, S ∪ {z} ∈ I. If z ∈ T , then I3 is satisfied. If z /∈ T , set X1 = (X ∪ {z}) \ {bq−1}.
Again, there exists z1 ∈ B2 \ (X ∪ {z}) such that X1 ∪ {z1} ∈ B. If z1 ∈ T , then again I3 is

satisfied. Else, we repeat the procedure again. Since |{b1, . . . , bq}| > |{c1, . . . , cq−1|, after at
most q such step, we will replace by an element in T . This will imply that I3 is satisfied. �

The rank function of a matroid (E, I) is a function r : 2E → Z defined by

r(S) = max{|X| : X ⊆ S,X ∈ I} ∀ S ⊆ E.

The rank of a matroid is simply r(E), i.e., the size of the largest independent set. Note that

r is non-decreasing.

Theorem 50 The rank function of a matroid is submodular and non-decreasing.

Proof : Let S, T ⊆ E. Let X be a maximum independent set of S∩T and Y be a maximum

independent set of S ∪ T . Notice that since (S ∩ T) ⊆ (S ∪ T), we can ensure that X ⊆ Y .

So, we have r(S ∩ T) = |X| and r(S ∪ T) = |Y | with X ⊆ Y .

Since Y ∈ I, by hereditary property, Y ∩ S and Y ∩ T also belong to I. Hence, we have

r(S) ≥ |Y ∩ S|, r(T) ≥ |Y ∩ T |.

Also, note that since X ⊆ Y and X ⊆ (S ∩ T), we have that

X = (X ∩ Y) ⊆ (S ∩ T) ∩ Y.

See Figure 4.2 for a graphical illustration of all the sets.

182

S T

Figure 4.2: Sets X, Y, S, T

Using these two inequalities, we get that

r(S) + r(T) ≥ |Y ∩ S|+ |Y ∩ T |
= |Y |+ |Y ∩ (S ∩ T)|
≥ |Y |+ |X|
= r(S ∪ T) + r(S ∩ T),

where the first equality followed from the fact that Y ⊆ (S ∪ T). �

4.8.2 The Matroid Polytope

Let E = {1, . . . , n} and (E, I) be a matroid with r being its rank function. Consider the

following system of inequalities with variables x ≡ (x1, . . . , xn)

P = {x ∈ Rn
+ :

∑

j∈S

xj ≤ r(S) ∀ S ⊆ E}.

Notice that P is a bounded polyhedron, i.e., a polytope.

The main theorem of this section characterizes the extreme points of P.

Theorem 51 Suppose r is the rank function of the matroid (E, I). Consider the linear

183

program

max

n
∑

j=1

cjxj

subject to
∑

j∈S

xj ≤ r(S) ∀ S ⊆ E

xj ≥ 0 ∀ j ∈ E.

Let N+ := {j ∈ E : cj > 0}. The linear program has an optimal solution that satisfies: there

exists a maximal independent set T of {S ∈ I : S ⊆ N+} such that

xj = 1 ∀ j ∈ T and xj = 0 ∀ j /∈ T.

Proof : By Theorem 51, the optimal solution of this linear program is obtained by the

following greedy algorithm. Order the coefficients of the objective function (without loss of

generality) as follows:

c1 ≥ . . . ≥ ct > 0 ≥ ct+1 ≥ . . . ≥ cn,

where t ∈ {1, . . . , n}. Now, we set

x1 = r({1})
x2 = r({1, 2})− r({1})
.

xt = r({1, . . . , t})− r({1, . . . , t− 1}).
xt+1 = . . . = xn = 0.

We first argue that this solution satisfies: xi ∈ {0, 1} for all i. Clearly, xi = 0 for all i > t.

Pick i ≤ t. If {1, . . . , i} is an independent set, then by hereditary property, {1, . . . , i− 1} is
also an independent set. As a result, xi = r({1, . . . , i})−r({1, . . . , i−1}) = i−(i−1) = 1. If

{1, . . . , i} is not an independent set, then let S be a maximal independent set of {1, . . . , i−1}.
But S is an independent set of {1, . . . , i}. Let T be a maximal independent set of {1, . . . , i}
containing S - such a T can be chosen because of hereditary property and equi-maximality.

Since S is maximally independent in {1, . . . , i− 1}, it must be that T \ S contains only i or

is empty. Hence, r({1, . . . , i})− r({1, . . . , i− 1}) = (|T | − |S|) ∈ {0, 1}. This concludes the
proof that each xi ∈ {0, 1}.

184

Now, we show that the set K := {i : xi = 1} is an independent set. Let us write

K := {j1, . . . , jk}, where j1 < j2 < . . . < jk. We will show that K is a maximal independent

set in {1, . . . , jk}. Since xj1 = 1, we know that

r({1, . . . , j1})− r({1, . . . , j1 − 1}) = 1. (4.14)

We argue that r({1, . . . , j1 − 1}) = 0. If not, then there is some independent set h ∈
{1, . . . , j1− 1} - let this be the smallest indexed independent set in {1, . . . , j1− 1}. If h = 1,

then r({1}) = 1 and x1 = 1, which is a contradiction to the definition of j1. Then, there

is no independent set in {1, . . . , h − 1} and r({1, . . . , h}) = 1 indicating xh = 1, which is a

contradiction to the definition of j1.

This implies that r({1, . . . , j1}) = 1. Then, the maximal independent set in {1, . . . , j1} is
a singleton, say {h}. Further, since r({1, . . . , j1−1}) = 0, it implies that h /∈ {1, . . . , j1−1},
i.e., h = j1. Hence, {j1} is an independent set, and it is the maximal independent set in

{1, . . . , j1}.
We now use induction. Suppose {j1, . . . , jq−1} is maximum independent set in {1, . . . , jq−1}.

Hence, we have r({1, . . . , jq−1}) = q − 1. We will argue that {j1, . . . , jq} is an independent

set and r({1, . . . , jq}) = q. Since r({1, . . . , jq−1}) = q − 1 and xjq−1+1 = . . . = xjq−1 = 0, it

must be that r({1, . . . , jq−1+1}) = . . . = r({1, . . . , jq−1}) = q−1. Since xq = 1, it must be

that r({1, . . . , jq}) = q. Since {j1, . . . , jq−1} is the largest independent set {1, . . . , jq − 1}, it
must be that {j1, . . . , jq} is the maximal independent set in {1, . . . , jq}. This completes the

induction and the proof. �

The proof also makes it clear that the optimal solution identified by T is a basis of N+. In

particular, if every coefficient is positive, then the optimal solution identifies the maximum

weight basis of (E, I).

A simpler special case. Consider a simpler special case where (E, I) is a matroid such

that every singleton belongs to I. Further N+ = N , i.e., every coefficient is positive. Then,

by Theorem 51, we find a maximum weight basis of (E, I). Let the size of the basis be r(E).

In fact, the greedy algorithm can be restated as follows.

1. Set x1 = 1 and T1 := {1}.

2. Having identified x1, . . . , xk, let Tk := {i ∈ {1, . . . , k} : xi = 1}. If |Tk| = r(E), we

stop. Else, we set xk+1 = 1 if Tk∪{xk+1} is an independent set and xk+1 = 0 otherwise.

This is the standard greedy algorithm we used earlier - for instance, in the computation

of minimum cost spanning tree. If we consider the graphic matroid, then the above simpler

185

case suggests a way of finding the maximum weight spanning tree - a spanning tree is a basis

of this matroid.

186

	Basic Graph Theory
	What is a Graph?
	Modeling Using Graphs: Examples

	Definitions of (Undirected) Graphs
	Properties of Trees and Spanning Trees

	The Minimum Cost Spanning Tree Problem
	Greedy Algorithms for MCST
	Other Algorithms for MCST

	Application: The Minimum Cost Spanning Tree Game
	Cooperative Games
	The Minimum Cost Spanning Tree Game

	Hall's Marriage Theorem
	Application: Competitive Equilibrium with Indivisible Objects
	Maximum Matching in Bipartite Graphs
	M-Augmenting Path
	Algorithm for Maximum Matching in Bipartite Graphs
	Minimum Vertex Cover and Maximum Matching
	Edge Covering
	Independent Set

	Basic Directed Graph Definitions
	Potentials

	Unique Potentials
	Application: The implementation problem
	Application: Fair Pricing
	A Shortest Path Algorithm
	Network Flows
	The Maximum Flow Problem
	Analysis of the Maximum Flow Problem
	The Residual Digraph of a Flow
	Ford-Fulkerson Algorithm

	Disjoint Paths
	Application: Reduced form auctions

	Introduction to Convex Sets
	Convex Sets
	Hyperplanes and Separations
	Farkas Lemma
	Application: Core of Cooperative Games
	Application: Full surplus extraction in auctions
	Carathéodory Theorem
	Polyhedra and Polytopes

	Linear Programming
	Introduction
	Steps in Solving an Optimization Problem
	Linear Programming
	An Example
	Standard Form

	History of Linear Programming
	Simplex Preview
	First Example
	Dictionaries
	Second Example

	Pitfalls and How to Avoid Them
	Iteration
	Cycling
	Initialization
	An Example Illustrating Geometry of the Simplex Method

	Extreme Points and Simplex Method
	Duality
	Writing Down the Dual

	The Duality Theorem
	Relating the Primal and Dual Problems
	Farkas Lemma and Duality Theory
	Complementary Slackness
	Interpreting the Dual

	Integer Programming and Submodular Optimization
	Integer Programming
	Common Integer Programming Problems

	Relaxation of Integer Programs
	Integer Programs with Totally Unimodular Matrices
	Assignment Problem
	Potential Constraints are TU
	Network Flow Problem
	The Shortest Path Problem

	Application: Efficient Assignment with Unit Demand
	Application: Efficient Combinatorial Auctions
	Formulation as an Integer Program

	Application: Auction Algorithms for Assignment Problems
	Submodular Optimization
	Examples
	Optimization

	A Short Introduction to Matroids
	Equivalent ways of Defining a Matroid
	The Matroid Polytope

