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Abstract

It is shown that every anonymous truth-revealing position auction is a Vickrey-
Clarke-Groves (VCG) position auction. The result is proved for two independent no-
tions of anonymity, anonymous allocation rule and utility symmetry.

1 Introduction

Sponsored search, and in particular position auctions, have become a central issue in elec-
tronic commerce and in the literature that analyzes it (see e.g., (Lahaie, 2006; Varian, 2007;
Edelman, Ostrovsky, & Schwarz, 2007)). In a position auction a set of merchants, which
we refer to as players, bid on a specific keyword. The positions are sold for a fixed period of
time.1 Merchants’ advertisements are shown to users, which search for this keyword. The
allocation rule of the auction determines which advertisements and in what order they will
be presented according to the submitted bids for this keyword. In addition the auctioneer
charges a merchant when a user ”clicks” on its advertisement, where the charged price is
determined by the payment rules of the auction.

The positions are not identical and players may experience different number of clicks.
Typically an ad located at a higher position attracts more customers than an ad located at
a lower position. The click-through rate, which is the expected number of clicks a player
experiences, depends on both the player and her position in a separable way. That is, the
click through rate that player i experiences at position q equals βiαq, where βi is called

∗First version: June 2007.
†I would like to thank Ron Lavi and Dov Monderer for very helpful discussions.
1In real-life the time period ends whenever agents change their bids.
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the quality factor of player i (see e.g., (Lahaie, 2006; Varian, 2007)). In this paper we deal
with position auctions in which players have identical quality factors, that is βi = 1 for all
i.2

A position auction is naturally modeled as a game with incomplete information, in
which players’ valuations are private. A strategy of every player maps every valuation to
a bid. The leading solution concept for such games is ex post equilibrium, which is the
natural generalization of Nash equilibrium to setting with incomplete information without
probabilistic information.

A position auction is truth-revealing if the strategy profile in which every player reports
its true valuation is an ex post equilibrium.3 Equivalently, since we deal with the inde-
pendent private-value model, a position auction is truth-revealing if and only if for every
player, the truth-revealing strategy is a weakly dominant strategy.

Currently used position auctions, called next-price auctions4 run by Google and Yahoo,
are not truth-revealing (see e.g., Edelman, Ostrovsky, & Schwarz (2007)).5 In contrast,
the Vickrey-Clarke-Groves (VCG) position auctions Vickrey (1961); Clarke (1971); Groves
(1973) are truth-revealing. An intriguing question is whether there exist other, not VCG,
truthful position auctions, and what are their explicit structure. In this paper we show that
no such anonymous position auctions exist. This is shown with two notions of anonymity,
which are shown to be independent (i.e., neither of these notions implies the other one).
The first notion is that of an anonymous allocation rule, and the second one is of utility
symmetry. It is proved that a position auction, which is anonymous in either of the above
meanings must be a VCG position auction.

We want to stress that the main novelty in our results follows from the fact that we do
not require the allocation rule to be a welfare maximizer, but rather prove that anonymity
implies that the allocation rule is a welfare maximizer. If the allocation rule is assumed to
be a welfare maximizer then by (Holmstrom, 1979) it must be a VCG position auction.6

As was shown in (Lavi, Mu’alem, & Nisan, 2007), our result is not extended to anonymous
combinatorial auctions with convex domains of valuations.7

2All our definitions and results can be naturally extended to the general case by introducing notions of

“weighted” properties, and discussing weighted VCG position auctions
3By the revelation principle, if there exists an ex post equilibrium, there exists an equivalent truth-

revealing position auction.
4Next-price auction are also called generalized second price (GSP) auctions. There are two versions for

these auctions, the Overture version, and the Google version, which differ in their allocation rules (see e.g

Lahaie (2006); Gagan, Goel, & Motwani (2006).)
5It was shown in Varian (2007); Edelman, Ostrovsky, & Schwarz (2007) that next-price auctions have

equilibrium in a complete information setup in which every player knows all other players’ valuations.
6 In (Holmstrom, 1979) it was proved that when the set of valuations of every player is differentiable-

path connected (and in particular when it is convex) the allocation rule in a truth-revealing mechanism

determines each of the payment functions up to an additive constant.
7When the domain of valuations is further restricted to the non-convex domain of single-minded val-
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For the sake of fluent reading, almost all proofs appear in Section 6.

2 Preliminaries

2.1 Position Auctions

A position auction environment is defined by three parameters (k, n, α), where k ≥ 1 is the
number of positions for sale at a given unit of time, n ≥ k is the number of players, and
α = (α1, · · · , αk) is a vector of positive numbers, which is called the position vector; αq

is called the click-through rate of position q, and it is interpreted as the expected number
of clicks on an ad located at position q. It is assumed that α1 ≥ α2 · · · ≥ αk > 0. For
convenience, we add a dummy position, position k + 1 with αk+1 = 0. The set of non-
dummy positions is denoted by K, that is, K = {1, ..., k}. The set of players is denoted by
N , that is N = {1, ..., n}. For the rest of our discussion the environment will be fixed.

If i holds a position then every click of a visitor to this position gives i a revenue of
vi ≥ 0, where vi is called the valuation of i. The set of possible valuations of i is Vi = [0,∞).
Let V = V1×V2×· · ·×Vn be the set of vectors of valuations. Let v ∈ V. For every S ⊆ N
we let vS = (vj)j∈S , v−S = vN\S and v−i = v−{i}.

An allocation is an assignment of players to positions. We focus on position auctions in
which all positions are allocated to the players. More precisely, an allocation is a vector of
positive integers, q = (q1, q2, · · · , qn) with 1 ≤ qi ≤ k + 1, such that for every non-dummy
position q there exists a unique player i with qi = q. The set of all allocations is denoted
by Q. A position auction is defined by a pair (s,p), where s = (s1, s2, · · · , sn) : V → Q
is the allocation rule, and p = (p1, p2, . . . , pn) is the payment scheme, where pi : V → R.
That is, when each player i submits the bid bi ∈ Vi, player i receives the position si(b),
and she pays pi(b), where b = (b1, · · · , bn) ∈ V is the profile of bids.8 9

We assume that players are risk neutral and have quasi-linear utilities. Therefore the

uations it was already shown in (Lehmann, O’Callaghan, & Shoham, 1999) that there exist reasonable

anonymous auctions that are not VCG auctions.
8In real-life position auctions, as well as in some of the literature, the payments are defined per-click.

In our model, the payment per-click of i is pi(b)
αsi(b)

, if si(b) is a non-dummy position. In a model that

directly deals with per-click payments, it is implicitly assumed that a player pays nothing if she does not

receive a position. Our model is slightly more general because it allows to charge non-zero payments from

participants who do not get a position (i.e., participants who get the dummy position). The two models

coincide under the assumptions of individual rationality and seller rationality, which is discussed in Section

5.
9What we call a position auction should be actually called a direct position auction. In a more general,

non-direct auction the players are required to submit messages, which are not necessarily non-negative

numerical bids. The restriction to direct position auctions is innocent in our context due to the revelation

principle.
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utility function of player i, ui : Vi ×V→ R is defined as follows:

ui(vi,b) = αsi(b)vi − pi(b). (1)

2.2 Truth-Revealing Position Auctions

We are interested in position auctions in which players have incentives to bid truthfully. A
position auction (s,p) is truth-revealing if bidding truthfully is a weakly dominant strategy
for every player. That is, if for every player i, for every vi, and for every fixed vector of
valuations of all other players, b−i the following holds:

ui(vi, (vi,b−i)) ≥ ui(vi, (bi,b−i)) ∀bi ∈ Vi. (2)

We say that an allocation rule s is implementable if there exist a payment scheme p
such that (s,p) is a truth-revealing position auction. In our proofs We extensively use a
characterization of truth-revealing position auctions by a monotonicity condition.

The allocation rule s is called monotone if for every player i, for every b−i the function
bi → αsi(bi,b−i) is non-decreasing. That is, a player’s click-through rate cannot decrease by
raising its bid given that the other players’ bids are fixed. Equivalently, s is monotone if
and only if for every fixed b−i

(bi − b′i)(αsi(bi,b−i) − αsi(b′i,b−i)
) ≥ 0, ∀bi, b′i ∈ Vi. (3)

The proof of the following proposition is derived from (Bikhchandani et al., 2006):

Proposition 2.1 ((Bikhchandani et al., 2006)) For position auctions: An allocation
rule is implementable if and only if it is monotone.

Proof: The sufficiency of the monotonicity condition for deterministic (non-randomized)
and finite-valued mechanisms was proved in (Bikhchandani et al., 2006) for the case in
which the set of valuations of each player is Rm

+ for some m ≥ 1, which is the case in our
model in which m = 1.10�

2.3 VCG Position Auctions

A well-known class of truth-revealing position auctions are the VCG position auctions.
In order to describe them we need the following terminology: An allocation q ∈ Q is
consistent with the vector of bids b if for every 1 ≤ i, j ≤ n

bi > bj ⇒ qi ≤ qj .
10In the case m = 1 the sufficiency of the monotonicity holds also for randomized allocation rules as can

be derived from (Myerson, 1981).
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An allocation rule s is called a welfare maximizer if for every b ∈ V the allocation s(b)
is consistent with b.

For a vector of real numbers b = (b1, . . . , bn) we denote by b(j) the jth largest number
including ties. For example, if b = (1, 2, 3, 2), then b(1) = 3, b(2) = 2, b(3) = 2, b(4) = 1.

Definition 2.2 Let (s,p) be a position auction.
(s,p) is called a standard VCG position auction11 if the following holds:

a. s is a welfare maximizer.
b. For every 1 ≤ i ≤ n,

pi(b) =
k+1∑

m=si(b)+1

b(m)(αm−1 − αm), (4)

if si(b) ∈ K and pi(b) = 0 if si(b) = k + 1.

Note that there exist many standard VCG position auctions, each of them uniquely deter-
mined by a tie-breaking rule.

Non-standard VCG position auctions share the same allocation rules with the standard
ones, and their payment schemes are obtained from the standard payment schemes by
adding to the payment of each player an additional payment, which depends only on the
other players’ bids. More precisely, (s, p̂) is a VCG position auction if there exists a
standard VCG position auction, (s,p), with the same allocation rule, s, and there exist n
functions, gi : V−i → R, such that for every i

p̂i(b) = pi(b) + gi(b−i) ∀b ∈ V, (5)

where pi(b) is the standard VCG payment function of i given in (4).

3 Anonymous Allocation Rules

In this section we show that every truth-revealing position auction with an anonymous
allocation rule is a VCG position auction.

The following notation will be useful. For every profile b ∈ V denote by bij the
bid profile obtained from b by exchanging player i’s and j’s valuations, that is bij =
(b1, . . . , bj−1, bi, bj+1, . . . , bi−1, bj , bj+1, . . . , bn).

A natural requirement from an anonymous allocation rule would be that sj(bij) = si(b)
for every profile of bids b and every pair of players i, j. However, such a requirement is
not well defined due to tie issues. Before we define an anonymous allocation rule we need
the following:

11 Some authors (see e.g., (Holzman et al., 2004)) call the standard VCG mechanism, the VC mechanism.

However, we decided to use the more common terminology.
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Let b ∈ V be a bid profile. bi is distinct in b if bi 6= bj for every player j 6= i. When
it is clear from the context we will just say that bi (or i’s bid) is distinct. We further say
that b is generic if bi is distinct for every player i.

Definition 3.1 An allocation rule s is anonymous if the following holds: For every player
i, and for every for every b ∈ V such that bi is distinct in b, sj(bij) = si(b) for every
player j.

Hence, if i’s bid is distinct in b, and i switches bids with player j, j receives the previous
position of i, but i does not necessarily receives the previous position of j, unless j’s bid is
also distinct.

Our main result in this section is:

Theorem 3.2 A truth-revealing position auction with an anonymous allocation rule is a
VCG position auction.

The next example shows that if we slightly weaken the definition of anonymous allocation
rules by requiring that the anonymity condition in Definition 3.1 holds only for generic bid
profiles, Theorem 3.2 does not hold.

Definition 3.3 An allocation rule s is weakly anonymous if for every generic b ∈ V and
every player i, sj(bij) = si(b) for every player j, j 6= i.

In the following example we show that there exists a truth-revealing position auction with
a weakly anonymous allocation rule which is not a VCG-position auction.

Example 1 We define an allocation rule s as follows. Let b be a bid profile. If b is generic
then s(b) is consistent with b. Otherwise, let z(b) be the highest non distinct bid (in a tie)
in b. Let T (b) = {i : bi ≥ z(b)} be the set of players with valuation larger than or equal
z(b). s allocates positions 1, 2, . . . ,min{k, |T (b)|} positions to players in T (b) in decreasing
order while breaking ties in lexicographically order (giving priority to players with a smaller
index). All other positions are allocated to players in N \ T (b) in lexicographically order.
To illustrate, let k = 4 and n = 6. In the bid profile (5, 3, 4, 4, 5, 6), z = 5, and the allocation
rule s allocates position 1, 2 and 3 to players 6, 1 and 5 respectively, and position 4 to
player 2. By definition s is weakly anonymous. It is easily verified that s is monotone,
and therefore by Proposition 2.1 it is implementable. Moreover note that s is not welfare
maximizer, and therefore the position auction is not a VCG auction.

4 Utility Symmetric Position Auctions

So far we have dealt with anonymous allocation rules. This type of symmetry is natural in
position auctions and in other auction settings, but it does not have an analogue in many
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general mechanisms. Another type of symmetry, which is commonly used in mechanism
design theory is utility symmetry. Roughly speaking a position auction is utility symmetric
if whenever a pair of players who report truthfully their bids exchange their valuations and
their bids, their utilities will also be exchanged. More specifically:

Definition 4.1 A position auction is called utility symmetric if for every two distinct
players, i, j, for every bids of the other players, b−{i,j}, and for every vi, vj

uj(vi,bij) = ui(vi,b),

where b = (vi, vj ,b−{i,j}).

Note that definition 4.1 implies that truthful players with the same valuation should
have the same utility. It is immediate to verify that every standard VCG position auction
is utility symmetric. Therefore a standard VCG position auction is both utility symmetric
and has an anonymous allocation rule. In general, a utility symmetric position auction does
not necessarily have an anonymous allocation rule and vice-versa. Constructing a position
auction with an anonymous allocation rule, which is not utility symmetric is immediate:
a position auction with at least two positions in which the allocation rule is a welfare
maximizer and for every i pi(·) ≡ i.

In the following example we show a utility symmetric position auction with a non
anonymous allocation rule.

Example 2 Let n = 2, k = 1, and α1 = 1. Let s1(b) = 1 for every bid profile b, i.e.,
player 1 always gets position 1. The payment scheme is defined as follows: For every bid
profile b p1(b) = b1 and p2(b) = 0. Note that whenever both players bid truthfully, the
utility of both players equals 0. Therefore the auction is utility symmetric and obviously
the allocation rule is not anonymous.

Our main result in this section is:

Theorem 4.2 A truth-revealing utility symmetric position auction is a VCG position auc-
tion.

5 Individual Rationality and Seller Rationality

A truth-revealing position auction (s,p) is individually rational if reporting the true val-
uation guarantees every player a non-negative utility. That is, for every player i and for
every vi the following holds:

ui(vi, (vi,b−i)) ≥ 0 ∀b−i ∈ V−i. (6)
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A truth-revealing position auction (s,p) is seller rational if for every player i

pi(b) ≥ 0 ∀b ∈ V. (7)

It is easily verified that every standard VCG position auction is both individually
rational and seller rational. However, a non-standard VCG position auction does not
necessarily satisfy any of the rationality conditions because the functions gi in (5) can be
arbitrarily chosen . We show that

Theorem 5.1 Every truth-revealing, individually rational and seller rational position auc-
tion which is either utility symmetric or has a symmetric allocation rule is necessarily a
standard VCG position auction.

6 Proofs

In this section we prove our main results, Theorems 3.2, 4.2, and 5.1. For simplicity we
will prove our results for the case in which α1 > α2 > · · · > αk.
Throughout the proofs we frequently use the fact proved in Proposition 2.1, that if (s,p)
is truth-revealing, s is monotone (see Section 2.2).

In our proofs we will use the following proposition derived from (Holmstrom, 1979).12

Proposition 6.1 ((Holmstrom, 1979)) Let s be a welfare maximizer. If the allocation
rule, s is implementable by a payment scheme q, (s,q) is a VCG position auction.

Proof: In (Holmstrom, 1979) it was proved that when the set of valuations of every player
is differentiable-path connected (and in particular when it is convex) the allocation rule
in a truth-revealing mechanism determines each of the payment functions in the payment
scheme up to an additive constant. Since every Vi is a convex set the proof follows. �

In the proof of Theorem 4.2 we will use the following lemma whose proof can be deduced
from (Myerson, 1981), where it is stated for position auctions with a single position. The
extension to general position auctions is given in (Archer, 2004) (section 2.4.2)

Lemma 6.2 ((Myerson, 1981)) If a position auction (s,p) is truth-revealing then for
every vi ∈ Vi and every b−i ∈ V−i,

ui(vi, (vi,b−i)) = ui(0, (0,b−i)) +
∫ vi

0
αsi(x,b−i)dx. (8)

In the proof of Theorem 5.1 we will use the following two lemmas:

Lemma 6.3 Let (s,p) be a standard VCG position auctions, where pi is defined in (4) for
every player i. The following holds for every i and for every bid profile b:

12See (Heydenreich et al., 2007; Müller, Perea, & Wolf, 2007), where the results in (Holmstrom, 1979)

are further generalized.
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(i) if si(b) = k then pi(b) = b(k+1).

(ii) if si(b) > sj(b) then pi(b) ≥ pj(b).

(iii) pi(b) ≤ b(i).

Proof: The lemma states obvious properties of a standard VCG position auction. Its
explicit proof can be derived from Lemma 1 in (Ashlagi, Monderer, & Tennenholtz, 2007).
�

Lemma 6.4 Every individually rational and seller rational VCG position auction is a
standard VCG position auction.

Proof: Let (s, p̂) be a VCG position auction where p̂i is defined as in (5) for every player
i. We have to prove that for every i, gi(b−i) = 0 for every b−i.

Suppose in negation that there exist a player i and b−i ∈ V−i such that gi(b−i) 6= 0.
Assume first that gi(b−i) > 0. Let bi = inf{xi ∈ Vi|si(xi,b−i) ∈ K}. Since s is monotone
in bi (Proposition 2.1) si(bi + ε,b−i) ≥ si(bi,b−i) for every ε > 0. Hence, by the first two
parts in Lemma 6.3 and by the definition of bi pi(bi+ε,b−i) ≥ bi for every ε > 0. Therefore,
for every 0 < ε < gi(b−i) we obtain that p̂i(bi + ε,b−i) = pi(bi + ε,b−i) + gi(b−i) ≥ bi + ε,

i.e., a player with valuation vi = bi + ε > 0 would pay more than his value per-click in a
non-dummy position - a contradiction.
Suppose next that gi(b−i) < 0. Then for vi < gi(b−i) we obtain by the third part of
Lemma 6.3 that p̂i(vi,b−i) ≤ vi + gi(b−i) < 0 - a contradiction. �

Proof of Theorem 3.2:

Let (s,p) be a truth-revealing position auction in which s is anonymous. By Proposition
6.1 it suffices to show that s is a welfare maximizer, i.e., that for every bid profile, b, s(b)
is consistent with b. that not all Let Ṽ = {b ∈ V : b1 = b2 = · · · = bn}. The proof is
trivial for every b ∈ Ṽ.

We need the following notations. Let b ∈ V \ Ṽ. For every position q ∈ K we denote
by i(b, q) the player assigned to position q in b, that is si(b,q)(b) = q. Let H(b) = {i ∈
N |bi = b(1)} be the set of highest bidders in b and let h(b) be the position with the largest
index of a highest bidder in the bid profile b, i.e.,

h(b) = max{q ∈ K ∪ {k + 1}|∃i ∈ H(b) si(b) = q}.

Let v(b) be the position with a lowest index of a non-highest bidder in the bid profile b.
That is v(b) = min{q ∈ K ∪ {k + 1}|bi(b,q) < b(1)}. Finally, let V (b) be the set of players
which have the same bid as the player in position, i.e., V (b) = {j ∈ N |bj = bi(b,v(b))}.
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We show that for every bid profile b, v(b) ≥ h(b), i.e., a highest bidder can not get a
position with a higher index than a non-highest bidder. This will complete the proof since
by similar arguments we can show that for every b−H(b), v(b−H(b)) ≥ h(b−H(b)), and the
proof continues recursively.

Suppose in negation that there exist a bid profile b such that v(b) < h(b). Note that
v(b) ∈ K. We distinguish between the following two cases:

1. |V (b)| = 1: Let i be the player in position v(b), i.e. i is distinct in b. Note that if
sj(b) < si(b) for j 6= i then j ∈ H(b).

Let b̂ = (b(1),b−i). That is b̂ is the bid profile obtained from b by increasing player
i’s bid to b(1). By Proposition 2.1 s is monotone and therefore si(b̂) ≤ si(b).

Let j ∈ H(b). Since s is monotone sj(b̂) ≤ sj((bi, b̂−j)). Note that the bid profile
(bi, b̂−j) is obtained from b by switching the bids of players i and player j. Since s
is anonymous and i is distinct in b we have that sj((bi, b̂−j)) = si(b). Recall that
si(b) = v(b). We obtained that every player in H(b) ∪ {i} must be in the the first
v(b) positions contradicting |H(b) ∪ {i}| ≥ v(b) + 1.

2. |V (b)| > 1: Let i be the player in position v(b). Let di = bi + b(1)−b(i)
2 , and let

b1 = (di,b−i). Since s is monotone si(b1) ≤ si(b). In addition note that player i
is the only player that bids di in the profile b1. Therefore v(b1) ≤ v(b). Moreover,
since the highest bidders in b still bid b(1) in b1 we have that v(b1) < h(b1).

If |V (b1)| = 1 then by case 1 we obtain a contradiction.

Assume otherwise, i.e., |V (b1)| > 1. Let i1 be the player in position v(b1). Since
player i is the only player to bid di in b1 we have that i1 6= i. Set di1 = di + b(1)−di

2

and let b2 = (b1
−i1
, di1). By the same arguments above we have that v(b2) < h(b2).

Hence, if |V (b2)| = 1 then a contradiction is obtained by case 1. Otherwise continue
this process until obtaining a bid profile bl for some l ≥ 3 such that |V (br)| = 1.
This process will end after a finite number of steps; indeed, if |V (br)| > 1 for some
r > 1 in the process, then the player in position v(br) in the bid profile br will have
a distinct bid for the rest of the entire process.

�

Proof of Theorem 4.2:

Let (s,p) be a truth-revealing and utility symmetric position auction. In order to prove
that (s,p) is a VCG position auction it suffices, by Proposition 6.1, to show that s is a
welfare maximizer. Let H(b),h(b) and v(b) be defined as in the proof of Theorem 3.2.
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As in the proof of Theorem 3.2 it is enough to show that for every bid profile b,
v(b) ≥ h(b), i.e., a highest bidder can not get a position with a higher index than a
non-highest bidder.

Suppose in negation that there exist a bid profile b such that v(b) < h(b). Let i be the
player in position v(b) in the bid profile b. That is si(b) = v(b). Note that if sj(b) < si(b)
then j ∈ H(b). Moreover by the negation assumption |H(b)| ≥ v(b).

Let d = b(1) − bi. Let b̂ = (b(1),b−i). By (8) and since s is monotone (Proposition 2.1)

ui(b̂i, b̂) ≥ ui(bi,b) + dαv(b). (9)

Again, by the monotonicity of s si(b̂) ≤ v(b). Since H(b̂) = H(b) ∪ {i} we have that
|H(b̂)| > v(b) which implies that there exists a player j ∈ H \ {i} for which sj(b̂) > v(b).
Since b̂i = b̂j and by utility symmetry

ui(b̂i, b̂) = uj(b̂j , b̂). (10)

By (8) and since s is monotone

uj(bi, (bi, b̂−j)) ≥ uj(b̂j , b̂)− dαsj(b̂). (11)

Since αv(b) > αsj(b̂) we have that

uj(bi, (bi, b̂−j)) > uj(b̂j , b̂)− dαv(b). (12)

By (9), (10) and (12) we obtain that uj(bi, (bi, b̂−j)) > ui(bi,b) which contradicts utility
symmetry. �

Proof of Theorem 5.1:

By Theorems 3.2 and 4.2, (s,p) is a VCG position auction, and by Lemma 6.4 it is
necessarily a standard VCG position auction. �.
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